Influence of Experimental End Point on the Therapeutic Efficacy of Essential and Additional Antidotes in Organophosphorus Nerve Agent-Intoxicated Mice

. 2022 Apr 15 ; 10 (4) : . [epub] 20220415

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35448453

Grantová podpora
Long-term organization development plan - Medical Aspects of Weapons of Mass Destruction Ministry of Defence

The therapeutic efficacy of treatments for acute intoxication with highly toxic organophosphorus compounds, called nerve agents, usually involves determination of LD50 values 24 h after nerve agent challenge without and with a single administration of the treatment. Herein, the LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated intoxication were investigated in mice for experimental end points of 6 and 24 h. The LD50 values of the nerve agents were evaluated by probit-logarithmical analysis of deaths within 6 and 24 h of i.m. challenge of the nerve agent at five different doses, using six mice per dose. The efficiency of atropine alone or atropine in combination with an oxime was practically the same at 6 and 24 h. The therapeutic efficacy of the higher dose of the antinicotinic compound MB327 was slightly higher at the 6 h end point compared to the 24 h end point for soman and tabun intoxication. A higher dose of MB327 increased the therapeutic efficacy of atropine alone for sarin, soman and tabun intoxication, and that of the standard antidotal treatment (atropine and oxime) for sarin and tabun intoxication. The therapeutic efficacy of MB327 was lower than the oxime-based antidotal treatment. To compare the 6 and 24 h end points, the influence of the experimental end point was not observed, with the exception of the higher dose of MB327. In addition, only a negligible beneficial impact of the compound MB327 was observed. Nevertheless, antinicotinics may offer an additional avenue for countering poisoning by nerve agents that are difficult to treat, and synthetic and biological studies towards the development of such novel drugs based on the core bispyridinium structure or other molecular scaffolds should continue.

Zobrazit více v PubMed

Hrvat N.M., Kovarik Z. Counteracting poisoning with chemical warfare agents. Arh. Hig. Rada Toksikol. 2020;71:266–284. doi: 10.2478/aiht-2020-71-3459. PubMed DOI PMC

Tattersall J.E.H. Anticholinesterase toxicity. Curr. Opin. Physiol. 2018;4:49–56. doi: 10.1016/j.cophys.2018.05.005. DOI

Leibson T., Lifshitz M. Organophosphate and carbamate poisoning: Review of the current literature and summary of clinical and laboratory experience in southern Israel. Isr. Med. Assoc. J. 2008;10:767–770. PubMed

Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed

Colović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Marrs T.C., Rice P., Vale J.A. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol. Rev. 2006;25:297–323. doi: 10.2165/00139709-200625040-00009. PubMed DOI

Jokanović M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: A review of recent data. Curr. Top. Med. Chem. 2012;12:1775–1789. doi: 10.2174/1568026611209061775. PubMed DOI

Timperley C.M., Tattersall J.E.H. Toxicology and medical treatment of organophosphorus compounds. In: Timperley C.M., editor. Best Synthetic Methods—Organophosphorus (V) Chemistry. Elsevier; Oxford, UK: 2015. pp. 33–89.

Sharma R., Gupta B., Singh N., Acharya J.R., Musilek K., Kuca K., Ghosh K.K. Development and structural modifications of cholinesterase reactivators against chemical warfare agents in last decade: A review. Mini Rev. Med. Chem. 2015;15:58–72. doi: 10.2174/1389557514666141128102837. PubMed DOI

Timperley C.M., Forman J.E., Abdollahi M., Al-Amri A.S., Baulig A., Benachour D., Borrett V., Cariño F.A., Geist M., Gonzalez D., et al. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 1. On medical care and treatment of injuries from nerve agents. Toxicology. 2019;415:56–69. doi: 10.1016/j.tox.2019.01.004. PubMed DOI

Timperley C.M., Abdollahi M., Al-Amri A.S., Baulig A., Benachour D., Borrett V., Cariño F.A., Geist M., Gonzalez D., Kane W., et al. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 2. On preventing and treating health effects from acute, prolonged, and repeated nerve agent exposure, and the identification of medical countermeasures able to reduce or eliminate the longer term health effects of nerve agents. Toxicology. 2019;413:13–23. PubMed

Turner S.R., Chad J.E., Price M.E., Timperley C.M., Bird M., Green A.C., Tattersall J.E.H. Protection against nerve agent poisoning by a noncompetitive nicotinic antagonist. Toxicol. Lett. 2011;206:105–111. doi: 10.1016/j.toxlet.2011.05.1035. PubMed DOI

Sheridan R.D., Smith A.P., Turner S.R., Tattersall J.E.H. Nicotinic antagonists in the treatment of nerve agent intoxication. J. R. Soc. Med. 2006;98:114–115. doi: 10.1177/014107680509800307. PubMed DOI PMC

McDonough J.H., Shih T.M. Atropine and other anticholinergic drugs. In: Marrs T.C., Maynard R.I., Sidell F.R., editors. Chemical Warfare Agents: Toxicology and Treatment. 2nd ed. John Wiley & Sons Ltd.; Chichester, UK: 2007. pp. 287–303.

Tattersall J.E.H. Ion channel blockade by oximes and recovery of diaphragm muscle from soman poisoning in vitro. Br. J. Pharmacol. 1993;108:1006–1015. doi: 10.1111/j.1476-5381.1993.tb13498.x. PubMed DOI PMC

Niessen K.V., Tattersall J.E.H., Timperley C.M., Bird M., Green A.C., Seeger T., Thiermann H., Worek F. Interaction of bispyridinium compounds with the orthosteric binding site of human α7 and Torpedo californica nicotinic acetylcholine receptors (nAChRs) Toxicol. Lett. 2011;206:100–104. doi: 10.1016/j.toxlet.2011.06.009. PubMed DOI

Wein T., Höfner G., Rappenglück S., Sichler S., Niessen K.V., Seeger T., Worek F., Thiermann H., Wanner K.T. Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor. Toxicol. Lett. 2018;293:184–189. doi: 10.1016/j.toxlet.2017.10.024. PubMed DOI

Sichler S., Höfner G., Rappenglück S., Wein T., Niessen K.V., Seeger T., Worek F., Thiermann H., Paintner F.F., Wanner K.T. Development of MS binding assays targeting the binding site of MB327 at the nicotinic acetylcholine receptor. Toxicol. Lett. 2018;293:172–183. doi: 10.1016/j.toxlet.2017.11.013. PubMed DOI

Epstein M., Bali K., Piggot T.J., Green A.C., Timperley C.M., Bird M., Tattersall J.E.H., Bermudez I., Biggin P.C. Molecular determinants of binding of non-oxime bispyridinium nerve agent antidote compounds to the adult muscle nAChR. Toxicol. Lett. 2021;340:114–122. doi: 10.1016/j.toxlet.2021.01.013. PubMed DOI

Scheffel C., Niessen K.V., Rappenglück S., Wanner K.T., Thiermann H., Worek F., Seeger T. Counmeracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning. Toxicol. Lett. 2018;293:149–156. doi: 10.1016/j.toxlet.2017.12.005. PubMed DOI

Timperley C.M., Bird M., Green A.C., Price M.E., Chad J.E., Turner S.R., Tattersall J.E.H. 1,1′-(Propane-1,3-diyl)bis(4-tert-butylpyridinium) di(methane sulfonate) protects guinea pigs from soman poisoning when used as part of a combined therapy. Med. Chem. Commun. 2012;3:352–356. doi: 10.1039/C2MD00258B. DOI

Kassa J., Pohanka M., Timperley C.M., Bird M., Green A.C., Tattersall J.E.H. Evaluation of the benefit of the bispyridinium compound MB327 for the antidotal treatment of nerve-agent poisoned mice. Toxicol. Mech. Methods. 2016;26:334–339. doi: 10.3109/15376516.2016.1162249. PubMed DOI

Price M.E., Docx C.J., Rice H., Fairhall S.J., Poole S.J.C., Bird M., Whiley L., Flint D.P., Green A.C., Timperley C.M., et al. Pharmacokinetic profile and quantitation of protection against soman poisoning by the antinicotinic compound MB327 in the guinea-pig. Toxicol. Lett. 2016;244:154–160. doi: 10.1016/j.toxlet.2015.08.013. PubMed DOI

Jun D., Kuca K., Stodulka P., Koleckar V., Dolezal B., Simon P., Veverka M. HPLC analysis of HI-6 dichloride and dimethanesulfonate—antidotes against nerve agents and organophosphorus pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI

Tallarida R., Murray R. Manual of Pharmacological Calculation with Computer Programs. Springer; New York, NY, USA: 1987.

Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J. Toxicol. Clin. Toxicol. 2002;40:803–816. doi: 10.1081/CLT-120015840. PubMed DOI

Antonijevic B., Stojiljkovic P. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC

Sevelova L., Kuca K., Krejcova-Kunesova G. Antidotal treatment of GF-agent intoxication in mice with bispyridinium oximes. Toxicology. 2005;207:1–6. doi: 10.1016/j.tox.2004.07.019. PubMed DOI

Ring A., Strom B.O., Turner S.R., Timperley C.M., Bird M., Green A.C., Chad J., Worek F., Tattersall J.E.H. Bispyridinium compounds inhibit both muscle and neuronal nicotinic acetylcholine receptors in human cell lines. PLoS ONE. 2015;10:e0135811. doi: 10.1371/journal.pone.0135811. PubMed DOI PMC

Kassa J., Timperley C.M., Bird M., Williams R.L., Green A.C., Tattersall J.E.H. Some benefit from non-oximes MB408, MB442 and MB444 in combination with the oximes HI-6 or obidoxime and atropine in antidoting sarin or cyclosarin poisoned mice. Toxicology. 2018;408:95–100. doi: 10.1016/j.tox.2018.07.008. PubMed DOI

Niessen K.V., Seeger T., Tattersall J.E.H., Timperley C.M., Bird M., Green A.C., Thiermann H., Worek F. Affinities of bispyridinium non-oxime compounds to [3H]epibatidine binding sites of Torpedo californica nicotinic acetylcholine receptors depend on linker length. Chem. Biol. Interact. 2013;206:545–554. doi: 10.1016/j.cbi.2013.10.012. PubMed DOI

Seeger T., Eichhorn M., Lindner M., Niessen K.V., Tattersall J.E.H., Timperley C.M., Bird M., Green A.C., Thiermann H., Worek F. Restoration of soman-blocked neuromuscular transmission in human and rat muscle by the bispyridinium non-oxime MB327 in vitro. Toxicology. 2012;294:80–84. doi: 10.1016/j.tox.2012.02.002. PubMed DOI

Rappenglück S., Sichler S., Höfner G., Wein T., Niessen K.V., Seeger T., Paintner F.F., Worek F., Thiermann H., Wanner K.T. Synthesis of a series of structurally diverse MB327 derivatives and their affinity characterization at the nicotinic acetylcholine receptor. ChemMedChem. 2018;13:1806–1816. doi: 10.1002/cmdc.201800325. PubMed DOI

Rappenglück S., Sichler S., Höfner G., Wein T., Niessen K.V., Seeger T., Paintner F.F., Worek F., Thiermann H., Wanner K.T. Synthesis of a series of non-symmetric bispyridinium and related compounds and their affinity characterization at the nicotinic acetylcholine receptor. ChemMedChem. 2018;13:2653–2663. doi: 10.1002/cmdc.201800539. PubMed DOI

Niessen K.V., Muschik S., Langguth F., Rappenglück S., Seeger T., Thiermann H., Worek F. Functional analysis of Torpedo Californica nicotinic acetylcholine receptors in multiple activation states by CCM-based electrophysiology. Toxicol. Lett. 2016;247:1–10. doi: 10.1016/j.toxlet.2016.02.002. PubMed DOI

Kassa J., Timperley C.M., Bird M., Green A.C., Tattersall J.E.H. Influence of experimental end point on the therapeutic efficacy of the antinicotinic compounds MB408, MB422 and MB444 in treating nerve agent poisoned mice—A comparison with oxime-based treatment. Toxicol. Mech. Methods. 2020;30:703–710. doi: 10.1080/15376516.2020.1817218. PubMed DOI

Price M.E., Whitmore C.L., Tattersall J.E.H., Green A.C., Rice H. Efficacy of the antinicotinic compound MB327 against soman poisoning—Importance of experimental end point. Toxicol. Lett. 2018;293:167–171. doi: 10.1016/j.toxlet.2017.11.006. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chemical and Biological Threats, Hazard Potential and Countermeasures

. 2022 Aug 02 ; 10 (8) : . [epub] 20220802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...