Metabolome-Wide, Phylogenetically Controlled Comparison Indicates Higher Phenolic Diversity in Tropical Tree Species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ERC-2013-SyG 610028-IMBALANCE-P
European Research Council - International
PID2019-110521GB-I00
Spanish Government
SGR 2017-1005
Catalan Government
PubMed
33809437
PubMed Central
PMC7998528
DOI
10.3390/plants10030554
PII: plants10030554
Knihovny.cz E-zdroje
- Klíčová slova
- antagonistic interactions, bayesian phylogenetic models, latitudinal biodiversity gradient, metabolomics, phenolics, plant defense,
- Publikační typ
- časopisecké články MeSH
Tropical plants are expected to have a higher variety of defensive traits, such as a more diverse array of secondary metabolic compounds in response to greater pressures of antagonistic interactions, than their temperate counterparts. We test this hypothesis using advanced metabolomics linked to a novel stoichiometric compound classification to analyze the complete foliar metabolomes of four tropical and four temperate tree species, which were selected so that each subset contained the same amount of phylogenetic diversity and evenness. We then built Bayesian phylogenetic multilevel models to test for tropical-temperate differences in metabolite diversity for the entire metabolome and for four major families of secondary compounds. We found strong evidence supporting that the leaves of tropical tree species have a higher phenolic diversity. The functionally closer group of polyphenolics also showed moderate evidence of higher diversity in tropical species, but there were no differences either for the entire metabolome or for the other major families of compounds analyzed. This supports the interpretation that this tropical-temperate contrast must be related to the functional role of phenolics and polyphenolics.
CSIC Global Ecology Unit CREAF CSIC UAB E 08913 Bellaterra Spain
Global Change Research Institute Czech Academy of Sciences CZ 60300 Brno Czech Republic
Zobrazit více v PubMed
Brown J.H. Why are there so many species in the tropics? J. Biogeogr. 2014;41:8–22. doi: 10.1111/jbi.12228. PubMed DOI PMC
Schemske D.W., Mittelbach G.G., Cornell H.V., Sobel J.M., Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269. doi: 10.1146/annurev.ecolsys.39.110707.173430. DOI
Dobzhansky T. Evolution in the tropics. Am. Sci. 1950;38:209–221.
Ehrlich P.R., Raven P.H. Butterflies and Plants: A Study in Coevolution. Evolution. 1964;18:586–608. doi: 10.1111/j.1558-5646.1964.tb01674.x. DOI
Janzen D.H. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970;104:501–528. doi: 10.1086/282687. DOI
MacArthur R.H. Geographical Ecology: Patterns in The Distribution of Species. Princeton University Press; Princeton, NJ, USA: 1972.
Mittelbach G.G., Schemske D.W., Cornell H.V., Allen A.P., Brown J.M., Bush M.B., Harrison S.P., Hurlbert A.H., Knowlton N., Lessios H.A., et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 2007;10:315–331. doi: 10.1111/j.1461-0248.2007.01020.x. PubMed DOI
Coley P.D., Barone J.A. Herbivory and Plant Defenses in Tropical Forests. Annu. Rev. Ecol. Syst. 1996;27:305–335. doi: 10.1146/annurev.ecolsys.27.1.305. DOI
Levin D.A. The Chemical Defenses of Plants to Pathogens and Herbivores. Annu. Rev. Ecol. Syst. 1976;7:121–159. doi: 10.1146/annurev.es.07.110176.001005. DOI
Bagchi R., Gallery R.E., Gripenberg S., Gurr S.J., Narayan L., Addis C.E., Freckleton R.P., Lewis O.T. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506:85–88. doi: 10.1038/nature12911. PubMed DOI
Salazar D., Marquis R.J. Herbivore pressure increases toward the equator. Proc. Natl. Acad. Sci. USA. 2012;109:12616–12620. doi: 10.1073/pnas.1202907109. PubMed DOI PMC
Kursar T.A., Dexter K.G., Lokvam J., Pennington R.T., Richardson J.E., Weber M.G., Murakami E.T., Drake C., McGregor R., Coley P.D. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl. Acad. Sci. USA. 2009;106:18073–18078. doi: 10.1073/pnas.0904786106. PubMed DOI PMC
Becerra J.X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl. Acad. Sci. USA. 2015;112:6098–6103. doi: 10.1073/pnas.1418643112. PubMed DOI PMC
Lim J.Y., Fine P.V.A., Mittelbach G.G. Assessing the latitudinal gradient in herbivory. Glob. Ecol. Biogeogr. 2015;24:1106–1112. doi: 10.1111/geb.12336. DOI
Roslin T., Hardwick B., Novotny V., Petry W.K., Andrew N.R., Asmus A., Barrio I.C., Basset Y., Boesing A.L., Bonebrake T.C., et al. Higher predation risk for insect prey at low latitudes and elevations. Science. 2017;356:742–744. doi: 10.1126/science.aaj1631. PubMed DOI
Fine P.V.A., Mesones I., Coley P.D. Herbivores Promote Habitat Specialization by Trees in Amazonian Forests. Science. 2004;305:663–665. doi: 10.1126/science.1098982. PubMed DOI
Mangan S.A., Schnitzer S.A., Herre E.A., Mac K.K.M.L., Valencia M.C., Sanchez E.I., Bever J.D. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–755. doi: 10.1038/nature09273. PubMed DOI
Moles A.T., Bonser S.P., Poore A.G.B., Wallis I.R., Foley W.J. Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct. Ecol. 2011;25:380–388. doi: 10.1111/j.1365-2435.2010.01814.x. DOI
Moles A.T., Wallis I.R., Foley W.J., Warton D.I., Stegen J.C., Bisigato A.J., Pizarro L.C., Clark C.J., Cohen P.S., Cornwell W.K., et al. Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytol. 2011;191:777–788. doi: 10.1111/j.1469-8137.2011.03732.x. PubMed DOI
Anstett D.N., Nunes K.A., Baskett C., Kotanen P.M. Sources of Controversy Surrounding Latitudinal Patterns in Herbivory and Defense. Trends Ecol. Evol. 2016;31:789–802. doi: 10.1016/j.tree.2016.07.011. PubMed DOI
Sedio B.E. Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. New Phytol. 2017;214:952–958. doi: 10.1111/nph.14438. PubMed DOI
Agrawal A.A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 2006;22:103–109. doi: 10.1016/j.tree.2006.10.012. PubMed DOI
Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003;64:3–19. doi: 10.1016/S0031-9422(03)00300-5. PubMed DOI
Hall R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2005;169:468–543. doi: 10.1111/j.1469-8137.2005.01632.x. PubMed DOI
Hilker M. New Synthesis: Parallels Between Biodiversity and Chemodiversity. J. Chem. Ecol. 2014;40:225–226. doi: 10.1007/s10886-014-0402-8. PubMed DOI
Dyer L.A., Philbin C.S., Ochsenrider K.M., Richards L.A., Massad T.J., Smilanich A.M., Forister M.L., Parchman T.L., Galland L.M., Hurtado P.J., et al. Modern approaches to study plant–insect interactions in chemical ecology. Nat. Rev. Chem. 2018;2:50–64. doi: 10.1038/s41570-018-0009-7. DOI
Hadfield J.D., Nakagawa S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 2010;23:494–508. doi: 10.1111/j.1420-9101.2009.01915.x. PubMed DOI
Rivas-Ubach A., Liu Y., Bianchi T.S., Tolić N., Jansson C., Paša-Tolić L. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Anal. Chem. 2018;90:6152–6160. doi: 10.1021/acs.analchem.8b00529. PubMed DOI
Volf M., Segar S.T., Miller S.E., Isua B., Sisol M., Aubona G., Šimek P., Moos M., Laitila J., Kim J., et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 2018;21:83–92. doi: 10.1111/ele.12875. PubMed DOI
Smith C.A., Want E.J., O’Maille G., Abagyan R., Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI
Zanne A.E., Tank D.C., Cornwell W.K., Eastman J.M., Smith S.A., FitzJohn R.G., McGlinn D.J., O’Meara B.C., Moles A.T., Reich P.B., et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92. doi: 10.1038/nature12872. PubMed DOI
Kellerman A.M., Dittmar T., Kothawala D.N., Tranvik L.J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 2014;5:3804. doi: 10.1038/ncomms4804. PubMed DOI
Bürkner P.C. Brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017;80 doi: 10.18637/jss.v080.i01. DOI
Gelman A., Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press; Cambridge, MA, USA: 2006.
Qian H., Jin Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 2016;9:233–239. doi: 10.1093/jpe/rtv047. DOI
Rohart F., Gautier B., Singh A., Cao K.A.L. MixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Oksanen J., Blanchet F.G., Kindt R., Friendly M., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. R Package Version 2.4-3. [(accessed on 13 March 2021)];Vienna: R Foundation for Statistical Computing. 2016 Available online: https://www.researchgate.net/publication/323265822_vegan_Community_Ecology_Package_R_package_version_24-3_2017_accessed_2016_Jan_1.
Salazar D., Lokvam J., Mesones I., Pilco M.V., Zuñiga J.M.A., de Valpine P., Fine P.V.A. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2018;2:983–990. doi: 10.1038/s41559-018-0552-0. PubMed DOI
Forister M.L., Novotny V., Panorska A.K., Baje L., Basset Y., Butterill P.T., Cizek L., Coley P.D., Dem F., Diniz I.R., et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA. 2015;112:442–447. doi: 10.1073/pnas.1423042112. PubMed DOI PMC
Peguero G., Bonal R., Sol D., Muñoz A., Sork V.L., Espelta J.M. Tropical insect diversity: Evidence of greater host specialization in seed-feeding weevils. Ecology. 2017;98:2180–2190. doi: 10.1002/ecy.1910. PubMed DOI
Richards L.A., Dyer L.A., Forister M.L., Smilanich A.M., Dodson C.D., Leonard M.D., Jeffrey C.S. Phytochemical diversity drives plant–insect community diversity. Proc. Natl. Acad. Sci. USA. 2015;112:10973–10978. doi: 10.1073/pnas.1504977112. PubMed DOI PMC
Sedio B.E., Parker J.D., McMahon S.M., Wright S.J. Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology. 2018;99:2647–2653. doi: 10.1002/ecy.2533. PubMed DOI
Sedio B.E., Echeverri J.C.R., Boya C.A., Wright S.J. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology. 2017;98:616–623. doi: 10.1002/ecy.1689. PubMed DOI
Garriga A.G., Sardans J., Granda V., Llusià J., Peguero G., Asensio D., Ogaya R., Urbina I., van Langenhove L., Verryckt L.T., et al. Different “metabolomic niches” of the highly diverse tree species of the French Guiana rainforests. Sci. Rep. 2020;10:6937. doi: 10.1038/s41598-020-63891-y. PubMed DOI PMC
Sedio B.E., Archibold A.D., Echeverri J.C.R., Debyser C., Cristopher A.B.P., Wright S.J. A comparison of inducible, ontogenetic, and interspecific sources of variation in the foliar metabolome in tropical trees. PeerJ. 2019;7:e7536. doi: 10.7717/peerj.7536. PubMed DOI PMC
Rivas-Ubach A., Pérez-Trujillo M., Sardans J., Gargallo-Garriga A., Parella T., Peñuelas J. Ecometabolomics: Optimized NMR-based method. Methods Ecol. Evol. 2013;4:464–473. doi: 10.1111/2041-210X.12028. DOI
Koch B.P., Dittmar T., Witt M., Kattner G. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal. Chem. 2007;79:1758–1763. doi: 10.1021/ac061949s. PubMed DOI