Megasecoptera is a late Paleozoic order of herbivorous insects with rostrum-like mouthparts and slender homonomous outstretched wings. Our knowledge of their morphology is mainly based on wings while other body parts are scarcely documented. Here we focus on the families Bardohymenidae and Aspidothoracidae. A new well preserved specimen of Sylvohymen cf. sibiricus is described and illustrated, particularly the structures of the external male genitalia previously unknown for Bardohymenidae. Sylvohymen marginatussp. nov. is described from the early Permian of Tshekarda based on unique traits in the wing venation. The genera Paleohymen and Taigahymen are both removed from Bardohymenidae and the latter is transferred to Vorkutiidae. Alexahymen aestatis (Brauckmann, 1991) comb. nov. from Pennsylvanian at Piesberg is transferred from Aspidothoracidae to Bardohymenidae. Piesbergbrodiagen. nov. is designated for Piesbergbrodia tristrata (Brauckmann and Herd, 2003) comb. nov. as a member of Brodiidae and the first known record of this family from Piesberg quarry. The placement of Sylvohymen peckae in the Bardohymenidae is considered doubtful due to lack of significant characters in its venation. Furthermore, our study is focused on the form of the apical cell and the pattern of wing pigmentation. Peculiarities of the integumental outgrowths and external genitalia of representatives of Aspidothoracidae and Bardohymenidae, and other close relatives, are highlighted.
Despite more than 250 years of taxonomic research, we still have only a vague idea about the true size and composition of the faunas and floras of the planet. Many biodiversity inventories provide limited insight because they focus on a small taxonomic subsample or a tiny geographic area. Here, we report on the size and composition of the Swedish insect fauna, thought to represent roughly half of the diversity of multicellular life in one of the largest European countries. Our results are based on more than a decade of data from the Swedish Taxonomy Initiative and its massive inventory of the country's insect fauna, the Swedish Malaise Trap Project The fauna is considered one of the best known in the world, but the initiative has nevertheless revealed a surprising amount of hidden diversity: more than 3,000 new species (301 new to science) have been documented so far. Here, we use three independent methods to analyze the true size and composition of the fauna at the family or subfamily level: (1) assessments by experts who have been working on the most poorly known groups in the fauna; (2) estimates based on the proportion of new species discovered in the Malaise trap inventory; and (3) extrapolations based on species abundance and incidence data from the inventory. For the last method, we develop a new estimator, the combined non-parametric estimator, which we show is less sensitive to poor coverage of the species pool than other popular estimators. The three methods converge on similar estimates of the size and composition of the fauna, suggesting that it comprises around 33,000 species. Of those, 8,600 (26%) were unknown at the start of the inventory and 5,000 (15%) still await discovery. We analyze the taxonomic and ecological composition of the estimated fauna, and show that most of the new species belong to Hymenoptera and Diptera groups that are decomposers or parasitoids. Thus, current knowledge of the Swedish insect fauna is strongly biased taxonomically and ecologically, and we show that similar but even stronger biases have distorted our understanding of the fauna in the past. We analyze latitudinal gradients in the size and composition of known European insect faunas and show that several of the patterns contradict the Swedish data, presumably due to similar knowledge biases. Addressing these biases is critical in understanding insect biomes and the ecosystem services they provide. Our results emphasize the need to broaden the taxonomic scope of current insect monitoring efforts, a task that is all the more urgent as recent studies indicate a possible worldwide decline in insect faunas.
- MeSH
- Biodiversity * MeSH
- Diptera classification MeSH
- Ecosystem MeSH
- Extinction, Biological * MeSH
- Phylogeny MeSH
- Insecta classification MeSH
- Censuses * MeSH
- Records MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Sweden MeSH
Rapid and reliable identification of insects is important in many contexts, from the detection of disease vectors and invasive species to the sorting of material from biodiversity inventories. Because of the shortage of adequate expertise, there has long been an interest in developing automated systems for this task. Previous attempts have been based on laborious and complex handcrafted extraction of image features, but in recent years it has been shown that sophisticated convolutional neural networks (CNNs) can learn to extract relevant features automatically, without human intervention. Unfortunately, reaching expert-level accuracy in CNN identifications requires substantial computational power and huge training data sets, which are often not available for taxonomic tasks. This can be addressed using feature transfer: a CNN that has been pretrained on a generic image classification task is exposed to the taxonomic images of interest, and information about its perception of those images is used in training a simpler, dedicated identification system. Here, we develop an effective method of CNN feature transfer, which achieves expert-level accuracy in taxonomic identification of insects with training sets of 100 images or less per category, depending on the nature of data set. Specifically, we extract rich representations of intermediate to high-level image features from the CNN architecture VGG16 pretrained on the ImageNet data set. This information is submitted to a linear support vector machine classifier, which is trained on the target problem. We tested the performance of our approach on two types of challenging taxonomic tasks: 1) identifying insects to higher groups when they are likely to belong to subgroups that have not been seen previously and 2) identifying visually similar species that are difficult to separate even for experts. For the first task, our approach reached $CDATA[$CDATA[$>$$92% accuracy on one data set (884 face images of 11 families of Diptera, all specimens representing unique species), and $CDATA[$CDATA[$>$$96% accuracy on another (2936 dorsal habitus images of 14 families of Coleoptera, over 90% of specimens belonging to unique species). For the second task, our approach outperformed a leading taxonomic expert on one data set (339 images of three species of the Coleoptera genus Oxythyrea; 97% accuracy), and both humans and traditional automated identification systems on another data set (3845 images of nine species of Plecoptera larvae; 98.6 % accuracy). Reanalyzing several biological image identification tasks studied in the recent literature, we show that our approach is broadly applicable and provides significant improvements over previous methods, whether based on dedicated CNNs, CNN feature transfer, or more traditional techniques. Thus, our method, which is easy to apply, can be highly successful in developing automated taxonomic identification systems even when training data sets are small and computational budgets limited. We conclude by briefly discussing some promising CNN-based research directions in morphological systematics opened up by the success of these techniques in providing accurate diagnostic tools.
Insect metamorphosis boasts spectacular cases of postembryonic development when juveniles undergo massive morphogenesis before attaining the adult form and function; in moths or flies the larvae do not even remotely resemble their adult parents. A selective advantage of complete metamorphosis (holometaboly) is that within one species the two forms with different lifestyles can exploit diverse habitats. It was the environmental adaptation and specialization of larvae, primarily the delay and internalization of wing development, that eventually required an intermediate stage that we call a pupa. It is a long-held and parsimonious hypothesis that the holometabolous pupa evolved through modification of a final juvenile stage of an ancestor developing through incomplete metamorphosis (hemimetaboly). Alternative hypotheses see the pupa as an equivalent of all hemimetabolous moulting cycles (instars) collapsed into one, and consider any preceding holometabolous larval instars free-living embryos stalled in development. Discoveries on juvenile hormone signalling that controls metamorphosis grant new support to the former hypothesis deriving the pupa from a final pre-adult stage. The timing of expression of genes that repress and promote adult development downstream of hormonal signals supports homology between postembryonic stages of hemimetabolous and holometabolous insects. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Megasecoptera is an extinct group of insects with specialized rostrum-like mouthparts, which is a synapomorphy shared with all members of the Late Paleozoic Palaeodictyopterida, and markedly slender wings that are unable to flex backwards. Here we describe the close up morphology of Protohymenidae and Scytohymenidae and uncover new aspects of the endoskeleton (tentorium) of the head, structure of the mouthparts with discernible proximal part of stylets controlled by muscles, surface of compound eyes that consist of a hexagonal pattern of large facets, structure and microstructures on the wings and reconstruct male and female external genitalia using ESEM and light stereomicroscopy. Furthermore, we describe Protohymen novokshonovi sp. n. based on an exceptionally well preserved fossil from the early Permian at Tshekarda in Russia, which shows crucial details, and the earliest species of Protohymenidae, Carbohymen testai gen. et sp. n. from a late Carboniferous siderite nodule at Mazon Creek in Illinois, USA. Our comparative study confirmed a set of structural and microstructural details on their wings, such as the composite anterior wing margin, development of an apical cell and the previously unknown external genitalia. Based on the results and comparison of homologous structures known primarily for extant relatives, such as mayflies and dragonflies, we outline for the first time the function of the mouthparts, in particular, the stylets, structure of the tentorium, vision provided by large hexagonal ommatidia and male copulatory structures bearing curved claspers for holding a female during copulation and penial lobes with seminal grooves.
- MeSH
- Insecta anatomy & histology classification ultrastructure MeSH
- Wings, Animal anatomy & histology ultrastructure MeSH
- Microscopy, Electron, Scanning MeSH
- Genitalia anatomy & histology ultrastructure MeSH
- Mouth anatomy & histology ultrastructure MeSH
- Fossils anatomy & histology ultrastructure MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.
- MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Genome, Mitochondrial * MeSH
- Genomics * methods MeSH
- Insecta classification genetics MeSH
- Genes, Insect MeSH
- Evolution, Molecular * MeSH
- Multigene Family MeSH
- Open Reading Frames MeSH
- Whole Genome Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Resource specialization is a key concept in ecology, but it is unexpectedly difficult to parameterize. Differences in resource availability, sampling effort and abundances preclude comparisons of incompletely sampled biotic interaction webs. Here, we extend the distance-based specialization index (DSI) that measures trophic specialization by taking resource phylogenetic relatedness and availability into account into a rescaled version, DSI*. It is a versatile metric of specialization that expands considerably the scope and applicability, hence the usefulness, of DSI. The new metric also accounts for differences in abundance and sampling effort of consumers, which enables robust comparisons among distinct guilds of consumers. It also provides an abundance threshold for the reliability of the metric for rare species, a very desirable property given the difficulty of assessing any aspect of rare species accurately. We apply DSI* to an extensive dataset on interactions between insect herbivores from four folivorous guilds and their host plants in Papua New Guinean rainforests. We demonstrate that DSI*, contrary to the original DSI, is largely independent of sample size and weakly and non-linearly related with several host specificity measures that do not adjust for plant phylogeny. Thus, DSI* provides further insights into host specificity patterns; moreover, it is robust to the number and phylogenetic diversity of plant species selected to be sampled for herbivores. DSI* can be used for a broad range of comparisons of distinct feeding guilds, geographical locations and ecological conditions. This is a key advance in elucidating the interaction structure and evolution of highly diversified systems.
- MeSH
- Herbivory * MeSH
- Phylogeny * MeSH
- Insecta classification genetics MeSH
- Nutritional Status MeSH
- Food Chain MeSH
- Reproducibility of Results MeSH
- Plants classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Types of five of the six Plecoptera species described by Émile Blanchard and the holotype of the single stonefly described by Jules François Mabille were discovered in the National Museum Prague, Czech Republic. The identity of P. myrmidon Mabille, 1891 and P. pictetii Blanchard, 1854 are confirmed as Potamoperla myrmidon and Pictetoperla gayi (Pictet, 1841), respectively. Perla virescentipennis Blanchard, 1851 is considered as Diamphipnopsis virescentipennis comb. n., with Diamphipnosis samali Illies, 1960 syn. n. as a junior subjective synonym, and Diamphipnoa chillanae nom. n. is proposed for D. virescentipennis sensu Illies 1960. Lectotypes are designated for three species: Nemoura rufescens Blanchard, 1851 is redescribed as Austronemoura rufescens (Blanchard, 1851) comb. n., with Perla infuscata Blanchard, 1851 syn. n. and Perla blanchardi Jakobson & Bianchi, 1905 syn. n. designated as junior subjective synonyms, whereas Perla stictica Blanchard, 1851 is treated as Neonemura stictica (Blanchard, 1851) comb. n., nomen dubium. Paralectotypes of these three species belong to further four taxa. Due to the missing syntypes, Perla lineatocollis Blanchard, 1851 is treated as a nomen dubium of uncertain suborder assignment. Specimens of the Blanchard collections that cannot regarded as types are enumerated belonging to six species. Recent collections of 15 species from Chile are also reported.
- MeSH
- Insecta anatomy & histology classification MeSH
- Moths anatomy & histology classification MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Chile MeSH
The psocidiid Hypopsylla belmontensis gen. et sp. nov., new psocidiid genus and species, is described and figured from the Late Permian of New South Wales in Australia. This discovery extends the knowledge on the diversity of the small order Permopsocida whose members passed the Permian-Triassic boundary and became extinct in Cretaceous.
- MeSH
- Phylogeny MeSH
- Insecta anatomy & histology classification MeSH
- Wings, Animal anatomy & histology MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Australia MeSH
Megasecoptera are insects with haustellate mouthparts and petiolate wings closely related to Palaeodictyoptera and one of the few insect groups that didn't survive the Permian-Triassic mass extinction. Recent discovery of Brodioptera sinensis in early Pennsylvanian deposits at Xiaheyan in northern China has increased our knowledge of its external morphology using conventional optical stereomicroscopy. Environmental scanning electron microscopy (ESEM) of structures, such as antennae, mouthparts, wing surfaces, external copulatory organs and cerci have shed light on their micromorphology and supposed function. A comparative study has shown an unexpected dense pattern of setae on the wing membrane of B. sinensis. In addition, unlike the results obtained by stereomicroscopy it revealed that the male and female external genitalia clearly differ in their fine structure and setation. Therefore, the present study resulted in a closer examination of the microstructure and function of previously poorly studied parts of the body of Paleozoic insects and a comparison with homologous structures occurring in other Palaeodictyopteroida, Odonatoptera and Ephemerida. This indicates, that the role and presumptive function of these integumental protuberances is likely to have been a sensory one in the coordination of mouthparts and manipulation of stylets, escape from predators, enhancement of aerodynamic properties and copulatory behaviour.