Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33837778
PubMed Central
PMC8321541
DOI
10.1093/molbev/msab090
PII: 6219958
Knihovny.cz E-zdroje
- Klíčová slova
- Ffh, FtsY, LECA, evolution, mitochondrion, protein targeting, protists, signal recognition particle,
- MeSH
- bakteriální proteiny genetika MeSH
- biologická evoluce * MeSH
- genom mitochondriální * MeSH
- Naegleria genetika MeSH
- proteiny z Escherichia coli genetika MeSH
- receptory cytoplazmatické a nukleární genetika MeSH
- sekvenční homologie nukleových kyselin MeSH
- signál-rozpoznávající částice genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- Ffh protein, E coli MeSH Prohlížeč
- FtsY protein, Bacteria MeSH Prohlížeč
- proteiny z Escherichia coli MeSH
- receptory cytoplazmatické a nukleární MeSH
- signál-rozpoznávající částice MeSH
The main bacterial pathway for inserting proteins into the plasma membrane relies on the signal recognition particle (SRP), composed of the Ffh protein and an associated RNA component, and the SRP-docking protein FtsY. Eukaryotes use an equivalent system of archaeal origin to deliver proteins into the endoplasmic reticulum, whereas a bacteria-derived SRP and FtsY function in the plastid. Here we report on the presence of homologs of the bacterial Ffh and FtsY proteins in various unrelated plastid-lacking unicellular eukaryotes, namely Heterolobosea, Alveida, Goniomonas, and Hemimastigophora. The monophyly of novel eukaryotic Ffh and FtsY groups, predicted mitochondrial localization experimentally confirmed for Naegleria gruberi, and a strong alphaproteobacterial affinity of the Ffh group, collectively suggest that they constitute parts of an ancestral mitochondrial signal peptide-based protein-targeting system inherited from the last eukaryotic common ancestor, but lost from the majority of extant eukaryotes. The ability of putative signal peptides, predicted in a subset of mitochondrial-encoded N. gruberi proteins, to target a reporter fluorescent protein into the endoplasmic reticulum of Trypanosoma brucei, likely through their interaction with the cytosolic SRP, provided further support for this notion. We also illustrate that known mitochondrial ribosome-interacting proteins implicated in membrane protein targeting in opisthokonts (Mba1, Mdm38, and Mrx15) are broadly conserved in eukaryotes and nonredundant with the mitochondrial SRP system. Finally, we identified a novel mitochondrial protein (MAP67) present in diverse eukaryotes and related to the signal peptide-binding domain of Ffh, which may well be a hitherto unrecognized component of the mitochondrial membrane protein-targeting machinery.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Akopian D, Shen K, Zhang X, Shan S.. 2013. Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem. 82:693–721. PubMed PMC
Ali RH, Bogusz M, Whelan S, Tamura K.. 2019. Identifying clusters of high confidence homologies in multiple sequence alignments. Mol Biol Evol. 36(10):2340–2351. PubMed PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–3402. PubMed PMC
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, et al.2020. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 36(4):337–355. PubMed PMC
Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, et al.2009. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the α-proteobacterial mitochondrial ancestor. Mol Biol Evol. 26(7):1533–1548. PubMed
Austin S, Nowikovsky K.. 2019. LETM1: essential for mitochondrial biology and cation homeostasis? Trends Biochem Sci. 44(8):648–658. PubMed
Bangs JD, Uyetake L, Brickman MJ, Balber AE, Boothroyd JC.. 1993. Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. J Cell Sci. 105:1101–1113. PubMed
Beech PL, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR, McFadden GI.. 2000. Mitochondrial FtsZ in a chromophyte alga. Science 287(5456):1276–1279. PubMed
Behrens M, Michaelis G, Pratje E.. 1991. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase. Mol Gen Genet. 228(1–2):167–176. PubMed
Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PCJ, Pisani D.. 2018. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat Ecol Evol. 2(10):1556–1562. PubMed PMC
Björkholm P, Harish A, Hagström E, Ernst AM, Andersson SG.. 2015. Mitochondrial genomes are retained by selective constraints on protein targeting. Proc Natl Acad Sci U S A. 112(33):10154–10161. PubMed PMC
Björkholm P, Ernst AM, Hagström E, Andersson SG.. 2017. Why mitochondria need a genome revisited. FEBS Lett. 591(1):65–75. PubMed
Burger G, Gray MW, Forget L, Lang BF.. 2013. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol. 5(2):418–438. PubMed PMC
Burki F, Roger AJ, Brown MW, Simpson AGB.. 2020. The new tree of eukaryotes. Trends Ecol Evol. 35(1):43–55. PubMed
Cavalier-Smith T, Chao EE, Lewis R.. 2018. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. Protoplasma 255(5):1517–1574. PubMed PMC
Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, et al.2018. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol. 16(1):137. PubMed PMC
Christian BE, Spremulli LL.. 2012. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta. 1819(9–10):1035–1054. PubMed PMC
Claros MG, Vincens P.. 1996. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 241(3):779–786. PubMed
Criscuolo A, Gribaldo S.. 2010. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 10:210. PubMed PMC
Dawoody NL, Stumpe M, Rauch M, Hemphill A, Schneiter R, Bütikofer P, Serricchio M.. 2020. Mitochondrial sphingosine-1-phosphate lyase is essential for phosphatidylethanolamine synthesis and survival of Trypanosoma brucei. Sci Rep. 10(1):8268. PubMed PMC
Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M.. 2015. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A. 112(7):E693–E699. PubMed PMC
Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S.. 2011. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol. 162(1):53–70. PubMed
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol. 7(10):e1002195. PubMed PMC
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al.2019. The Pfam protein families database in 2019. Nucleic Acids Res. 47(D1):D427–D432. PubMed PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H.. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2(4):953–971. PubMed
Englmeier R, Pfeffer S, Förster F.. 2017. Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25(10):1574–1581. PubMed
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, et al.2010. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642. PubMed
Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, et al.2020. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J. 101(2):420–441. PubMed
Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K.. 2015. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 14(4):1113–1126. PubMed PMC
Fulton C. 1974. Axenic cultivation of Naegleria gruberi. Requirement for methionine. Exp Cell Res. 88(2):365–370. PubMed
Funes S, Westerburg H, Jaimes-Miranda F, Woellhaf MW, Aguilar-Lopez JL, Janßen L, Bonnefoy N, Kauff F, Herrmann JM.. 2013. Partial suppression of Oxa1 mutants by mitochondria-targeted signal recognition particle provides insights into the evolution of the cotranslational insertion systems. FEBS J. 280(3):904–915. PubMed
Gakh O, Cavadini P, Isaya G.. 2002. Mitochondrial processing peptidases. Biochim Biophys Acta: Mol Cell Res. 1592(1):63–77. PubMed
Glick BS, Von Heijne G.. 1996. Saccharomyces cerevisiae mitochondria lack a bacterial-type sec machinery. Protein Sci. 5(12):2651–2652. PubMed PMC
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF.. 2020. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 18(1):22. PubMed PMC
Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.. 2014. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505(7484):515–519. PubMed
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al.2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 8(8):1494–1512. PubMed PMC
Hashimi H, McDonald L, Stříbrná E, Lukeš J.. 2013. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis. J Biol Chem. 288(37):26914–26925. PubMed PMC
Hennon SW, Soman R, Zhu L, Dalbey RE.. 2015. YidC/Alb3/Oxa1 family of insertases. J Biol Chem. 290(24):14866–14874. PubMed PMC
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS.. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 35(2):518–522. PubMed PMC
Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Klimeš V, Petrů M, Vaitová Z., et al. Forthcoming 2021. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun. bioRixv. 10.1101/790865. PubMed DOI PMC
Jamshad M, Knowles TJ, White SA, Ward DG, Mohammed F, Rahman KF, Wynne M, Hughes GW, Kramer G, Bukau B, et al.2019. The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity. eLife 8:e48385. PubMed PMC
Janda CY, Li J, Oubridge C, Hernández H, Robinson CV, Nagai K.. 2010. Recognition of a signal peptide by the signal recognition particle. Nature 465(7297):507–510. PubMed PMC
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Rohwer FL, Mylnikov AP, Keeling PJ.. 2017. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr Biol. 27(23):3717–3724. PubMed
Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA.. 2003. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22(24):6438–6447. PubMed PMC
Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI.. 2018. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46(D1):D335–D342. PubMed PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS.. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587–589. PubMed PMC
Kamikawa R, Shiratori T, Ishida KI, Miyashita H, Roger AJ.. 2016. Group II intron-mediated trans-splicing in the gene-rich mitochondrial genome of an enigmatic eukaryote, Diphylleia rotans. Genome Biol Evol. 8(2):458–466. PubMed PMC
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, Barlow LD, Herman EK, Pipaliya SV, Pánek T, et al.2019. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 36(10):2292–2312. PubMed PMC
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, et al.2016. A eukaryote without a mitochondrial organelle. Curr Biol. 26(10):1274–1284. PubMed
Katoh K, Standley DM.. 2016. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32(13):1933–1942. PubMed PMC
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, Lukeš J.. 2020. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 48(5):2694–2708. PubMed PMC
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, et al.2018. The diverged Trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol. 28(21):3393–3407. PubMed
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE.. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 10(6):845–858. PubMed PMC
Kiefel BR, Gilson PR, Beech PL.. 2004. Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist 155(1):105–115. PubMed
Kolli R, Soll J, Carrie C.. 2018a. Plant mitochondrial inner membrane protein insertion. Int J Mol Sci. 19:1188–1196. PubMed PMC
Kolli R, Soll J, Carrie C.. 2018b. OXA2b is crucial for proper membrane insertion of COX2 during biogenesis of complex IV in plant mitochondria. Plant Physiol. 179(2):601–615. PubMed PMC
Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL.. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 305(3):567–580. PubMed
Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW.. 1997. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387(6632):493–497. PubMed
Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB.. 2018. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564(7736):410–414. PubMed
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, et al.2017. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 1(4):0092. PubMed PMC
Leger MM, Kolísko M, Stairs CW, Simpson AGB.. 2019. Mitochondrion-related organelles in feee-living protists. In: Tachezy J, editor. Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Cham: Springer Nature Switzerland AG. p. 287–308.
Leger MM, Petrů M, Žárský V, Eme L, Vlček Č, Harding T, Lang BF, Eliáš M, Doležal P, Roger AJ.. 2015. An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A. 112(33):10239–10246. PubMed PMC
Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM.. 2018. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 70(12):1267–1274. PubMed PMC
Mallmann R, Ondacova K, Moravcikova L, Jurkovicova-Tarabova B, Pavlovicova M, Moravcik R, Lichvarova L, Kominkova V, Klugbauer N, Lacinova L.. 2019. Four novel interaction partners demonstrate diverse modulatory effects on voltage-gated CaV2.2 Ca2+ channels. Pflugers Arch . 471(6):861–874. PubMed
Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG.. 2018. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557(7703):101–105. PubMed
Möller-Hergt BV, Carlström A, Stephan K, Imhof A, Ott M.. 2018. The ribosome receptors Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in mitochondria. Mol Biol Cell. 29(20):2386–2396. PubMed PMC
Nawrocki EP, Eddy SR.. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935. PubMed PMC
Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, Meisinger C, Warscheid B, Schneider A.. 2013. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol Cell Proteomics. 12(2):515–528. PubMed PMC
Nishimura Y, Shiratori T, Ishida KI, Hashimoto T, Ohkuma M, Inagaki Y.. 2019. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci Rep. 9(1):4850. PubMed PMC
Ott M, Herrmann JM.. 2010. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim Biophys Acta. 1803(6):767–775. PubMed
Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD.. 2008. Mitochondrial complexes in Trypanosoma brucei. Mol Cell Proteomics 7(3):534–545. PubMed
Petrů M, Wideman J, Moore K, Alcock F, Palmer T, Doležal P.. 2018. Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria. BMC Biol. 16(1):141. PubMed PMC
Pfeffer S, Woellhaf MW, Herrmann JM, Förster F.. 2015. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat Commun. 6:6019. PubMed
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D.. 2017. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol. 27(3):386–391. PubMed PMC
Poon SK, Peacock L, Gibson W, Gull K, Kelly S.. 2012. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2(2):110037. PubMed PMC
Regalia M, Rosenblad MA, Samuelsson T.. 2002. Prediction of signal recognition particle RNA genes. Nucleic Acids Res. 30(15):3368–3377. PubMed PMC
Richter DJ, Berney C, Strassert JFH, Burki F, de Vargas C.. 2020. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. bioRxiv. doi:10/1101/2020.06.30.180687
Roger AJ, Muñoz-Gómez SA, Kamikawa R.. 2017. The origin and diversification of mitochondria. Curr Biol. 27(21):R1177–R1192. PubMed
Sánchez-Caballero L, Elurbe DM, Baertling F, Guerrero-Castillo S, van den Brand M, van Strien J, van Dam TJP, Rodenburg R, Brandt U, Huynen MA, et al.2020. TMEM70 functions in the assembly of complexes I and V. Biochim Biophys Acta Bioenerg. 1861(8):148202. PubMed
Santos HJ, Makiuchi T, Nozaki T.. 2018. Reinventing an organelle: the reduced mitochondrion in parasitic protists. Trends Parasitol. 34(12):1038–1055. PubMed
Saraogi I, Shan SO.. 2014. Co-translational protein targeting to the bacterial membrane. Biochim Biophys Acta. 1843(8):1433–1441. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al.2012. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9(7):676–682. PubMed PMC
Schönenberger BR. 1979. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 36:289–292. PubMed
Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF, Aw VYT, Faou P, Webb AI, Tonkin CJ, van Dooren GG.. 2018. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. Elife 7:e38131. PubMed PMC
Ševčíková T, Yurchenko T, Fawley KP, Amaral R, Strnad H, Santos LMA, Fawley MW, Eliáš M.. 2019. Plastid genomes and proteins illuminate the evolution of eustigmatophyte algae and their bacterial endosymbionts. Genome Biol Evol. 11(2):362–379. PubMed PMC
Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M, et al.2013. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods. 10(5):407–409. PubMed PMC
Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 51(3):492–508. PubMed
Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JPJ, Carruthers VB, Niles JC, et al.2016. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 166(6):1423–1435. PubMed PMC
Small I, Peeters N, Legeai F, Lurin C.. 2004. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590. PubMed
Smith DR, Keeling PJ.. 2015. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 112(33):10177–10184. PubMed PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. PubMed PMC
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG.. 2018. Co-translational protein targeting in bacteria. FEMS Microbiol Lett. 365:fny095. PubMed
Stiller SB, Höpker J, Oeljeklaus S, Schütze C, Schrempp SG, Vent-Schmidt J, Horvath SE, Frazier AE, Gebert N, Van Der Laan M, et al.2016. Mitochondrial OXA translocase plays a major role in biogenesis of inner-membrane proteins. Cell Metab. 23(5):901–908. PubMed PMC
Tobiasson V, Amunts A.. 2020. Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation. eLife 9:e59264. PubMed PMC
Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, Buchanan SK, Gabriel K, Lithgow T.. 2011. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol. 28(5):1581–1591. PubMed PMC
Träger C, Rosenblad MA, Ziehe D, Garcia-Petit C, Schrader L, Kock K, Vera Richter C, Klinkert B, Narberhaus F, Herrmann C, et al.2012. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: the signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. Plant Cell 24(12):4819–4836. PubMed PMC
Wideman JG, Monier A, Rodríguez-Martínez R, Leonard G, Cook E, Poirier C, Maguire F, Milner DS, Irwin N, Moore K, et al.2020. Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nat Microbiol. 5(1):154–165. PubMed
Yabuki A, Gyaltshen Y, Heiss AA, Fujikura K, Kim E.. 2018. Ophirina amphinema n. gen., n. sp., a new deeply branching discobid with phylogenetic affinity to jakobids. Sci Rep. 8(1):16219. PubMed PMC
Yang M, Derbyshire MK, Yamashita RA, Marchler-Bauer A.. 2020. NCBI’s conserved domain database and tools for protein domain analysis. Curr Prot Bioinformatics. 69:e90. PubMed PMC
Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M.. 2018. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep. 8(1):17012. PubMed PMC
Ziehe D, Dünschede B, Schünemann D.. 2017. From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol Chem. 398(5–6):653–661. PubMed
Ziehe D, Dünschede B, Schünemann D.. 2018. Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants. Photosynth Res. 138(3):303–313. PubMed PMC
Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V.. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 430(15):2237–2243. PubMed
Zwieb C, Bhuiyan S.. 2010. Archaea signal recognition particle shows the way. Archaea 2010:485051. PubMed PMC
Mitochondrial genomes revisited: why do different lineages retain different genes?
Evidence for an Independent Hydrogenosome-to-Mitosome Transition in the CL3 Lineage of Fornicates
Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments