The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27906133
PubMed Central
PMC5133447
DOI
10.1098/rsob.160249
PII: rsob.160249
Knihovny.cz E-zdroje
- Klíčová slova
- Eustigmatophyceae, UbiA superfamily, horizontal gene transfer, plastid genome, secondary metabolism, sugar phosphate cyclase superfamily,
- MeSH
- anotace sekvence MeSH
- bakteriální geny MeSH
- DNA řas genetika MeSH
- genom plastidový * MeSH
- Heterokontophyta genetika MeSH
- molekulární evoluce MeSH
- multigenová rodina MeSH
- přenos genů horizontální * MeSH
- sekvenční analýza DNA metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA řas MeSH
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid-cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Zobrazit více v PubMed
Rezanka T, Petránková M, Cepák V, Pribyl P, Sigler K, Cajthaml T. 2010. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. (Praha) 55, 265–269. (doi:10.1007/s12223-010-0039-0) PubMed DOI
Ma XN, Chen TP, Yang B, Liu J, Chen F. 2016. Lipid production from Nannochloropsis. Mar. Drugs 14, 61 (doi:10.3390/md14040061) PubMed DOI PMC
Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC. 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun. 3, 686 (doi:10.1038/ncomms1688) PubMed DOI PMC
Vieler A, et al. 2012. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 8, e1003064 (doi:10.1371/journal.pgen.1003064) PubMed DOI PMC
Wang D, et al. 2014. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet. 10, e1004094 (doi:10.1371/journal.pgen.1004094) PubMed DOI PMC
Corteggiani Carpinelli E, et al. , 2014. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol. Plant. 7, 323–335. (doi:10.1093/mp/sst120) PubMed DOI
Fawley MW, Jameson I, Fawley KP. 2015. The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54, 545–552. (doi:10.2216/15-60.1) DOI
Wei L, et al. 2013. Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae. BMC Genomics 14, 534 (doi:10.1186/1471-2164-14-534) PubMed DOI PMC
Starkenburg SR, Kwon KJ, Jha RK, McKay C, Jacobs M, Chertkov O, Twary S, Rocap G, Cattolico RA. 2014. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics 15, 212 (doi:10.1186/1471-2164-15-212) PubMed DOI PMC
Fawley KP, Eliáš M, Fawley MW. 2014. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J. Appl. Phycol. 26, 1773–1782. (doi:10.1007/s10811-013-0216-z) DOI
Nakayama T, Nakamura A, Yokoyama A, Shiratori T, Inouye I, Ishida K. 2015. Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov . J. Plant Res. 128, 249–257. (doi:10.1007/s10265-014-0686-3) PubMed DOI
Ševčíková T, et al. 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 5, 10134 (doi:10.1038/srep10134) PubMed DOI PMC
Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P. 2012. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J. Phycol. 48, 231–242. (doi:10.1111/j.1529-8817.2011.01109.x) PubMed DOI
Ševčíková T, Klimeš V, Zbránková V, Strnad H, Hroudová M, Vlček Č, Eliáš M. 2016. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol. Evol. 8, 705–722. (doi:10.1093/gbe/evw027) PubMed DOI PMC
McFadden GI. 2014. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 6, a016105 (doi:10.1101/cshperspect.a016105) PubMed DOI PMC
Archibald JM. 2015. Genomic perspectives on the birth and spread of plastids. Proc. Natl Acad. Sci. USA 112, 10 147–10 153. (doi:10.1073/pnas.1421374112) PubMed DOI PMC
Lang BF, Nedelcu AM. 2012. Plastid genomes of algae. In Genomics of chloroplasts and mitochondria. Advances in photosynthesis and respiration (eds Bock R, Knoop V), pp. 59–87. Dordrecht, The Netherlands: Springer.
Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ. 2014. Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol. Evol. 6, 644–654. (doi:10.1093/gbe/evu039) PubMed DOI PMC
Tajima N, et al. 2016. Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms). Curr. Genet. 62, 887–896. (doi:10.1007/s00294-016-0598-y) PubMed DOI
Delwiche CF, Palmer JD. 1996. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13, 873–882. PubMed
Rice DW, Palmer JD. 2006. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 4, 31 (doi:10.1186/1741-7007-4-31) PubMed DOI PMC
Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM. 2007. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol. Biol. Evol. 24, 1832–1842. (doi:10.1093/molbev/msm101) PubMed DOI
Brouard JS, Otis C, Lemieux C, Turmel M. 2008. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer. BMC Genomics 9, 290 (doi:10.1186/1471-2164-9-290) PubMed DOI PMC
Brembu T, Winge P, Tooming-Klunderud A, Nederbragt AJ, Jakobsen KS, Bones AM. 2014. The chloroplast genome of the diatom Seminavis robusta: new features introduced through multiple mechanisms of horizontal gene transfer. Mar. Genomics 16, 17–27. (doi:10.1016/j.margen.2013.12.002) PubMed DOI
Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W. 2015. The plastid genome of the cryptomonad Teleaulax amphioxeia. PLoS ONE 10, e0129284 (doi:10.1371/journal.pone.0129284) PubMed DOI PMC
Leliaert F, Lopez-Bautista JM. 2015. The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin. BMC Genomics 16, 204 (doi:10.1186/s12864-015-1418-3) PubMed DOI PMC
Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS. 2016. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Sci. Rep. 6, 23744 (doi:10.1038/srep23744) PubMed DOI PMC
Khan H, Archibald JM. 2008. Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Res. 36, 3043–3053. (doi:10.1093/nar/gkn095) PubMed DOI PMC
Straub SC, Cronn RC, Edwards C, Fishbein M, Liston A. 2013. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). Genome Biol. Evol. 5, 1872–1885. (doi:10.1093/gbe/evt140) PubMed DOI PMC
Ma PF, Zhang YX, Guo ZH, Li DZ. 2015. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci. Rep. 5, 11608 (doi:10.1038/srep11608) PubMed DOI PMC
Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ. 2013. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS ONE 8, e59001 (doi:10.1371/journal.pone.0059001) PubMed DOI PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. (doi:10.1093/nar/25.17.3389) PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. (doi:10.1038/nmeth.1923) PubMed DOI PMC
Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192. (doi:10.1093/bib/bbs017) PubMed DOI PMC
Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41, W575–W581. (doi:10.1093/nar/gkt289) PubMed DOI PMC
Keeling PJ, et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (doi:10.1371/journal.pbio.1001889) PubMed DOI PMC
Yamagishi T, Müller DG, Kawai H. 2014. Comparative transcriptome analysis of Discosporangium mesarthrocarpum (Phaeophyceae), Schizocladia ischiensis (Schizocladiophyceae), and Phaeothamnion confervicola (Phaeothamniophyceae), with special reference to cell wall-related genes. J. Phycol. 50, 543–551. (doi:10.1111/jpy.12190) PubMed DOI
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. (doi:10.1093/molbev/mst010) PubMed DOI PMC
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. PubMed
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. (doi:10.1093/bioinformatics/btu033) PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T.2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proc. Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, pp. 1–8. IEEE. ( doi:10.1109/GCE.2010.5676129) DOI
Le SQ, Dang CC, Gascuel O. 2012. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol. Biol. Evol. 29, 2921–2936. (doi:10.1093/molbev/mss112) PubMed DOI
Kück P, Meusemann K. 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118. (doi:10.1016/j.ympev.2010.04.024) PubMed DOI
Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245. (doi:10.1093/nar/gkw290) PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462. (doi:10.1093/nar/gkv1070) PubMed DOI PMC
Finn RD, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285. (doi:10.1093/nar/gkv1344) PubMed DOI PMC
de Lima Morais DA, Fang H, Rackham OJ, Wilson D, Pethica R, Chothia C, Gough J. 2011. SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res. 39, D427–D434. (doi:10.1093/nar/gkq1130) PubMed DOI PMC
Söding J. 2005. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960. (doi:10.1093/bioinformatics/bti125) PubMed DOI
Frickey T, Lupas A. 2004. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704. (doi:10.1093/bioinformatics/bth444) PubMed DOI
Li W. 2016. Bringing bioactive compounds into membranes: the UbiA superfamily of intramembrane aromatic prenyltransferases. Trends Biochem. Sci. 41, 356–370. (doi:10.1016/j.tibs.2016.01.007) PubMed DOI PMC
Asamizu S, Xie P, Brumsted CJ, Flatt PM, Mahmud T. 2012. Evolutionary divergence of sedoheptulose 7-phosphate cyclases leads to several distinct cyclic products. J. Am. Chem. Soc. 134,12 219–12 229. (doi:10.1021/ja3041866) PubMed DOI PMC
Osborn AR et al. . 2015. De novo synthesis of a sunscreen compound in vertebrates. eLife 4, e05919 (doi:10.7554/eLife.05919) PubMed DOI PMC
Ichikawa N, Sasagawa M, Yamamoto M, Komaki H, Yoshida Y, Yamazaki S, Fujita N. 2013. DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 41, D408–D414. (doi:10.1093/nar/gks1177) PubMed DOI PMC
Andersson JO. 2005. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 62, 1182–1197. (doi:10.1007/s00018-005-4539-z) PubMed DOI PMC
Katz LA. 2015. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist. Phil. Trans. R. Soc. B 370, 20140324 (doi:10.1098/rstb.2014.0324) PubMed DOI PMC
Smythe L, Adler B, Hartskeerl RA, Galloway RL, Turenne CY, Levett PN; International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Leptospiraceae. 2013. Classification of Leptospira genomospecies 1, 3, 4 and 5 as Leptospira alstonii sp. nov., Leptospira vanthielii sp. nov., Leptospira terpstrae sp. nov. and Leptospira yanagawae sp. nov., respectively. Int. J. Syst. Evol. Microbiol. 63, 1859–1862. (doi:10.1099/ijs.0.047324-0) PubMed DOI
Hirt RP, Alsmark C, Embley TM. 2015. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites. Curr. Opin. Microbiol. 23, 155–162. (doi:10.1016/j.mib.2014.11.018) PubMed DOI PMC
Bowler C, et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244. (doi:10.1038/nature07410) PubMed DOI
Kodama M, Doucette GK, Green DH. 2006. Relationships between bacteria and harmful algae. In Ecology of harmful algae (eds Granéli E, Turner JT), pp. 243–255. Berlin, Germany: Springer.
Yoon J, Oku N, Kasai H. 2015. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla. Antonie Van Leeuwenhoek 107, 1607–1613. (doi:10.1007/s10482-015-0456-9) PubMed DOI
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. 2016. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29. (doi:10.1016/j.biotechadv.2015.12.003) PubMed DOI
Krieg NR, Ludwig W, Euzéby J, Whitman WB. 2010. Phylum XIV. Bacteroidetes phyl. nov. In Bergey's Manual® of Systematic Bacteriology (eds Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman BW), pp. 25–469. New York, NY: Springer.
Ott DW, Oldham-Ott CK, Rybalka N, Friedl T. 2015. Xanthophyte, Eustigmatophyte, and Raphidophyte Algae. In Freshwater algae of North America. Ecology and classification (eds Wehr JD, Sheath RG, Kociolek JP), pp. 485–536. New York, NY: Academic Press.
Moszczynski K, Mackiewicz P, Bodyl A. 2012. Evidence for horizontal gene transfer from Bacteroidetes bacteria to dinoflagellate minicircles. Mol. Biol. Evol. 29, 887–892. (doi:10.1093/molbev/msr276) PubMed DOI
Dorrell RG, Howe CJ. 2015. Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proc. Natl Acad. Sci. USA 112, 10 247–10 254. (doi:10.1073/pnas.1421380112) PubMed DOI PMC
Wu X, Flatt PM, Schlörke O, Zeeck A, Dairi T, Mahmud T. 2007. A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. ChemBioChem 8, 239–248. (doi:10.1002/cbic.200600446) PubMed DOI PMC
Cheng W, Li W. 2014. Structural insights into ubiquinone biosynthesis in membranes. Science 343, 878–881. (doi:10.1126/science.1246774) PubMed DOI PMC
Lohr M, Schwender J, Polle JE. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185–186, 9–22. (doi:10.1016/j.plantsci.2011.07.018) PubMed DOI
Kean KM, Codding SJ, Asamizu S, Mahmud T, Karplus PA. 2014. Structure of a sedoheptulose 7-phosphate cyclase: ValA from Streptomyces hygroscopicus. Biochemistry 53, 4250–4260. (doi:10.1021/bi5003508) PubMed DOI PMC
Balskus EP, Walsh CT. 2010. The genetic and molecular basis for sunscreen biosynthesis in Cyanobacteria. Science 329, 1653–1656. (doi:10.1126/science.1193637) PubMed DOI PMC
Stefan C, Jansen S, Bollen M. 2005. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem. Sci. 30, 542–550. (doi:10.1016/j.tibs.2005.08.005) PubMed DOI
Xu S, Li W, Zhu J, Wang R, Li Z, Xu GL, Ding J. 2013. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase. Cell Res. 23, 1296–1309. (doi:10.1038/cr.2013.107) PubMed DOI PMC
Bouvier JT, Groninger-Poe FP, Vetting M, Almo SC, Gerlt JA. 2014. Galactaro δ-lactone isomerase: lactone isomerization by a member of the amidohydrolase superfamily. Biochemistry 53, 614–616. (doi:10.1021/bi5000492) PubMed DOI PMC
Eliáš M, Klimeš V, Derelle R, Petrželková R, Tachezy J. 2016. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol. Direct 11, 5 (doi:10.1186/s13062-016-0107-8) PubMed DOI PMC
Xu F, Jerlström-Hultqvist J, Kolisko M, Simpson AG, Roger AJ, Svärd SG, Andersson JO. 2016. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol. 14, 62 (doi:10.1186/s12915-016-0284-z) PubMed DOI PMC
Soule T, Palmer K, Gao Q, Potrafka RM, Stout V, Garcia-Pichel F. 2009. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10, 336 (doi:10.1186/1471-2164-10-336) PubMed DOI PMC
Balskus EP, Walsh CT. 2008. Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J. Am. Chem. Soc. 130,15 260–15 261. (doi:10.1021/ja807192u) PubMed DOI PMC
Balskus EP, Walsh CT. 2009. An enzymatic cyclopentyl[b]indole formation involved in scytonemin biosynthesis. J. Am. Chem. Soc. 131,14 648–14 649. (doi:10.1021/ja906752u) PubMed DOI PMC
Ferreira D, Garcia-Pichel F. 2016. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133. Front. Microbiol. 7, 735 (doi:10.3389/fmicb.2016.00735) PubMed DOI PMC
Soule T, Garcia-Pichel F, Stout V. 2009. Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation. J. Bacteriol. 191, 4639–4646. (doi:10.1128/JB.00134-09) PubMed DOI PMC
Garcia-Pichel F, Castenholz RW. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27, 395–409. (doi:10.1111/j.0022-3646.1991.00395.x) DOI
Torigoe K, Wakasugi N, Sakaizumi N, Ikejima T, Suzuki H, Kojiri K, Suda H. 1996. BE-40644, a new human thioredoxin system inhibitor isolated from Actinoplanes sp. A40644. J. Antibiot. (Tokyo) 49, 314–317. (doi:10.7164/antibiotics.49.314) PubMed DOI
Kawasaki T, Kuzuyama T, Furihata K, Itoh N, Seto H, Dairi T. 2003. A relationship between the mevalonate pathway and isoprenoid production in actinomycetes. J. Antibiot. (Tokyo) 56, 957–966. (doi:10.7164/antibiotics.56.957) PubMed DOI
Mahmud T, Flatt PM, Wu X. 2007. Biosynthesis of unusual aminocyclitol-containing natural products. J. Nat. Prod. 70, 1384–1391. (doi:10.1021/np070210q) PubMed DOI PMC
Wang KC, Ohnuma S. 2000. Isoprenyl diphosphate synthases. Biochim. Biophys. Acta 1529, 33–48. (doi:10.1016/S1388-1981(00)00136-0) PubMed DOI
Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touzé T. 2014. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb. Drug Resist. 20, 199–214. (doi:10.1089/mdr.2014.0035) PubMed DOI PMC
Brown JW, Sorhannus U. 2010. A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5, e12759 (doi:10.1371/journal.pone.0012759) PubMed DOI PMC
Daniell H, Lin CS, Yu M, Chang WJ. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134 (doi:10.1186/s13059-016-1004-2) PubMed DOI PMC
Monodopsis and Vischeria Genomes Shed New Light on the Biology of Eustigmatophyte Algae
Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation