Plastid Genomes and Proteins Illuminate the Evolution of Eustigmatophyte Algae and Their Bacterial Endosymbionts
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P20 GM103429
NIGMS NIH HHS - United States
PubMed
30629162
PubMed Central
PMC6367104
DOI
10.1093/gbe/evz004
PII: 5284916
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- genom plastidový * MeSH
- Heterokontophyta genetika mikrobiologie MeSH
- operon * MeSH
- Rickettsiaceae genetika MeSH
- sekvence aminokyselin MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Eustigmatophytes, a class of stramenopile algae (ochrophytes), include not only the extensively studied biotechnologically important genus Nannochloropsis but also a rapidly expanding diversity of lineages with much less well characterized biology. Recent discoveries have led to exciting additions to our knowledge about eustigmatophytes. Some proved to harbor bacterial endosymbionts representing a novel genus, Candidatus Phycorickettsia, and an operon of unclear function (ebo) obtained by horizontal gene transfer from the endosymbiont lineage was found in the plastid genomes of still other eustigmatophytes. To shed more light on the latter event, as well as to generally improve our understanding of the eustigmatophyte evolutionary history, we sequenced plastid genomes of seven phylogenetically diverse representatives (including new isolates representing undescribed taxa). A phylogenomic analysis of plastid genome-encoded proteins resolved the phylogenetic relationships among the main eustigmatophyte lineages and provided a framework for the interpretation of plastid gene gains and losses in the group. The ebo operon gain was inferred to have probably occurred within the order Eustigmatales, after the divergence of the two basalmost lineages (a newly discovered hitherto undescribed strain and the Pseudellipsoidion group). When looking for nuclear genes potentially compensating for plastid gene losses, we noticed a gene for a plastid-targeted acyl carrier protein that was apparently acquired by horizontal gene transfer from Phycorickettsia. The presence of this gene in all eustigmatophytes studied, including representatives of both principal clades (Eustigmatales and Goniochloridales), is a genetic footprint indicating that the eustigmatophyte-Phycorickettsia partnership started no later than in the last eustigmatophyte common ancestor.
Coimbra Collection of Algae Department of Life Sciences University of Coimbra Coimbra Portugal
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Division of Sciences and Mathematics University of the Ozarks Clarksville Arkansas
School of Mathematical and Natural Sciences University of Arkansas at Monticello Monticello Arkansas
Zobrazit více v PubMed
Alkatib S, et al. 2012. The contributions of wobbling and superwobbling to the reading of the genetic code. PLoS Genet. 8(11):e1003076.. PubMed PMC
Altschul SF, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–3402. PubMed PMC
Ban N, et al. 2014. A new system for naming ribosomal proteins. Curr Opin Struct Biol. 24:165–169. PubMed PMC
Bankevich A, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477. PubMed PMC
Bolger AM, Lohse M, Usadel B.. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. PubMed PMC
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T.. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. PubMed PMC
Corteggiani Carpinelli E, et al. 2014. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant 7(2):323–335. PubMed
Derelle R, López-García P, Timpano H, Moreira D.. 2016. A phylogenomic framework to study the diversity and evolution of Stramenopiles (=Heterokonts). Mol Biol Evol. 33(11):2890–2898. PubMed PMC
Dorrell RG, Bowler C.. 2017. Secondary plastids of stramenopiles. Adv Bot Res. 84:57–103.
Dorrell RG, et al. 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. Elife 6:e23717. PubMed PMC
Eliáš M, et al. 2017. Eustigmatophyceae In: Archibald JM, Simpson AG, Slamovits CH, editors. Handbook of the protists. New York: Springer International Publishing; p. 367–406.
Emanuelsson O, Nielsen H, Brunak S, von Heijne G.. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 300(4):1005–1016. PubMed
Emanuelsson O, Nielsen H, von Heijne G.. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8(5):978–984. PubMed PMC
Fawley KP, Eliáš M, Fawley MW.. 2014. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae including the new clade Goniochloridales. J Appl Phycol. 26(4):1773–1782.
Fawley MW, Fawley KP.. 2017. Rediscovery of Tetraëdriella subglobosa Pascher a member of the Eustigmatophyceae. Fottea 17(1):96–102.
Fawley MW, Fawley KP. 2004. A simple and rapid technique for the isolation of DNA from microalgae. J Phycol. 40(1):223–225
Fawley MW, Fawley KP., Hegewald E. 2013. Desmodesmus baconii (Chlorophyta), a new species with double rows of arcuate spines. Phycologia 52(6):565–572.
Fawley MW, Jameson I, Fawley KP.. 2015. The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae) with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54(5):545–552.
Fučíková K, Lewis PO, Lewis LA.. 2016. Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution. Mol Phylogenet Evol. 98:176–183. PubMed
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM.. 2015. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol Evol. 7(6):1728–1742. PubMed PMC
Gitzendanner MA, Soltis PS, Wong GK, Ruhfel BR, Soltis DE.. 2018. Plastid phylogenomic analysis of green plants: a billion years of evolutionary history. Am J Bot. 105(3):291–301. PubMed
Graham LE, Graham JE, Wilcox LW.. 2009. Algae. 2nd ed San Francisco (CA: ): Benjamin Cummings.
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T.. 2015. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81(3):519–528. PubMed PMC
Hallick RB, Bairoch A.. 1994. Proposals for the naming of chloroplast genes III. Nomenclature for open reading frames encoded in chloroplast genomes. Plant Mol Biol Rep. 12(2):S29–S30.
Hibberd DJ. 1981. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc. 82(2):93–119.
Jackson C, Knoll AH, Chan CX, Verbruggen H.. 2018. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep. 8(1):1523.. PubMed PMC
Jiroutová K, Kořený L, Bowler C, Oborník M.. 2010. A gene in the process of endosymbiotic transfer. PLoS One 5(10):e13234.. PubMed PMC
Katoh K, Standley DM.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780. PubMed PMC
Keeling PJ, et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12(6):e1001889.. PubMed PMC
Klicki K, et al. 2018. The widely conserved ebo cluster is involved in precursor transport to the periplasm during scytonemin synthesis in Nostoc punctiforme. MBio 9:e02266–e02218. PubMed PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL.. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 305(3):567–580. PubMed
Kryvenda A, Rybalka N, Wolf M, Friedl T.. 2018. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: eustigmatos and Vischeria. Eur J Phycol. 53(4):471–491.
Kück P, Meusemann K.. 2010. FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol. 56(3):1115–1118. PubMed
Langmead B, Salzberg SL.. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4):357–359. PubMed PMC
Lartillot N, Rodrigue N, Stubbs D, Richer J.. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 62(4):611–615. PubMed
Le Corguillé G, et al. 2009. Plastid genomes of two brown algae Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol. 9:253.. PubMed PMC
Leliaert F, et al. 2016. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci Rep. 6:25367.. PubMed PMC
Lu Y. 2018. Assembly and transfer of iron-sulfur clusters in the plastid. Front Plant Sci. 9:336.. PubMed PMC
Luo R, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18. PubMed PMC
Ma XN, Chen TP, Yang B, Liu J, Chen F.. 2016. Lipid production from Nannochloropsis. Mar Drugs 14(4):61. PubMed PMC
Magoč T, Salzberg SL.. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. PubMed PMC
Milne I, et al. 2013. Using tablet for visual exploration of second-generation sequencing data. Brief Bioinformatics 14(2):193–202. PubMed
Nakayama T, et al. 2015. Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov. J Plant Res. 128(2):249–257. PubMed
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ.. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274. PubMed PMC
Pan K, et al. 2011. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. J Phycol. 47(6):1425–1432. PubMed
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ.. 2006. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics 4(1):48–55. PubMed PMC
Pfitzinger H, Weil JH, Pillay DT, Guillemaut P.. 1990. Codon recognition mechanisms in plant chloroplasts. Plant Mol Biol. 14(5):805–814. PubMed
Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P.. 2012. Zoosporogenesis morphology ultrastructure pigment composition and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae Heterokontophyta). J Phycol. 48(1):231–242. PubMed
Radakovits R, et al. 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun. 3:686.. PubMed PMC
Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ.. 2014. Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol Evol. 6(3):644–654. PubMed PMC
Schlösser UG. 1994. SAG—Sammlung von Algenkulturen at the University of Göttingen Catalogue of strains. Bot Acta 107(3):113–186.
Ševčíková T, et al. 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep. 5:10134.. PubMed PMC
Ševčíková T, et al. 2016. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol Evol. 8(3):705–722. PubMed PMC
Sobotka R, et al. 2017. Extensive gain and loss of photosystem I subunits in chromerid algae photosynthetic relatives of apicomplexans. Sci Rep. 7(1):13214.. PubMed PMC
Song M, et al. 2018. A novel chloroplast gene reported for flagellate plants. Am J Bot. 105(1):117–121. PubMed
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. PubMed PMC
Starkenburg SR, et al. 2014. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics. 15:212.. PubMed PMC
Tajima N, et al. 2016. Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms). Curr Genet. 62(4):887–896. PubMed
Träger C, et al. 2012. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: the signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. Plant Cell 24(12):4819–4836. PubMed PMC
Vieler A, et al. 2012. Genome functional gene annotation and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 8:e1003064. PubMed PMC
Wang D, et al. 2014. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet. 10(1):e1004094.. PubMed PMC
Wang HC, Minh BQ, Susko E, Roger AJ.. 2018. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 67(2):216–235. PubMed
Wei L, et al. 2013. Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae. BMC Genomics. 14:534.. PubMed PMC
Wei X, et al. 2016. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534(7605):69–74. PubMed
Weisz DA, et al. 2017. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II. Proc Natl Acad Sci U S A. 114(9):2224–2229. PubMed PMC
Yang EC, et al. 2012. Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163(2):217–231. PubMed
Yu M, et al. 2018. Evolution of the plastid genomes in diatoms. Adv Bot Res. 85:129–155.
Yurchenko T, et al. 2018. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 12(9):2163–2175. PubMed PMC
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M.. 2016. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol. 6(11):160249.. PubMed PMC
Záhonová K, et al. 2018. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep. 8(1):17012.. PubMed PMC
Zimmermann L, et al. 2018. A completely reimplemented MPI Bioinformatics Toolkit with a new HHpred server at its core. J Mol Biol. 430(15):2237–2243. PubMed
Dorrell RG, et al. 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. Elife 6:e23717. PubMed PMC
Fawley MW, Fawley KP. 2004. A simple and rapid technique for the isolation of DNA from microalgae. J Phycol. 40(1):223–225.
Fawley MW, Fawley KP, Hegewald E. 2013. Desmodesmus baconii (Chlorophyta), a new species with double rows of arcuate spines. Phycologia. 52(6):565–572.
Monodopsis and Vischeria Genomes Shed New Light on the Biology of Eustigmatophyte Algae
Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria