Questions and Answers Related to the Prebiotic Production of Oligonucleotide Sequences from 3',5' Cyclic Nucleotide Precursors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/ 15_003/0000477
European Regional Development Fund
PubMed
34440544
PubMed Central
PMC8400769
DOI
10.3390/life11080800
PII: life11080800
Knihovny.cz E-zdroje
- Klíčová slova
- cyclic nucleotides, polymerization, prebiotic chemistry,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Template-free nonenzymatic polymerization of 3',5' cyclic nucleotides is an emerging topic of the origin of life research. In the last ten years, a number of papers have been published addressing various aspects of this process. These works evoked a vivid discussion among scientists working in the field of prebiotic chemistry. The aim of the current review is to answer the most frequently raised questions related to the detection and characterization of oligomeric products as well as to the geological context of this chemistry.
Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czech Republic
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Institute of Molecular Biology and Pathology CNR Piazzale A Moro 5 00185 Rome Italy
Zobrazit více v PubMed
Verlander M.S., Lohrmann R., Orgel L.E. Catalysts for self-polymerization of adenosine cyclic 2', 3'-phosphate. J. Mol. Evol. 1973;2:303–316. doi: 10.1007/BF01654098. PubMed DOI
Usher D.A., Yee D. Geometry of the dry-state oligomerization of 2',3'-cyclic phosphates. J. Mol. Evol. 1979;13:287–293. doi: 10.1007/BF01731369. PubMed DOI
Tapiero C.M., Nagyvary J. Prebiotic formation of cytidine nucleotides. Nature. 1971;231:42–43. doi: 10.1038/231042a0. PubMed DOI
Morávek J., Kopecký J., Škoda J. Thermic phosphorylations. 6. Formation of oligonucleotides from uridine 2'(3')-phosphate. Collect. Czech. Chem. Commun. 1968;33:4120–4124. doi: 10.1135/cccc19684120. DOI
Powner M.W., Gerland B., Sutherland J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI
Powner M.W., Sutherland J.D., Szostak J.W. Chemoselective multicomponent one-pot assembly of purine precursors in water. J. Am. Chem. Soc. 2010;132:16677–16688. doi: 10.1021/ja108197s. PubMed DOI PMC
Costanzo G., Saladino R., Crestini C., Ciciriello F., Di Mauro E. Nucleoside phosphorylation by phosphate minerals. J. Biol. Chem. 2007;282:16729–16735. doi: 10.1074/jbc.M611346200. PubMed DOI
Crowe M.A., Sutherland J.D. Reaction of cytidine nucleotides with cyanoacetylene: Support for the intermediacy of nucleoside-2 ',3 '-cyclic phosphates in the prebiotic synthesis of RNA. Chembiochem. 2006;7:951–956. doi: 10.1002/cbic.200600024. PubMed DOI
Shabarova Z., Bogdanov A. Advanced Organic Chemistry of Nucleic Acids. VCH Verlagsgesellshaft mbH; Weinheim, Germany: 1994.
Mulkidjanian A.Y., Bychkov A.Y., Dibrova D.V., Galperin M.Y., Koonin E.V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. USA. 2012;109:E821–E830. doi: 10.1073/pnas.1117774109. PubMed DOI PMC
Kompanichenko V.N. Exploring the Kamchatka geothermal region in the context of life's beginning. Life. 2019;9:41. doi: 10.3390/life9020041. PubMed DOI PMC
Newton A.C., Bootman M.D., Scott J.D. Second messengers. Cold Spring Harb. Perspect. Biol. 2016;8:a005926. doi: 10.1101/cshperspect.a005926. PubMed DOI PMC
Costanzo G., Pino S., Ciciriello F., Di Mauro E. Generation of long RNA chains in water. J. Biol. Chem. 2009;284:33206–33216. doi: 10.1074/jbc.M109.041905. PubMed DOI PMC
Costanzo G., Saladino R., Botta G., Giorgi A., Scipioni A., Pino S., Di Mauro E. Generation of RNA molecules by a base-catalysed click-like reaction. ChemBioChem. 2012;13:999–1008. doi: 10.1002/cbic.201200068. PubMed DOI
Morasch M., Mast C.B., Langer J.K., Schilcher P., Braun D. Dry polymerization of 3′,5′-cyclic GMP to long strands of RNA. ChemBioChem. 2014;15:879–883. doi: 10.1002/cbic.201300773. PubMed DOI
Šponer J.E., Šponer J., Giorgi A., Di Mauro E., Pino S., Costanzo G. Untemplated nonenzymatic polymerization of 3′,5′ cGMP: A plausible route to 3′,5′-linked oligonucleotides in primordia. J. Phys. Chem. B. 2015;119:2979–2989. doi: 10.1021/acs.jpcb.5b00601. PubMed DOI
Costanzo G., Šponer J.E., Šponer J., Cirigliano A., Benedetti P., Giliberti V., Polito R., Di Mauro E. Sustainability and chaos in the abiotic polymerization of 3′,5′ cyclic guanosine monophosphate: The role of aggregation. ChemSystemsChem. 2021;3:e2000056. doi: 10.1002/syst.202000011. DOI
Šponer J.E., Šponer J., Výravský J., Šedo O., Zdráhal Z., Costanzo G., Di Mauro E., Wunnava S., Braun D., Matyášek R., et al. Non-enzymatic, template-free polymerization of 3′,5′ cyclic guanosine monophosphate on mineral surfaces. [(accessed on 4 August 2021)];ChemSystemsChem. 2021 doi: 10.1002/syst.202100017. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/syst.202100017. DOI
Dorr M., Loffler P.M.G.L., Monnard P.A. Non-enzymatic polymerization of nucleic acids from monomers: Monomer self- condensation and template-directed reactions. Curr. Org. Synth. 2012;9:735–763. doi: 10.2174/157017912803901691. DOI
Eschenmoser A. Question 1: Commentary referring to the statement “The origin of life can be traced back to the origin of kinetic control” and the question “Do you agree with this statement; and how would you envisage the prebiotic evolutionary bridge between thermodynamic and kinetic control?” stated in section 1.1. Orig. Life Evol. Biosph. 2007;37:309–314. PubMed
Smith M., Drummond G.I., Khorana H.G. Cyclic phosphates. IV.1 Ribonucleoside-3′,5′ cyclic phosphates. A general method of synthesis and some properties. J. Am. Chem. Soc. 1961;83:698–706. doi: 10.1021/ja01464a039. DOI
Saladino R., Botta G., Delfino M., Di Mauro E. Meteorites as catalysts for prebiotic chemistry. Chem.-Eur. J. 2013;19:16916–16922. doi: 10.1002/chem.201303690. PubMed DOI
Iwasaki Y., Yamaguchi E. Synthesis of well-defined thermoresponsive polyphosphoester macroinitiators using organocatalysts. Macromolecules. 2010;43:2664–2666. doi: 10.1021/ma100242s. DOI
Steinbach T., Ritz S., Wurm F.R. Water-soluble poly(phosphonate)s via living ring-opening polymerization. ACS Macro Lett. 2014;3:244–248. doi: 10.1021/mz500016h. PubMed DOI
Wunnava S., Dirscherl C.F., Výravský J., Kovařík A., Matyášek R., Šponer J., Braun D., Šponer J.E. Acid-catalyzed RNA-oligomerization from 3,5-cGMP at an air-water interface. Chem. Eur. J. 2021 in press. PubMed PMC
Reineke K., Mathys A., Knorr D. Shift of pH-value during thermal treatments in buffer solutions and selected foods. Int. J. Food Prop. 2011;14:870–881. doi: 10.1080/10942910903456978. DOI
Carey F.A., Sundberg R.J. Advanced Organic Chemistry. Part A: Structure and Mechanism. Springer Science+Business Media, LLC; New York, NY, USA: 2007. p. 325.
Chwang A.K., Sundaralingam M. The crystal and molecular structure of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) sodium tetrahydrate. Acta Crystallogr. B. 1974;30:1233–1240. doi: 10.1107/S0567740874004602. DOI
Varughese K.I., Lu C.T., Kartha G. Crystal and molecular structure of cyclic adenosine 3′,5′-monophosphate sodium salt, monoclinic form. J. Am. Chem. Soc. 1982;104:3398–3401. doi: 10.1021/ja00376a026. DOI
Scognamiglio P.L., Platella C., Napolitano E., Musumeci D., Roviello G.N. From prebiotic chemistry to supramolecular biomedical materials: Exploring the properties of self-assembling nucleobase-containing peptides. Molecules. 2021;26:3558. doi: 10.3390/molecules26123558. PubMed DOI PMC
Slepokura K. Purine 3′:5′-cyclic nucleotides with the nucleobase in a syn orientation: cAMP, cGMP and cIMP. Acta Crystallogr. C. 2016;72:465–479. doi: 10.1107/S2053229616006999. PubMed DOI
Costanzo G., Pino S., Timperio A.M., Šponer J.E., Šponer J., Nováková O., Šedo O., Zdráhal Z., Di Mauro E. Non-enzymatic oligomerization of 3′,5′ cyclic AMP. PLoS ONE. 2016;11:e0165723. doi: 10.1371/journal.pone.0165723. PubMed DOI PMC
Burcar B.T., Cassidy L.M., Moriarty E.M., Joshi P.C., Coari K.M., McGown L.B. Potential pitfalls in MALDI-TOF MS analysis of abiotically synthesized RNA oligonucleotides. Orig. Life Evol. Biosph. 2013;43:247–261. doi: 10.1007/s11084-013-9334-5. PubMed DOI
Costanzo G., Giorgi A., Scipioni A., Timperio A.M., Mancone C., Tripodi M., Kapralov M., Krasavin E., Kruse H., Šponer J., et al. Nonenzymatic oligomerization of 3′,5′-cyclic CMP induced by proton and UV irradiation hints at a nonfastidious origin of RNA. ChemBioChem. 2017;18:1535–1543. doi: 10.1002/cbic.201700122. PubMed DOI
Šponer J.E., Šponer J., Nováková O., Brabec V., Šedo O., Zdráhal Z., Costanzo G., Pino S., Saladino R., Di Mauro E. Emergence of the first catalytic oligonucleotides in a formamide-based origin scenario. Chem.-Eur. J. 2016;22:3572–3586. doi: 10.1002/chem.201503906. PubMed DOI
Hazen R.M. Paleomineralogy of the Hadean eon: A preliminary species list. Am. J. Sci. 2013;313:807–843. doi: 10.2475/09.2013.01. DOI
Kunkel T.A. Mutational specificity of depurination. Proc. Natl. Acad. Sci. USA. 1984;81:1494–1498. doi: 10.1073/pnas.81.5.1494. PubMed DOI PMC
Mungi C.V., Bapat N.V., Hongo Y., Rajamani S. Formation of abasic oligomers in nonenzymatic polymerization of canonical nucleotides. Life. 2019;9:57. doi: 10.3390/life9030057. PubMed DOI PMC
Whicher A., Camprubi E., Pinna S., Herschy B., Lane N. Acetyl phosphate as a primordial energy currency at the origin of life. Orig. Life Evol. Biosph. 2018;48:159–179. doi: 10.1007/s11084-018-9555-8. PubMed DOI PMC