Non-Enzymatic Oligomerization of 3', 5' Cyclic AMP
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27802310
PubMed Central
PMC5089550
DOI
10.1371/journal.pone.0165723
PII: PONE-D-16-32152
Knihovny.cz E-zdroje
- MeSH
- guanosinmonofosfát cyklický chemie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- polymerizace * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanosinmonofosfát cyklický MeSH
Recent studies illustrate that short oligonucleotide sequences can be easily produced from nucleotide precursors in a template-free non-enzymatic way under dehydrating conditions, i.e. using essentially dry materials. Here we report that 3',5' cyclic AMP may also serve as a substrate of the reaction, which proceeds under moderate conditions yet with a lower efficiency than the previously reported oligomerization of 3',5' cyclic GMP. Optimally the oligomerization requires (i) a temperature of 80°C, (ii) a neutral to alkaline environment and (iii) a time on the order of weeks. Differences in the yield and required reaction conditions of the oligomerizations utilizing 3',5' cGMP and cAMP are discussed in terms of the crystal structures of the compounds. Polymerization of 3',5' cyclic nucleotides, whose paramount relevance in a prebiotic chemistry context has been widely accepted for decades, supports the possibility that the origin of extant genetic materials might have followed a direct uninterrupted path since its very beginning, starting from non-elaborately pre-activated monomer compounds and simple reactions.
Department of Ecology and Biology La Tuscia University Viterbo 01100 Italy
Istituto di Biologia e Patologia Molecolari CNR Piazzale Aldo Moro 5 Rome 00185 Italy
Zobrazit více v PubMed
Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov AY, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci USA. 2015;112(21):E2746–E55. 10.1073/pnas.1422225112 PubMed DOI PMC
Schoffstall AM. Prebiotic phosphorylation of nucleosides in formamide. Orig Life. 1976;7(4):399–412. PubMed
Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E. Nucleoside phosphorylation by phosphate minerals. J Biol Chem. 2007;282(23):16729–35. 10.1074/jbc.M611346200 PubMed DOI
Gull M, Mojica MA, Fernandez FM, Gaul DA, Orlando TM, Liotta CL, et al. Nucleoside phosphorylation by the mineral schreibersite. Sci Rep. 2015;5(17198). PubMed PMC
Costanzo G, Pino S, Ciciriello F, Di Mauro E. Generation of long RNA chains in water. J Biol Chem. 2009;284(48):33206–16. 10.1074/jbc.M109.041905 PubMed DOI PMC
Costanzo G, Saladino R, Botta G, Giorgi A, Scipioni A, Pino S, et al. Generation of RNA molecules by a base-catalysed click-like reaction. ChemBioChem. 2012;13(7):999–1008. 10.1002/cbic.201200068 PubMed DOI
Pino S, Costanzo G, Giorgi A, Šponer J, Šponer JE, Mauro E. Ribozyme activity of RNA nonenzymatically polymerized from 3′,5′-cyclic GMP. Entropy. 2013;15(12):5362.
Morasch M, Mast CB, Langer JK, Schilcher P, Braun D. Dry polymerization of 3 ', 5 '-cyclic GMP to long strands of RNA. ChemBioChem. 2014;15(6):879–83. 10.1002/cbic.201300773 PubMed DOI
Sponer JE, Sponer J, Giorgi A, Di Mauro E, Pino S, Costanzo G. Untemplated nonenzymatic polymerization of 3 ',5 ' cGMP: aplausible route to 3 ',5 '-linked oligonucleotides in primordia. J Phys Chem B. 2015;119(7):2979–89. 10.1021/acs.jpcb.5b00601 PubMed DOI
Chwang AK, Sundaralingam M. The crystal and molecular structure of guanosine 3’,5’-cyclic monophosphate (cyclic GMP) sodium tetrahydrate Acta Crystallogr B. 1974;30:1233–40.
Varughese KI, Lu CT, Kartha G. Crystal and molecular structure of cyclic adenosine 3',5'-monophosphate sodium salt, monoclinic form. J Am Chem Soc. 1982;104(12):3398–401.
Burcar BT, Cassidy LM, Moriarty EM, Joshi PC, Coari KM, McGown LB. Potential pitfalls in MALDI-TOF MS analysis of abiotically synthesized RNA oligonucleotides. Orig Life Evol Biosph. 2013;43(3):247–61. 10.1007/s11084-013-9334-5 PubMed DOI
Jarvinen P, Oivanen M, Lonnberg H. Interconversion and phosphoester hydrolysis of 2',5'- and 3',5'-dinucleoside monophosphates: kinetics and mechanisms. J Org Chem. 1991;56(18):5396–401.
Soukup GA, Breaker RR. Nucleic acid molecular switches. Trends Biotechnol. 1999;17(12):469–76. PubMed
Soukup GA, Breaker RR. Relationship between internucleotide linkage geometry and the stability of RNA. RNA. 1999;5(10):1308–25. PubMed PMC
Saladino R, Crestini C, Ciciriello F, Di Mauro E, Costanzo G. Origin of informational polymers: differential stability of phosphoester bonds in ribomonomers and ribooligomers. J Biol Chem. 2006;281(9):5790–6. 10.1074/jbc.M512545200 PubMed DOI
Cozens C, Pinheiro VB, Vaisman A, Woodgate R, Holliger P. A short adaptive path from DNA to RNA polymerases. Proc Natl Acad Sci USA. 2012;109(21):8067–72. 10.1073/pnas.1120964109 PubMed DOI PMC
Attwater J, Wochner A, Holliger P. In-ice evolution of RNA polymerase ribozyme activity. Nat Chem. 2013;5(12):1011–8. 10.1038/nchem.1781 PubMed DOI PMC
Mutschler H, Wochner A, Holliger P. Freeze–thaw cycles as drivers of complex ribozyme assembly. Nat Chem. 2015;7(6):502–8. 10.1038/nchem.2251 PubMed DOI PMC
Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, et al. Synthetic genetic polymers capable of heredity and evolution. Science. 2012;336(6079):341–4. 10.1126/science.1217622 PubMed DOI PMC
Wu T, Orgel LE. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues. J Am Chem Soc. 1992;114(21):7963–9. PubMed
Ferris JP. Montmorillonite catalysis of 30–50 mer oligonucleotides: laboratory demonstration of potential steps in the origin of the RNA world. Orig Life Evol Biosph. 2002;32(4):311–32. PubMed
Huang W, Ferris JP. One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J Am Chem Soc. 2006;128(27):8914–9. 10.1021/ja061782k PubMed DOI
Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454(7200):122–5. 10.1038/nature07018 PubMed DOI PMC
Schrum JP, Ricardo A, Krishnamurthy M, Blain JC, Szostak JW. Efficient and rapid template-directed nucleic acid copying using 2′-Amino-2′,3′-dideoxyribonucleoside−5′-phosphorimidazolide monomers. J Am Chem Soc. 2009;131(40):14560–70. 10.1021/ja906557v PubMed DOI PMC
Taran O, Thoennessen O, Achilles K, von Kiedrowski G. Synthesis of information-carrying polymers of mixed sequences from double stranded short deoxynucleotides. J Syst Chem. 2010;1(1):1–16.
Deck C, Jauker M, Richert C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat Chem. 2011;3(8):603–8. 10.1038/nchem.1086 PubMed DOI
Egetenmeyer S, Richert C. A 5′-cap for DNA probes binding RNA target strands. Chem Eur J. 2011;17(42):11813–27. 10.1002/chem.201101828 PubMed DOI
Kaiser A, Spies S, Lommel T, Richert C. Template-directed synthesis in 3'- and 5'-direction with reversible termination. Angew Chem Int Ed. 2012;51(33):8299–303. PubMed
Mills DR, Kramer FR, Dobkin C, Nishihara T, Spiegelman S. Nucleotide sequence of microvariant RNA: another small replicating molecule. Proc Natl Acad Sci USA. 1975;72(11):4252–6. PubMed PMC
Atkins JF, Gesteland RF, Cech TR. RNA Worlds: From life's origin to diversity in gene regulation Cold Spring Harbor: CSH Press; 2011.
Orgel LE. Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol. 2004;39. PubMed
Verlander MS, Lohrmann R, Orgel LE. Catalysts for self-polymerization of adenosine cyclic 2', 3'-phosphate. J Mol Evol. 1973;2(4):303–16. PubMed
Usher D, McHale A. Nonenzymic joining of oligoadenylates on a polyuridylic acid template. Science. 1976;192(4234):53–4. PubMed
Dickson KS, Burns CM, Richardson JP. Determination of the free-energy change for repair of a DNA phosphodiester bond. J Biol Chem. 2000;275(21):15828–31. 10.1074/jbc.M910044199 PubMed DOI
Rudolph SA, Johnson EM, Greengard P. The enthalpy of hydrolysis of various 3',5'- and 2',3'-cyclic nucleotides. J Biol Chem. 1971;246(5):1271–3. PubMed
Acid-Catalyzed RNA-Oligomerization from 3',5'-cGMP
The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes
Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry