Metabolome-Wide, Phylogenetically Controlled Comparison Indicates Higher Phenolic Diversity in Tropical Tree Species

. 2021 Mar 16 ; 10 (3) : . [epub] 20210316

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33809437

Grantová podpora
ERC-2013-SyG 610028-IMBALANCE-P European Research Council - International
PID2019-110521GB-I00 Spanish Government
SGR 2017-1005 Catalan Government

Tropical plants are expected to have a higher variety of defensive traits, such as a more diverse array of secondary metabolic compounds in response to greater pressures of antagonistic interactions, than their temperate counterparts. We test this hypothesis using advanced metabolomics linked to a novel stoichiometric compound classification to analyze the complete foliar metabolomes of four tropical and four temperate tree species, which were selected so that each subset contained the same amount of phylogenetic diversity and evenness. We then built Bayesian phylogenetic multilevel models to test for tropical-temperate differences in metabolite diversity for the entire metabolome and for four major families of secondary compounds. We found strong evidence supporting that the leaves of tropical tree species have a higher phenolic diversity. The functionally closer group of polyphenolics also showed moderate evidence of higher diversity in tropical species, but there were no differences either for the entire metabolome or for the other major families of compounds analyzed. This supports the interpretation that this tropical-temperate contrast must be related to the functional role of phenolics and polyphenolics.

Zobrazit více v PubMed

Brown J.H. Why are there so many species in the tropics? J. Biogeogr. 2014;41:8–22. doi: 10.1111/jbi.12228. PubMed DOI PMC

Schemske D.W., Mittelbach G.G., Cornell H.V., Sobel J.M., Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269. doi: 10.1146/annurev.ecolsys.39.110707.173430. DOI

Dobzhansky T. Evolution in the tropics. Am. Sci. 1950;38:209–221.

Ehrlich P.R., Raven P.H. Butterflies and Plants: A Study in Coevolution. Evolution. 1964;18:586–608. doi: 10.1111/j.1558-5646.1964.tb01674.x. DOI

Janzen D.H. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970;104:501–528. doi: 10.1086/282687. DOI

MacArthur R.H. Geographical Ecology: Patterns in The Distribution of Species. Princeton University Press; Princeton, NJ, USA: 1972.

Mittelbach G.G., Schemske D.W., Cornell H.V., Allen A.P., Brown J.M., Bush M.B., Harrison S.P., Hurlbert A.H., Knowlton N., Lessios H.A., et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 2007;10:315–331. doi: 10.1111/j.1461-0248.2007.01020.x. PubMed DOI

Coley P.D., Barone J.A. Herbivory and Plant Defenses in Tropical Forests. Annu. Rev. Ecol. Syst. 1996;27:305–335. doi: 10.1146/annurev.ecolsys.27.1.305. DOI

Levin D.A. The Chemical Defenses of Plants to Pathogens and Herbivores. Annu. Rev. Ecol. Syst. 1976;7:121–159. doi: 10.1146/annurev.es.07.110176.001005. DOI

Bagchi R., Gallery R.E., Gripenberg S., Gurr S.J., Narayan L., Addis C.E., Freckleton R.P., Lewis O.T. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506:85–88. doi: 10.1038/nature12911. PubMed DOI

Salazar D., Marquis R.J. Herbivore pressure increases toward the equator. Proc. Natl. Acad. Sci. USA. 2012;109:12616–12620. doi: 10.1073/pnas.1202907109. PubMed DOI PMC

Kursar T.A., Dexter K.G., Lokvam J., Pennington R.T., Richardson J.E., Weber M.G., Murakami E.T., Drake C., McGregor R., Coley P.D. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl. Acad. Sci. USA. 2009;106:18073–18078. doi: 10.1073/pnas.0904786106. PubMed DOI PMC

Becerra J.X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl. Acad. Sci. USA. 2015;112:6098–6103. doi: 10.1073/pnas.1418643112. PubMed DOI PMC

Lim J.Y., Fine P.V.A., Mittelbach G.G. Assessing the latitudinal gradient in herbivory. Glob. Ecol. Biogeogr. 2015;24:1106–1112. doi: 10.1111/geb.12336. DOI

Roslin T., Hardwick B., Novotny V., Petry W.K., Andrew N.R., Asmus A., Barrio I.C., Basset Y., Boesing A.L., Bonebrake T.C., et al. Higher predation risk for insect prey at low latitudes and elevations. Science. 2017;356:742–744. doi: 10.1126/science.aaj1631. PubMed DOI

Fine P.V.A., Mesones I., Coley P.D. Herbivores Promote Habitat Specialization by Trees in Amazonian Forests. Science. 2004;305:663–665. doi: 10.1126/science.1098982. PubMed DOI

Mangan S.A., Schnitzer S.A., Herre E.A., Mac K.K.M.L., Valencia M.C., Sanchez E.I., Bever J.D. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–755. doi: 10.1038/nature09273. PubMed DOI

Moles A.T., Bonser S.P., Poore A.G.B., Wallis I.R., Foley W.J. Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct. Ecol. 2011;25:380–388. doi: 10.1111/j.1365-2435.2010.01814.x. DOI

Moles A.T., Wallis I.R., Foley W.J., Warton D.I., Stegen J.C., Bisigato A.J., Pizarro L.C., Clark C.J., Cohen P.S., Cornwell W.K., et al. Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytol. 2011;191:777–788. doi: 10.1111/j.1469-8137.2011.03732.x. PubMed DOI

Anstett D.N., Nunes K.A., Baskett C., Kotanen P.M. Sources of Controversy Surrounding Latitudinal Patterns in Herbivory and Defense. Trends Ecol. Evol. 2016;31:789–802. doi: 10.1016/j.tree.2016.07.011. PubMed DOI

Sedio B.E. Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. New Phytol. 2017;214:952–958. doi: 10.1111/nph.14438. PubMed DOI

Agrawal A.A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 2006;22:103–109. doi: 10.1016/j.tree.2006.10.012. PubMed DOI

Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003;64:3–19. doi: 10.1016/S0031-9422(03)00300-5. PubMed DOI

Hall R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2005;169:468–543. doi: 10.1111/j.1469-8137.2005.01632.x. PubMed DOI

Hilker M. New Synthesis: Parallels Between Biodiversity and Chemodiversity. J. Chem. Ecol. 2014;40:225–226. doi: 10.1007/s10886-014-0402-8. PubMed DOI

Dyer L.A., Philbin C.S., Ochsenrider K.M., Richards L.A., Massad T.J., Smilanich A.M., Forister M.L., Parchman T.L., Galland L.M., Hurtado P.J., et al. Modern approaches to study plant–insect interactions in chemical ecology. Nat. Rev. Chem. 2018;2:50–64. doi: 10.1038/s41570-018-0009-7. DOI

Hadfield J.D., Nakagawa S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 2010;23:494–508. doi: 10.1111/j.1420-9101.2009.01915.x. PubMed DOI

Rivas-Ubach A., Liu Y., Bianchi T.S., Tolić N., Jansson C., Paša-Tolić L. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Anal. Chem. 2018;90:6152–6160. doi: 10.1021/acs.analchem.8b00529. PubMed DOI

Volf M., Segar S.T., Miller S.E., Isua B., Sisol M., Aubona G., Šimek P., Moos M., Laitila J., Kim J., et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 2018;21:83–92. doi: 10.1111/ele.12875. PubMed DOI

Smith C.A., Want E.J., O’Maille G., Abagyan R., Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI

Zanne A.E., Tank D.C., Cornwell W.K., Eastman J.M., Smith S.A., FitzJohn R.G., McGlinn D.J., O’Meara B.C., Moles A.T., Reich P.B., et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92. doi: 10.1038/nature12872. PubMed DOI

Kellerman A.M., Dittmar T., Kothawala D.N., Tranvik L.J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 2014;5:3804. doi: 10.1038/ncomms4804. PubMed DOI

Bürkner P.C. Brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017;80 doi: 10.18637/jss.v080.i01. DOI

Gelman A., Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press; Cambridge, MA, USA: 2006.

Qian H., Jin Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 2016;9:233–239. doi: 10.1093/jpe/rtv047. DOI

Rohart F., Gautier B., Singh A., Cao K.A.L. MixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC

Oksanen J., Blanchet F.G., Kindt R., Friendly M., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. R Package Version 2.4-3. [(accessed on 13 March 2021)];Vienna: R Foundation for Statistical Computing. 2016 Available online: https://www.researchgate.net/publication/323265822_vegan_Community_Ecology_Package_R_package_version_24-3_2017_accessed_2016_Jan_1.

Salazar D., Lokvam J., Mesones I., Pilco M.V., Zuñiga J.M.A., de Valpine P., Fine P.V.A. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2018;2:983–990. doi: 10.1038/s41559-018-0552-0. PubMed DOI

Forister M.L., Novotny V., Panorska A.K., Baje L., Basset Y., Butterill P.T., Cizek L., Coley P.D., Dem F., Diniz I.R., et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA. 2015;112:442–447. doi: 10.1073/pnas.1423042112. PubMed DOI PMC

Peguero G., Bonal R., Sol D., Muñoz A., Sork V.L., Espelta J.M. Tropical insect diversity: Evidence of greater host specialization in seed-feeding weevils. Ecology. 2017;98:2180–2190. doi: 10.1002/ecy.1910. PubMed DOI

Richards L.A., Dyer L.A., Forister M.L., Smilanich A.M., Dodson C.D., Leonard M.D., Jeffrey C.S. Phytochemical diversity drives plant–insect community diversity. Proc. Natl. Acad. Sci. USA. 2015;112:10973–10978. doi: 10.1073/pnas.1504977112. PubMed DOI PMC

Sedio B.E., Parker J.D., McMahon S.M., Wright S.J. Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology. 2018;99:2647–2653. doi: 10.1002/ecy.2533. PubMed DOI

Sedio B.E., Echeverri J.C.R., Boya C.A., Wright S.J. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology. 2017;98:616–623. doi: 10.1002/ecy.1689. PubMed DOI

Garriga A.G., Sardans J., Granda V., Llusià J., Peguero G., Asensio D., Ogaya R., Urbina I., van Langenhove L., Verryckt L.T., et al. Different “metabolomic niches” of the highly diverse tree species of the French Guiana rainforests. Sci. Rep. 2020;10:6937. doi: 10.1038/s41598-020-63891-y. PubMed DOI PMC

Sedio B.E., Archibold A.D., Echeverri J.C.R., Debyser C., Cristopher A.B.P., Wright S.J. A comparison of inducible, ontogenetic, and interspecific sources of variation in the foliar metabolome in tropical trees. PeerJ. 2019;7:e7536. doi: 10.7717/peerj.7536. PubMed DOI PMC

Rivas-Ubach A., Pérez-Trujillo M., Sardans J., Gargallo-Garriga A., Parella T., Peñuelas J. Ecometabolomics: Optimized NMR-based method. Methods Ecol. Evol. 2013;4:464–473. doi: 10.1111/2041-210X.12028. DOI

Koch B.P., Dittmar T., Witt M., Kattner G. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal. Chem. 2007;79:1758–1763. doi: 10.1021/ac061949s. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace