The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite

. 2016 Nov ; 6 (11) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27906133

Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid-cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.

Zobrazit více v PubMed

Rezanka T, Petránková M, Cepák V, Pribyl P, Sigler K, Cajthaml T. 2010. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. (Praha) 55, 265–269. (doi:10.1007/s12223-010-0039-0) PubMed DOI

Ma XN, Chen TP, Yang B, Liu J, Chen F. 2016. Lipid production from Nannochloropsis. Mar. Drugs 14, 61 (doi:10.3390/md14040061) PubMed DOI PMC

Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC. 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun. 3, 686 (doi:10.1038/ncomms1688) PubMed DOI PMC

Vieler A, et al. 2012. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 8, e1003064 (doi:10.1371/journal.pgen.1003064) PubMed DOI PMC

Wang D, et al. 2014. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet. 10, e1004094 (doi:10.1371/journal.pgen.1004094) PubMed DOI PMC

Corteggiani Carpinelli E, et al. , 2014. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol. Plant. 7, 323–335. (doi:10.1093/mp/sst120) PubMed DOI

Fawley MW, Jameson I, Fawley KP. 2015. The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54, 545–552. (doi:10.2216/15-60.1) DOI

Wei L, et al. 2013. Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae. BMC Genomics 14, 534 (doi:10.1186/1471-2164-14-534) PubMed DOI PMC

Starkenburg SR, Kwon KJ, Jha RK, McKay C, Jacobs M, Chertkov O, Twary S, Rocap G, Cattolico RA. 2014. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics 15, 212 (doi:10.1186/1471-2164-15-212) PubMed DOI PMC

Fawley KP, Eliáš M, Fawley MW. 2014. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J. Appl. Phycol. 26, 1773–1782. (doi:10.1007/s10811-013-0216-z) DOI

Nakayama T, Nakamura A, Yokoyama A, Shiratori T, Inouye I, Ishida K. 2015. Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov . J. Plant Res. 128, 249–257. (doi:10.1007/s10265-014-0686-3) PubMed DOI

Ševčíková T, et al. 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 5, 10134 (doi:10.1038/srep10134) PubMed DOI PMC

Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P. 2012. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J. Phycol. 48, 231–242. (doi:10.1111/j.1529-8817.2011.01109.x) PubMed DOI

Ševčíková T, Klimeš V, Zbránková V, Strnad H, Hroudová M, Vlček Č, Eliáš M. 2016. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol. Evol. 8, 705–722. (doi:10.1093/gbe/evw027) PubMed DOI PMC

McFadden GI. 2014. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 6, a016105 (doi:10.1101/cshperspect.a016105) PubMed DOI PMC

Archibald JM. 2015. Genomic perspectives on the birth and spread of plastids. Proc. Natl Acad. Sci. USA 112, 10 147–10 153. (doi:10.1073/pnas.1421374112) PubMed DOI PMC

Lang BF, Nedelcu AM. 2012. Plastid genomes of algae. In Genomics of chloroplasts and mitochondria. Advances in photosynthesis and respiration (eds Bock R, Knoop V), pp. 59–87. Dordrecht, The Netherlands: Springer.

Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ. 2014. Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol. Evol. 6, 644–654. (doi:10.1093/gbe/evu039) PubMed DOI PMC

Tajima N, et al. 2016. Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms). Curr. Genet. 62, 887–896. (doi:10.1007/s00294-016-0598-y) PubMed DOI

Delwiche CF, Palmer JD. 1996. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13, 873–882. PubMed

Rice DW, Palmer JD. 2006. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 4, 31 (doi:10.1186/1741-7007-4-31) PubMed DOI PMC

Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM. 2007. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol. Biol. Evol. 24, 1832–1842. (doi:10.1093/molbev/msm101) PubMed DOI

Brouard JS, Otis C, Lemieux C, Turmel M. 2008. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer. BMC Genomics 9, 290 (doi:10.1186/1471-2164-9-290) PubMed DOI PMC

Brembu T, Winge P, Tooming-Klunderud A, Nederbragt AJ, Jakobsen KS, Bones AM. 2014. The chloroplast genome of the diatom Seminavis robusta: new features introduced through multiple mechanisms of horizontal gene transfer. Mar. Genomics 16, 17–27. (doi:10.1016/j.margen.2013.12.002) PubMed DOI

Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W. 2015. The plastid genome of the cryptomonad Teleaulax amphioxeia. PLoS ONE 10, e0129284 (doi:10.1371/journal.pone.0129284) PubMed DOI PMC

Leliaert F, Lopez-Bautista JM. 2015. The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin. BMC Genomics 16, 204 (doi:10.1186/s12864-015-1418-3) PubMed DOI PMC

Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS. 2016. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Sci. Rep. 6, 23744 (doi:10.1038/srep23744) PubMed DOI PMC

Khan H, Archibald JM. 2008. Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Res. 36, 3043–3053. (doi:10.1093/nar/gkn095) PubMed DOI PMC

Straub SC, Cronn RC, Edwards C, Fishbein M, Liston A. 2013. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). Genome Biol. Evol. 5, 1872–1885. (doi:10.1093/gbe/evt140) PubMed DOI PMC

Ma PF, Zhang YX, Guo ZH, Li DZ. 2015. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci. Rep. 5, 11608 (doi:10.1038/srep11608) PubMed DOI PMC

Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ. 2013. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS ONE 8, e59001 (doi:10.1371/journal.pone.0059001) PubMed DOI PMC

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. (doi:10.1093/nar/25.17.3389) PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. (doi:10.1038/nmeth.1923) PubMed DOI PMC

Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192. (doi:10.1093/bib/bbs017) PubMed DOI PMC

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41, W575–W581. (doi:10.1093/nar/gkt289) PubMed DOI PMC

Keeling PJ, et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (doi:10.1371/journal.pbio.1001889) PubMed DOI PMC

Yamagishi T, Müller DG, Kawai H. 2014. Comparative transcriptome analysis of Discosporangium mesarthrocarpum (Phaeophyceae), Schizocladia ischiensis (Schizocladiophyceae), and Phaeothamnion confervicola (Phaeothamniophyceae), with special reference to cell wall-related genes. J. Phycol. 50, 543–551. (doi:10.1111/jpy.12190) PubMed DOI

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. (doi:10.1093/molbev/mst010) PubMed DOI PMC

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. PubMed

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. (doi:10.1093/bioinformatics/btu033) PubMed DOI PMC

Miller MA, Pfeiffer W, Schwartz T.2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proc. Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, pp. 1–8. IEEE. ( doi:10.1109/GCE.2010.5676129) DOI

Le SQ, Dang CC, Gascuel O. 2012. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol. Biol. Evol. 29, 2921–2936. (doi:10.1093/molbev/mss112) PubMed DOI

Kück P, Meusemann K. 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118. (doi:10.1016/j.ympev.2010.04.024) PubMed DOI

Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245. (doi:10.1093/nar/gkw290) PubMed DOI PMC

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462. (doi:10.1093/nar/gkv1070) PubMed DOI PMC

Finn RD, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285. (doi:10.1093/nar/gkv1344) PubMed DOI PMC

de Lima Morais DA, Fang H, Rackham OJ, Wilson D, Pethica R, Chothia C, Gough J. 2011. SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res. 39, D427–D434. (doi:10.1093/nar/gkq1130) PubMed DOI PMC

Söding J. 2005. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960. (doi:10.1093/bioinformatics/bti125) PubMed DOI

Frickey T, Lupas A. 2004. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704. (doi:10.1093/bioinformatics/bth444) PubMed DOI

Li W. 2016. Bringing bioactive compounds into membranes: the UbiA superfamily of intramembrane aromatic prenyltransferases. Trends Biochem. Sci. 41, 356–370. (doi:10.1016/j.tibs.2016.01.007) PubMed DOI PMC

Asamizu S, Xie P, Brumsted CJ, Flatt PM, Mahmud T. 2012. Evolutionary divergence of sedoheptulose 7-phosphate cyclases leads to several distinct cyclic products. J. Am. Chem. Soc. 134,12 219–12 229. (doi:10.1021/ja3041866) PubMed DOI PMC

Osborn AR  et al. . 2015. De novo synthesis of a sunscreen compound in vertebrates. eLife 4, e05919 (doi:10.7554/eLife.05919) PubMed DOI PMC

Ichikawa N, Sasagawa M, Yamamoto M, Komaki H, Yoshida Y, Yamazaki S, Fujita N. 2013. DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 41, D408–D414. (doi:10.1093/nar/gks1177) PubMed DOI PMC

Andersson JO. 2005. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 62, 1182–1197. (doi:10.1007/s00018-005-4539-z) PubMed DOI PMC

Katz LA. 2015. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist. Phil. Trans. R. Soc. B 370, 20140324 (doi:10.1098/rstb.2014.0324) PubMed DOI PMC

Smythe L, Adler B, Hartskeerl RA, Galloway RL, Turenne CY, Levett PN; International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Leptospiraceae. 2013. Classification of Leptospira genomospecies 1, 3, 4 and 5 as Leptospira alstonii sp. nov., Leptospira vanthielii sp. nov., Leptospira terpstrae sp. nov. and Leptospira yanagawae sp. nov., respectively. Int. J. Syst. Evol. Microbiol. 63, 1859–1862. (doi:10.1099/ijs.0.047324-0) PubMed DOI

Hirt RP, Alsmark C, Embley TM. 2015. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites. Curr. Opin. Microbiol. 23, 155–162. (doi:10.1016/j.mib.2014.11.018) PubMed DOI PMC

Bowler C, et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244. (doi:10.1038/nature07410) PubMed DOI

Kodama M, Doucette GK, Green DH. 2006. Relationships between bacteria and harmful algae. In Ecology of harmful algae (eds Granéli E, Turner JT), pp. 243–255. Berlin, Germany: Springer.

Yoon J, Oku N, Kasai H. 2015. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla. Antonie Van Leeuwenhoek 107, 1607–1613. (doi:10.1007/s10482-015-0456-9) PubMed DOI

Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. 2016. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29. (doi:10.1016/j.biotechadv.2015.12.003) PubMed DOI

Krieg NR, Ludwig W, Euzéby J, Whitman WB. 2010. Phylum XIV. Bacteroidetes phyl. nov. In Bergey's Manual® of Systematic Bacteriology (eds Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman BW), pp. 25–469. New York, NY: Springer.

Ott DW, Oldham-Ott CK, Rybalka N, Friedl T. 2015. Xanthophyte, Eustigmatophyte, and Raphidophyte Algae. In Freshwater algae of North America. Ecology and classification (eds Wehr JD, Sheath RG, Kociolek JP), pp. 485–536. New York, NY: Academic Press.

Moszczynski K, Mackiewicz P, Bodyl A. 2012. Evidence for horizontal gene transfer from Bacteroidetes bacteria to dinoflagellate minicircles. Mol. Biol. Evol. 29, 887–892. (doi:10.1093/molbev/msr276) PubMed DOI

Dorrell RG, Howe CJ. 2015. Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proc. Natl Acad. Sci. USA 112, 10 247–10 254. (doi:10.1073/pnas.1421380112) PubMed DOI PMC

Wu X, Flatt PM, Schlörke O, Zeeck A, Dairi T, Mahmud T. 2007. A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. ChemBioChem 8, 239–248. (doi:10.1002/cbic.200600446) PubMed DOI PMC

Cheng W, Li W. 2014. Structural insights into ubiquinone biosynthesis in membranes. Science 343, 878–881. (doi:10.1126/science.1246774) PubMed DOI PMC

Lohr M, Schwender J, Polle JE. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185–186, 9–22. (doi:10.1016/j.plantsci.2011.07.018) PubMed DOI

Kean KM, Codding SJ, Asamizu S, Mahmud T, Karplus PA. 2014. Structure of a sedoheptulose 7-phosphate cyclase: ValA from Streptomyces hygroscopicus. Biochemistry 53, 4250–4260. (doi:10.1021/bi5003508) PubMed DOI PMC

Balskus EP, Walsh CT. 2010. The genetic and molecular basis for sunscreen biosynthesis in Cyanobacteria. Science 329, 1653–1656. (doi:10.1126/science.1193637) PubMed DOI PMC

Stefan C, Jansen S, Bollen M. 2005. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem. Sci. 30, 542–550. (doi:10.1016/j.tibs.2005.08.005) PubMed DOI

Xu S, Li W, Zhu J, Wang R, Li Z, Xu GL, Ding J. 2013. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase. Cell Res. 23, 1296–1309. (doi:10.1038/cr.2013.107) PubMed DOI PMC

Bouvier JT, Groninger-Poe FP, Vetting M, Almo SC, Gerlt JA. 2014. Galactaro δ-lactone isomerase: lactone isomerization by a member of the amidohydrolase superfamily. Biochemistry 53, 614–616. (doi:10.1021/bi5000492) PubMed DOI PMC

Eliáš M, Klimeš V, Derelle R, Petrželková R, Tachezy J. 2016. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol. Direct 11, 5 (doi:10.1186/s13062-016-0107-8) PubMed DOI PMC

Xu F, Jerlström-Hultqvist J, Kolisko M, Simpson AG, Roger AJ, Svärd SG, Andersson JO. 2016. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol. 14, 62 (doi:10.1186/s12915-016-0284-z) PubMed DOI PMC

Soule T, Palmer K, Gao Q, Potrafka RM, Stout V, Garcia-Pichel F. 2009. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10, 336 (doi:10.1186/1471-2164-10-336) PubMed DOI PMC

Balskus EP, Walsh CT. 2008. Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J. Am. Chem. Soc. 130,15 260–15 261. (doi:10.1021/ja807192u) PubMed DOI PMC

Balskus EP, Walsh CT. 2009. An enzymatic cyclopentyl[b]indole formation involved in scytonemin biosynthesis. J. Am. Chem. Soc. 131,14 648–14 649. (doi:10.1021/ja906752u) PubMed DOI PMC

Ferreira D, Garcia-Pichel F. 2016. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133. Front. Microbiol. 7, 735 (doi:10.3389/fmicb.2016.00735) PubMed DOI PMC

Soule T, Garcia-Pichel F, Stout V. 2009. Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation. J. Bacteriol. 191, 4639–4646. (doi:10.1128/JB.00134-09) PubMed DOI PMC

Garcia-Pichel F, Castenholz RW. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27, 395–409. (doi:10.1111/j.0022-3646.1991.00395.x) DOI

Torigoe K, Wakasugi N, Sakaizumi N, Ikejima T, Suzuki H, Kojiri K, Suda H. 1996. BE-40644, a new human thioredoxin system inhibitor isolated from Actinoplanes sp. A40644. J. Antibiot. (Tokyo) 49, 314–317. (doi:10.7164/antibiotics.49.314) PubMed DOI

Kawasaki T, Kuzuyama T, Furihata K, Itoh N, Seto H, Dairi T. 2003. A relationship between the mevalonate pathway and isoprenoid production in actinomycetes. J. Antibiot. (Tokyo) 56, 957–966. (doi:10.7164/antibiotics.56.957) PubMed DOI

Mahmud T, Flatt PM, Wu X. 2007. Biosynthesis of unusual aminocyclitol-containing natural products. J. Nat. Prod. 70, 1384–1391. (doi:10.1021/np070210q) PubMed DOI PMC

Wang KC, Ohnuma S. 2000. Isoprenyl diphosphate synthases. Biochim. Biophys. Acta 1529, 33–48. (doi:10.1016/S1388-1981(00)00136-0) PubMed DOI

Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touzé T. 2014. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb. Drug Resist. 20, 199–214. (doi:10.1089/mdr.2014.0035) PubMed DOI PMC

Brown JW, Sorhannus U. 2010. A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5, e12759 (doi:10.1371/journal.pone.0012759) PubMed DOI PMC

Daniell H, Lin CS, Yu M, Chang WJ. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134 (doi:10.1186/s13059-016-1004-2) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace