Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA

. 2018 Jun 20 ; 8 (2) : . [epub] 20180620

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29925796

Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.

Zobrazit více v PubMed

Miller S.L., Urey H.C. Organic compound synthesis on the primitive earth. Science. 1959;130:245–251. doi: 10.1126/science.130.3370.245. PubMed DOI

Chyba C., Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature. 1992;355:125–132. doi: 10.1038/355125a0. PubMed DOI

Benner S.A., Ricardo A., Carrigan M.A. Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 2004;8:672–689. doi: 10.1016/j.cbpa.2004.10.003. PubMed DOI

Benner S.A. Paradoxes in the origin of life. Orig. Life Evol. Biosph. 2014;44:339–343. doi: 10.1007/s11084-014-9379-0. PubMed DOI

Chyba C.F., Thomas P.J., Brookshaw L., Sagan C. Cometary delivery of organic molecules to the early Earth. Science. 1990;249:366–373. doi: 10.1126/science.11538074. PubMed DOI

Schmitt-Kopplin P., Gabelica Z., Gougeon R.D., Fekete A., Kanawati B., Harir M., Gebefuegi I., Eckel G., Hertkorn N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA. 2010;107:2763–2768. doi: 10.1073/pnas.0912157107. PubMed DOI PMC

Burton A.S., Stern J.C., Elsila J.E., Glavin D.P., Dworkin J.P. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 2012;41:5459–5472. doi: 10.1039/c2cs35109a. PubMed DOI

James E.G., Padelis P.P. Molecular and atomic line surveys of galaxies. I. The dense, star-forming gas phase as a beacon. Astrophys. J. 2012;757:156. doi: 10.1088/0004-637x/757/2/156. DOI

Carota E., Botta G., Rotelli L., Di Mauro E., Saladino R. Current advances in prebiotic chemistry under space conditions. Curr. Org. Chem. 2015;19:1963–1979. doi: 10.2174/1385272819666150622175143. DOI

Rubin R.H., Swenson G.W., Jr., Benson R.C., Tigelaar H.L., Flygare W.H. Microwave detection of interstellar formamide. Astrophys. J. 1971;169:L39. doi: 10.1086/180810. DOI

Ashkenasy G., Hermans T.M., Otto S., Taylor A.F. Systems chemistry. Chem. Soc. Rev. 2017;46:2543–2554. doi: 10.1039/C7CS00117G. PubMed DOI

Stankiewicz J., Eckardt L.H. Chembiogenesis 2005 and systems chemistry workshop. Angew. Chem. Int. Ed. 2006;45:342–344. doi: 10.1002/anie.200504139. DOI

Kindermann M., Stahl I., Reimold M., Pankau W.M., von Kiedrowski G. Systems chemistry: Kinetic and computational analysis of a nearly exponential organic replicator. Angew. Chem. Int. Ed. 2005;44:6750–6755. doi: 10.1002/anie.200501527. PubMed DOI

Sadownik J.W., Mattia E., Nowak P., Otto S. Diversification of self-replicating molecules. Nat. Chem. 2016;8:264–269. doi: 10.1038/nchem.2419. PubMed DOI

Wicken J.S. An organismic critique of molecular Darwinism. J. Theor. Biol. 1985;117:545–561. doi: 10.1016/S0022-5193(85)80237-X. PubMed DOI

Arber W. Molecular Darwinism: The contingency of spontaneous genetic variation. Genome Biol. Evol. 2011;3:1090–1092. doi: 10.1093/gbe/evr035. PubMed DOI PMC

Küppers B.-O. Information and the Origin of Life. MIT Press; Cambridge, MA, USA: 1990.

Higgs P.G. Chemical evolution and the evolutionary definition of life. J. Mol. Evol. 2017;84:225–235. doi: 10.1007/s00239-017-9799-3. PubMed DOI

Eschenmoser A., Loewenthal E. Chemistry of potentially prebiological natural products. Chem. Soc. Rev. 1992;21:1–16. doi: 10.1039/cs9922100001. DOI

Menor-Salván C., Marín-Yaseli M.R. A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene. Chem. Eur. J. 2013;19:6488–6497. doi: 10.1002/chem.201204313. PubMed DOI

Pereto J. Out of fuzzy chemistry: From prebiotic chemistry to metabolic networks. Chem. Soc. Rev. 2012;41:5394–5403. doi: 10.1039/c2cs35054h. PubMed DOI

Airapetian V.S., Glocer A., Gronoff G., Hebrard E., Danchi W. Prebiotic chemistry and atmospheric warming of early Earth by an active young sun. Nat. Geosci. 2016;9:452–455. doi: 10.1038/ngeo2719. DOI

Saladino R., Botta G., Bizzarri B.M., Di Mauro E., Garcia Ruiz J.M. A global scale scenario for prebiotic chemistry: Silica-based self-assembled mineral structures and formamide. Biochemistry. 2016;55:2806–2811. doi: 10.1021/acs.biochem.6b00255. PubMed DOI PMC

Mulkidjanian A.Y., Bychkov A.Y., Dibrova D.V., Galperin M.Y., Koonin E.V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. USA. 2012;109:E821–E830. doi: 10.1073/pnas.1117774109. PubMed DOI PMC

Djokic T., van Kranendonk M.J., Campbell K.A., Walter M.R., Ward C.R. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 2017;8:15263. doi: 10.1038/ncomms15263. PubMed DOI PMC

Ferus M., Pietrucci F., Saitta A.M., Knížek A., Kubelík P., Ivanek O., Shestivska V., Civiš S. Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA. 2017;114:4306–4311. doi: 10.1073/pnas.1700010114. PubMed DOI PMC

Ferus M., Nesvorný D., Šponer J., Kubelík P., Michalčíková R., Shestivská V., Šponer J.E., Civiš S. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA. 2015;112:657–662. doi: 10.1073/pnas.1412072111. PubMed DOI PMC

Saladino R., Crestini C., Ciciriello F., Costanzo G., Di Mauro E. Formamide chemistry and the origin of informational polymers. Chem. Biodivers. 2007;4:694–720. doi: 10.1002/cbdv.200790059. PubMed DOI

Kua J., Thrush K.L. HCN, formamidic acid, and formamide in aqueous solution: A free energy map. J. Phys. Chem. B. 2016;120:8175–8185. doi: 10.1021/acs.jpcb.6b01690. PubMed DOI

Adande G.R., Woolf N.J., Ziurys L.M. Observations of interstellar formamide: Availability of a prebiotic precursor in the galactic habitable zone. Astrobiology. 2013;13:439–453. doi: 10.1089/ast.2012.0912. PubMed DOI PMC

López-Sepulcre A., Jaber A.A., Mendoza E., Lefloch B., Ceccarelli C., Vastel C., Bachiller R., Cernicharo J., Codella C., Kahane C., et al. Shedding light on the formation of the pre-biotic molecule formamide with ASAI. Mon. Notices R. Astron. Soc. 2015;449:2438–2458. doi: 10.1093/mnras/stv377. DOI

Biver N., Bockelée-Morvan D., Debout V., Crovisier J., Boissier J., Lis D.C., Dello Russo N., Moreno R., Colom P., Paubert G., et al. Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): Detection of ethylene glycol and formamide. Astron. Astrophys. 2014;566:L5. doi: 10.1051/0004-6361/201423890. DOI

Kröcher O., Elsener M., Jacob E. A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas. Appl. Catal. B. 2009;88:66–82. doi: 10.1016/j.apcatb.2008.09.027. DOI

Saladino R., Botta G., Pino S., Costanzo G., Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI

Saladino R., Crestini C., Pino S., Costanzo G., Di Mauro E. Formamide and the origin of life. Phys. Life Rev. 2012;9:84–104. doi: 10.1016/j.plrev.2011.12.002. PubMed DOI

Saladino R., Crestini C., Costanzo G., Negri R., Di Mauro E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidone from formamide: Implications for the origin of life. Bioorg. Med. Chem. 2001;9:1249–1253. doi: 10.1016/S0968-0896(00)00340-0. PubMed DOI

Saladino R., Šponer J.E., Šponer J., Di Mauro E. Rewarming the primordial soup: Revisitations and rediscoveries in prebiotic chemistry. ChemBioChem. 2018;19:22–25. doi: 10.1002/cbic.201700534. PubMed DOI PMC

Niether D., Afanasenkau D., Dhont J.K.G., Wiegand S. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases. Proc. Natl. Acad. Sci. USA. 2016;113:4272–4277. doi: 10.1073/pnas.1600275113. PubMed DOI PMC

Niether D., Wiegand S. Heuristic approach to understanding the accumulation process in hydrothermal pores. Entropy. 2017;19:33. doi: 10.3390/e19010033. DOI

Šponer J.E., Šponer J., Nováková O., Brabec V., Šedo O., Zdráhal Z., Costanzo G., Pino S., Saladino R., Di Mauro E. Emergence of the first catalytic oligonucleotides in a formamide-based origin scenario. Chem. Eur. J. 2016;22:3572–3586. doi: 10.1002/chem.201503906. PubMed DOI

Bada J.L., Chalmers J.H., Cleaves H.J. Is formamide a geochemically plausible prebiotic solvent? Phys. Chem. Chem. Phys. 2016;18:20085–20090. doi: 10.1039/C6CP03290G. PubMed DOI

Adam Z.R., Hongo Y., Cleaves H.J., Yi R., Fahrenbach A.C., Yoda I., Aono M. Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci. Rep. 2018;8:265. doi: 10.1038/s41598-017-18483-8. PubMed DOI PMC

Saitta A.M., Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC

Saladino R., Crestini C., Cossetti C., Di Mauro E., Deamer D. Catalytic effects of Murchison material: Prebiotic synthesis and degradation of RNA precursors. Orig. Life Evol. Biosph. 2011;41:437–451. doi: 10.1007/s11084-011-9239-0. PubMed DOI

Saladino R., Botta G., Delfino M., Di Mauro E. Meteorites as catalysts for prebiotic chemistry. Chem. Eur. J. 2013;19:16916–16922. doi: 10.1002/chem.201303690. PubMed DOI

Saladino R., Carota E., Botta G., Kapralov M., Timoshenko G.N., Rozanov A.Y., Krasavin E., Di Mauro E. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. USA. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC

Saladino R., Carota E., Botta G., Kapralov M., Timoshenko G.N., Rozanov A., Krasavin E., Di Mauro E. First evidence on the role of heavy ion irradiation of meteorites and formamide in the origin of biomolecules. Orig. Life Evol. Biosph. 2016;46:515–521. doi: 10.1007/s11084-016-9495-0. PubMed DOI

Botta L., Saladino R., Bizzarri B.M., Cobucci-Ponzano B., Iacono R., Avino R., Caliro S., Carandente A., Lorenzini F., Tortora A., et al. Formamide-based prebiotic chemistry in the Phlegrean fields. Adv. Space Res. 2017 doi: 10.1016/j.asr.2017.07.017. DOI

Rotelli L., Trigo-Rodríguez J.M., Moyano-Cambero C.E., Carota E., Botta L., Di Mauro E., Saladino R. The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci. Rep. 2016;6:38888. doi: 10.1038/srep38888. PubMed DOI PMC

Ferus M., Michalčíková R., Shestivská V., Šponer J., Šponer J.E., Civiš S. High-energy chemistry of formamide: A simpler way for nucleobase formation. J. Phys. Chem. A. 2014;118:719–736. doi: 10.1021/jp411415p. PubMed DOI

Bizzarri B.M., Botta L., Perez-Valverde M.I., Saladino R., Di Mauro E., Garcia Ruiz J.M. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry. Chem. Eur. J. 2018 doi: 10.1002/chem.201706162. PubMed DOI

Ferus M., Kubelík P., Knížek A., Pastorek A., Sutherland J., Civiš S. High energy radical chemistry formation of HCN-rich atmospheres on early Earth. Sci. Rep. 2017;7:6275. doi: 10.1038/s41598-017-06489-1. PubMed DOI PMC

Nguyen H.T., Jeilani Y.A., Hung H.M., Nguyen M.T. Radical pathways for the prebiotic formation of pyrimidine bases from formamide. J. Phys. Chem. A. 2015;119:8871–8883. doi: 10.1021/acs.jpca.5b03625. PubMed DOI

Benner S.A., Kim H.-J., Carrigan M.A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 2012;45:2025–2034. doi: 10.1021/ar200332w. PubMed DOI

Benner S.A., Kim H.-J. Instruments, Methods, and Missions for Astrobiology XVII. Proceedings of SPIE 9606; SPIE Press; San Diego, CA, USA: 2015. The case for a martian origin for Earth life. DOI

He C., Lin G., Upton K.T., Imanaka H., Smith M.A. Structural investigation of HCN polymer isotopomers by solution-state multidimensional NMR. J. Phys. Chem. A. 2012;116:4751–4759. doi: 10.1021/jp301604f. PubMed DOI

Minard R.D., Hatcher P.G., Gourley R.C., Matthews C.N. Structural investigations of hydrogen cyanide polymers: New insights using TMAH thermochemolysis/GC-MS. Orig. Life Evol. Biosph. 1998;28:461–473. doi: 10.1023/A:1006566125815. PubMed DOI

Ricardo A., Carrigan M.A., Olcott A.N., Benner S.A. Borate minerals stabilize ribose. Science. 2004;303:196. doi: 10.1126/science.1092464. PubMed DOI

Joyce G.F. Foreword. In: Deamer D.W., editor. Origins of Life: The Central Concepts. Jones and Bartlett; Boston, MA, USA: 1994.

Trifonov E.N. Vocabulary of definitions of life suggests a definition. J. Biomol. Struct. Dyn. 2011;29:259–266. doi: 10.1080/073911011010524992. PubMed DOI

Lane N., Martin W.F. The origin of membrane bioenergetics. Cell. 2012;151:1406–1416. doi: 10.1016/j.cell.2012.11.050. PubMed DOI

Adamala K., Szostak J.W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 2013;5:495–501. doi: 10.1038/nchem.1650. PubMed DOI PMC

Zhu T.F., Szostak J.W. Exploding vesicles. J. Syst. Chem. 2011;2:4. doi: 10.1186/1759-2208-2-4. DOI

Oró J., Kimball A.P. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 1961;94:217–227. doi: 10.1016/0003-9861(61)90033-9. PubMed DOI

Saladino R., Brucato J.R., De Sio A., Botta G., Pace E., Gambicorti L. Photochemical synthesis of citric acid cycle intermediates based on titanium dioxide. Astrobiology. 2011;11:815–824. doi: 10.1089/ast.2011.0652. PubMed DOI

Saladino R., Neri V., Crestini C., Costanzo G., Graciotti M., Di Mauro E. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals. J. Am. Chem. Soc. 2008;130:15512–15518. doi: 10.1021/ja804782e. PubMed DOI

Saladino R., Barontini M., Cossetti C., Di Mauro E., Crestini C. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide. Orig. Life Evol. Biosph. 2011;41:317–330. doi: 10.1007/s11084-011-9236-3. PubMed DOI

Saladino R., Neri V., Crestini C., Costanzo G., Graciotti M., Di Mauro E. The role of the formamide/zirconia system in the synthesis of nucleobases and biogenic carboxylic acid derivatives. J. Mol. Evol. 2010;71:100–110. doi: 10.1007/s00239-010-9366-7. PubMed DOI

Saladino R., Bizzarri B.M., Botta L., Šponer J., Šponer J.E., Georgelin T., Jaber M., Rigaud B., Kapralov M., Timoshenko G.N., et al. Proton irradiation: A key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci. Rep. 2017;7:14709. doi: 10.1038/s41598-017-15392-8. PubMed DOI PMC

Sanchez R.A., Orgel L.E. Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. J. Mol. Biol. 1970;47:531–543. doi: 10.1016/0022-2836(70)90320-7. PubMed DOI

Powner M.W., Gerland B., Sutherland J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI

Powner M.W., Sutherland J.D. Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. Angew. Chem. Int. Ed. 2010;49:4641–4643. doi: 10.1002/anie.201001662. PubMed DOI

Xu J., Tsanakopoulou M., Magnani C.J., Szabla R., Šponer J.E., Šponer J., Góra R.W., Sutherland J.D. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC

Becker S., Thoma I., Deutsch A., Gehrke T., Mayer P., Zipse H., Carell T. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 2016;352:833–836. doi: 10.1126/science.aad2808. PubMed DOI

Fiore M., Strazewski P. Bringing prebiotic nucleosides and nucleotides down to Earth. Angew. Chem. Int. Ed. 2016;55:13930–13933. doi: 10.1002/anie.201606232. PubMed DOI

Saladino R., Crestini C., Busiello V., Ciciriello F., Costanzo G., Di Mauro E. Differential stability of 3′- and 5′-phosphoester bonds in deoxy monomers and oligomers. J. Biol. Chem. 2005;280:35658–35669. doi: 10.1074/jbc.M504537200. PubMed DOI

Saladino R., Crestini C., Ciciriello F., Di Mauro E., Costanzo G. Origin of informational polymers: Differential stability of phosphoester bonds in ribomonomers and ribooligomers. J. Biol. Chem. 2006;281:5790–5796. doi: 10.1074/jbc.M512545200. PubMed DOI

Ciciriello F., Costanzo G., Pino S., Crestini C., Saladino R., Di Mauro E. Molecular complexity favors the evolution of ribopolymers. Biochemistry. 2008;47:2732–2742. doi: 10.1021/bi7021014. PubMed DOI

Georgiadis M.M., Singh I., Kellett W.F., Hoshika S., Benner S.A., Richards N.G.J. Structural basis for a six nucleotide genetic alphabet. J. Am. Chem. Soc. 2015;137:6947–6955. doi: 10.1021/jacs.5b03482. PubMed DOI PMC

Benner S.A. Understanding nucleic acids using synthetic chemistry. Acc. Chem. Res. 2004;37:784–797. doi: 10.1021/ar040004z. PubMed DOI

Nielsen P.E. Peptide nucleic acids and the origin of life. Chem. Biodivers. 2007;4:1996–2002. doi: 10.1002/cbdv.200790166. PubMed DOI

Eschenmoser A. Towards a chemical etiology of nucleic acid structure. Orig. Life Evol. Biosph. 1997;27:535–553. doi: 10.1023/A:1006511605323. PubMed DOI

Westheimer F.H. Why nature chose phosphates. Science. 1987;235:1173–1178. doi: 10.1126/science.2434996. PubMed DOI

Beck A., Lohrmann R., Orgel L.E. Phosphorylation with inorganic phosphates at moderate temperatures. Science. 1967;157:952. doi: 10.1126/science.157.3791.952. PubMed DOI

Lohrmann R., Orgel L.E. Prebiotic synthesis: Phosphorylation in aqueous solution. Science. 1968;161:64–66. doi: 10.1126/science.161.3836.64. PubMed DOI

Osterberg R., Orgel L.E., Lohrmann R. Further studies of urea-catalyzed phosphorylation reactions. J. Mol. Evol. 1973;2:231–234. doi: 10.1007/BF01654004. PubMed DOI

Lohrmann R., Orgel L.E. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents. Science. 1971;171:490–494. doi: 10.1126/science.171.3970.490. PubMed DOI

Schwartz A.W. Prebiotic phosphorus chemistry reconsidered. Orig. Life Evol. Biosph. 1997;27:505–512. doi: 10.1023/A:1006536817887. PubMed DOI

Yamagata Y., Watanabe H., Saitoh M., Namba T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature. 1991;352:516–519. doi: 10.1038/352516a0. PubMed DOI

Schoffstall A.M. Prebiotic phosphorylation of nucleosides in formamide. Orig. Life. 1976;7:399–412. doi: 10.1007/BF00927935. PubMed DOI

Schoffstall A.M., Barto R., Ramos D. Nucleoside and deoxynucleoside phosphorylation in formamide solutions. Orig. Life Evol. Biosph. 1982;12:143–151. doi: 10.1007/BF00927141. PubMed DOI

Schoffstall A.M., Laing E. Phosphorylation mechanisms in chemical evolution. Orig. Life Evol. Biosph. 1985;15:141–150. doi: 10.1007/BF01809496. DOI

Schoffstall A.M., Mahone S.M. Formate ester formation in amide solutions. Orig. Life Evol. Biosph. 1988;18:389–396. doi: 10.1007/BF01808217. PubMed DOI

Costanzo G., Saladino R., Crestini C., Ciciriello F., Di Mauro E. Nucleoside phosphorylation by phosphate minerals. J. Biol. Chem. 2007;282:16729–16735. doi: 10.1074/jbc.M611346200. PubMed DOI

Saladino R., Crestini C., Ciciriello F., Pino S., Costanzo G., Di Mauro E. From formamide to RNA: The roles of formamide and water in the evolution of chemical information. Res. Microbiol. 2009;160:441–448. doi: 10.1016/j.resmic.2009.06.001. PubMed DOI

Burcar B., Pasek M., Gull M., Cafferty B.J., Velasco F., Hud N.V., Menor-Salván C. Darwin’s warm little pond: A one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew. Chem. Int. Ed. 2016;55:13249–13253. doi: 10.1002/anie.201606239. PubMed DOI

Gibard C., Bhowmik S., Karki M., Kim E.-K., Krishnamurthy R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 2017;10:212–217. doi: 10.1038/nchem.2878. PubMed DOI PMC

Pasek M.A., Gull M., Herschy B. Phosphorylation on the early Earth. Chem. Geol. 2017;475:149–170. doi: 10.1016/j.chemgeo.2017.11.008. DOI

Hazen R.M. Paleomineralogy of the Hadean Eon: A preliminary species list. Am. J. Sci. 2013;313:807–843. doi: 10.2475/09.2013.01. DOI

Shapiro R., Kang S. Uncatalyzed hydrolysis of deoxyuridine, thymidine, and 5-bromodeoxyuridine. Biochemistry. 1969;8:1806–1810. doi: 10.1021/bi00833a004. PubMed DOI

Garrett E.R., Mehta P.J. Solvolysis of adenine nucleosides. II. Effects of sugars and adenine substituents on alkaline solvolyses. J. Am. Chem. Soc. 1972;94:8542–8547. doi: 10.1021/ja00779a041. PubMed DOI

Lindahl T., Karlstrom O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry. 1973;12:5151–5154. doi: 10.1021/bi00749a020. PubMed DOI

Shapiro H.S., Chargaff E. Studies on the nucleoside arrangement in deoxyribonucleic acids. I. The relationship between the production of pyrimidine nucleoside 3′,5′-diphosphates and specific features of nucleotide sequence. Biochim. Biophys. Acta. 1957;26:596–608. doi: 10.1016/0006-3002(57)90107-5. PubMed DOI

Venner H. Research on nucleic acids. XII. Stability of the N-glycoside bond of nucleotides. Hoppe Seylers Z. Physiol. Chem. 1966;344:189–196. doi: 10.1515/bchm2.1966.344.1-3.189. PubMed DOI

Shapiro R., Danzig M. Acidic hydrolysis of pyrimidine deoxyribonucleotides. Biochim. Biophys. Acta. 1973;319:5–10. doi: 10.1016/0005-2787(73)90035-X. PubMed DOI

Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972;11:3610–3618. doi: 10.1021/bi00769a018. PubMed DOI

Kochetov N.K., Budowski E.L., editors. Organic Chemistry of Nucleic Acids. Plenum Press; London, UK: New York, NY, USA: 1982. pp. 477–532.

Verlander M.S., Lohrmann R., Orgel L.E. Catalysts for self-polymerization of adenosine cyclic 2′,3′-phosphate. J. Mol. Evol. 1973;2:303–316. doi: 10.1007/BF01654098. PubMed DOI

Verlander M.S., Orgel L.E. Analysis of high molecular weight material from the polymerization of adenosine cyclic 2′,3′-phosphate. J. Mol. Evol. 1974;3:115–120. doi: 10.1007/BF01796557. PubMed DOI

Usher D.A., McHale A.H. Nonenzymic joining of oligoadenylates on a polyuridylic acid template. Science. 1976;192:53–54. doi: 10.1126/science.1257755. PubMed DOI

Usher D.A., McHale A.H. Hydrolytic stability of helical RNA—Selective advantage for natural 3′,5′-bond. Proc. Natl. Acad. Sci. USA. 1976;73:1149–1153. doi: 10.1073/pnas.73.4.1149. PubMed DOI PMC

Costanzo G., Pino S., Ciciriello F., Di Mauro E. Generation of long RNA chains in water. J. Biol. Chem. 2009;284:33206–33216. doi: 10.1074/jbc.M109.041905. PubMed DOI PMC

Costanzo G., Saladino R., Botta G., Giorgi A., Scipioni A., Pino S., Di Mauro E. Generation of RNA molecules by a base-catalysed click-like reaction. ChemBioChem. 2012;13:999–1008. doi: 10.1002/cbic.201200068. PubMed DOI

Šponer J.E., Šponer J., Giorgi A., Di Mauro E., Pino S., Costanzo G. Untemplated nonenzymatic polymerization of 3′,5′ cGMP: A plausible route to 3′,5′-linked oligonucleotides in primordia. J. Phys. Chem. B. 2015;119:2979–2989. doi: 10.1021/acs.jpcb.5b00601. PubMed DOI

Morasch M., Mast C.B., Langer J.K., Schilcher P., Braun D. Dry polymerization of 3′,5′-cyclic GMP to long strands of RNA. ChemBioChem. 2014;15:879–883. doi: 10.1002/cbic.201300773. PubMed DOI

Costanzo G., Pino S., Timperio A.M., Šponer J.E., Šponer J., Nováková O., Šedo O., Zdráhal Z., Di Mauro E. Non-enzymatic oligomerization of 3′,5′ cyclic AMP. PLoS ONE. 2016;11:e0165723. doi: 10.1371/journal.pone.0165723. PubMed DOI PMC

Costanzo G., Giorgi A., Scipioni A., Timperio A.M., Mancone C., Tripodi M., Kapralov M., Krasavin E., Kruse H., Šponer J., et al. Nonenzymatic oligomerization of 3′,5′-cyclic CMP induced by proton and UV irradiation hints at a nonfastidious origin of RNA. ChemBioChem. 2017;18:1535–1543. doi: 10.1002/cbic.201700122. PubMed DOI

Cassone G., Šponer J., Saija F., Di Mauro E., Saitta A.M., Šponer J.E. Stability of 2′,3′ and 3′,5′ cyclic nucleotides in formamide and in water: A theoretical insight into the factors controlling the accumulation of nucleic acid building blocks in the prebiotic pool. Phys. Chem. Chem. Phys. 2017;19:1817–1825. doi: 10.1039/C6CP07993H. PubMed DOI

Chwang A.K., Sundaralingam M. The crystal and molecular structure of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) sodium tetrahydrate. Acta Crystallogr. B. 1974;30:1233–1240. doi: 10.1107/S0567740874004602. DOI

Kervio E., Sosson M., Richert C. The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acids Res. 2016;44:5504–5514. doi: 10.1093/nar/gkw476. PubMed DOI PMC

Lohrmann R. Formation of nucleoside 5′-phosphoramidates under potentially prebiological conditions. J. Mol. Evol. 1977;10:137–154. doi: 10.1007/BF01751807. PubMed DOI

Kawamura K., Ferris J.P. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5′-phosphorimidazolide of adenosine on Na+-montmorillonite. J. Am. Chem. Soc. 1994;116:7564–7572. doi: 10.1021/ja00096a013. PubMed DOI

Mansy S.S., Schrum J.P., Krishnamurthy M., Tobe S., Treco D.A., Szostak J.W. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454:122–125. doi: 10.1038/nature07018. PubMed DOI PMC

Orgel L.E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004;39:99–123. PubMed

Jauker M., Griesser H., Richert C. Copying of RNA sequences without pre-activation. Angew. Chem. Int. Ed. 2015;54:14559–14563. doi: 10.1002/anie.201506592. PubMed DOI PMC

Da Silva L., Maurel M.C., Deamer D. Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J. Mol. Evol. 2015;80:86–97. doi: 10.1007/s00239-014-9661-9. PubMed DOI

DeGuzman V., Vercoutere W., Shenasa H., Deamer D. Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J. Mol. Evol. 2014;78:251–262. doi: 10.1007/s00239-014-9623-2. PubMed DOI

Šponer J.E., Šponer J., Di Mauro E. Four ways to oligonucleotides without phosphoimidazolides. J. Mol. Evol. 2015;82:5–10. doi: 10.1007/s00239-015-9709-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...