Acid-Catalyzed RNA-Oligomerization from 3',5'-cGMP
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
364653263
deutsche forschungsgemeinschaft
787356
European Research Council - International
PubMed
34726799
PubMed Central
PMC9299008
DOI
10.1002/chem.202103672
Knihovny.cz E-resources
- Keywords
- cGMP, nonenzymatic polymerization, nucleotides, prebiotic chemistry,
- MeSH
- Cyclic GMP * MeSH
- Catalysis MeSH
- Oligonucleotides MeSH
- Polymerization MeSH
- RNA * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cyclic GMP * MeSH
- Oligonucleotides MeSH
- RNA * MeSH
The assembly of ancient informational polymers from nucleotide precursors is the central challenge of life's origin on our planet. Among the possible solutions, dry polymerization of 3',5'-cyclic guanosine monophosphate (3',5'-cGMP) has been proposed as a candidate to create oligonucleotides of 15-20 units in length. However, the reported sensitivity of the reaction to the presence of cations raised questions of whether this chemistry could be relevant in a geological context. The experiments in this study show that the presence of cations is not restrictive as long as the reaction is conducted in an acidic environment, in contrast to previous reports that suggested optimal conditions at pH 9.
See more in PubMed
Jauker M., Griesser H., Richert C., Angew. Chem. Int. Ed. 2015, 54, 14559–14563; PubMed PMC
Angew. Chem. 2015, 127, 14767–14771. PubMed
Weimann B. J., Lohrmann R., Orgel L. E., Schneider-Bernloehr H., Sulston J. E., Science 1968, 161, 387–387. PubMed
Dorr M., Loffler P., Monnard P.-A., Curr. Org. Synth. 2013, 9, 735–763.
Orgel L. E., Lohrmann R., Acc. Chem. Res. 1974, 7, 368–377.
Wright P., Lloyd D., Rapp W., Andrus A., Tetrahedron Lett. 1993, 34, 3373–3376.
Lohrmann R., Bridson P. K., Orgel L. E., Science 1980, 208, 1464–1465. PubMed
Walton T., Zhang W., Li L., Tam C. P., Szostak J. W., Angew. Chem. Int. Ed. 2019, 58, 10812–10819; PubMed
Angew. Chem. 2019, 131, 10926–10933.
Mariani A., Russell D. A., Javelle T., Sutherland J. D., J. Am. Chem. Soc. 2018, 140, 8657–8661. PubMed PMC
Ibanez J. D., Kimball A. P., Oró J., Science 1971, 173, 444–446. PubMed
Verlander M. S., Lohrmann R., Orgel L. E., J. Mol. Evol. 1973, 2, 303–316. PubMed
Renz M., Lohrmann R., Orgel L. E., Biochim. Biophys. Acta Nucleic Acids Protein Synth. 1971, 240, 463–471. PubMed
Costanzo G., Pino S., Timperio A. M., Šponer J. E., Šponer J., Nováková O., Šedo O., Zdráhal Z., Di Mauro E., PLoS One 2016, 11, e0165723. PubMed PMC
Costanzo G., Giorgi A., Scipioni A., Timperio A. M., Mancone C., Tripodi M., Kapralov M., Krasavin E., Kruse H., Šponer J., Šponer J. E., Ranc V., Otyepka M., Pino S., Di Mauro E., ChemBioChem 2017, 18, 1535–1543. PubMed
Šponer J. E., Šponer J., Giorgi A., Di Mauro E., Pino S., Costanzo G., J. Phys. Chem. B 2015, 119, 2979–2989. PubMed
Morasch M., Mast C. B., Langer J. K., Schilcher P., Braun D., ChemBioChem 2014, 15, 879–883. PubMed
Costanzo G., Šponer J. E., Šponer J., Cirigliano A., Benedetti P., Giliberti V., Polito R., Di Mauro E., ChemSystemsChem 2021, 3, e202000011.
Costanzo G., Pino S., Ciciriello F., Di Mauro E., J. Biol. Chem. 2009, 284, 33206–33216. PubMed PMC
Costanzo G., Saladino R., Botta G., Giorgi A., Scipioni A., Pino S., Di Mauro E., ChemBioChem 2012, 13, 999–1008. PubMed
Chwang A. K., Sundaralingam M., Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1974, 30, 1233–1240.
Ślepokura K. A., Acta Crystallogr. Sect. C Struct. Chem. 2016, 72, 465–479. PubMed
Otera J., Chem. Rev. 1993, 93, 1449–1470.
F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springer, Boston, 2007.
Mungi C. V., Bapat N. V., Hongo Y., Rajamani S., Life 2019, 9, 1–11. PubMed PMC
Reineke K., Mathys A., Knorr D., Int. J. Food Prop. 2011, 14, 870–881.
Tetko I. V., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin V. A., Radchenko E. V., Zefirov N. S., Makarenko A. S., Tanchuk V. Y., Prokopenko V. V., J. Comput.-Aided Mol. Des. 2005, 19, 453–463. PubMed
Cruz-Cabeza A. J., Davey R. J., Sachithananthan S. S., Smith R., Tang S. K., Vetter T., Xiao Y., Chem. Commun. 2017, 53, 7905–7908. PubMed
Butterhof C., Martin T., Milius W., Breu J., Z. Anorg. Allg. Chem. 2013, 639, 2816–2821.
Phosphoric acid salts of amino acids as a source of oligopeptides on the early Earth
Crystallization as a selection force at the polymerization of nucleotides in a prebiotic context