Evidence for an Independent Hydrogenosome-to-Mitosome Transition in the CL3 Lineage of Fornicates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35663895
PubMed Central
PMC9161772
DOI
10.3389/fmicb.2022.866459
Knihovny.cz E-zdroje
- Klíčová slova
- Caviomonadidae, Fornicata, caviomonads, codon reassignment, hydrogenosome, mitochondrial evolution, mitosome,
- Publikační typ
- časopisecké články MeSH
Fornicata, a lineage of a broader and ancient anaerobic eukaryotic clade Metamonada, contains diverse taxa that are ideally suited for evolutionary studies addressing various fundamental biological questions, such as the evolutionary trajectory of mitochondrion-related organelles (MROs), the transition between free-living and endobiotic lifestyles, and the derivation of alternative genetic codes. To this end, we conducted detailed microscopic and transcriptome analyses in a poorly documented strain of an anaerobic free-living marine flagellate, PCS, in the so-called CL3 fornicate lineage. Fortuitously, we discovered that the original culture contained two morphologically similar and closely related CL3 representatives, which doubles the taxon representation within this lineage. We obtained a monoeukaryotic culture of one of them and formally describe it as a new member of the family Caviomonadidae, Euthynema mutabile gen. et sp. nov. In contrast to previously studied caviomonads, the endobiotic Caviomonas mobilis and Iotanema spirale, E. mutabile possesses an ultrastructurally discernible MRO. We sequenced and assembled the transcriptome of E. mutabile, and by sequence subtraction, obtained transcriptome data from the other CL3 clade representative present in the original PCS culture, denoted PCS-ghost. Transcriptome analyses showed that the reassignment of only one of the UAR stop codons to encode Gln previously reported from I. spirale does not extend to its free-living relatives and is likely due to a unique amino acid substitution in I. spirale's eRF1 protein domain responsible for termination codon recognition. The backbone fornicate phylogeny was robustly resolved in a phylogenomic analysis, with the CL3 clade amongst the earliest branching lineages. Metabolic and MRO functional reconstructions of CL3 clade members revealed that all three, including I. spirale, encode homologs of key components of the mitochondrial protein import apparatus and the ISC pathway, indicating the presence of a MRO in all of them. In silico evidence indicates that the organelles of E. mutabile and PCS-ghost host ATP and H2 production, unlike the cryptic MRO of I. spirale. These data suggest that the CL3 clade has experienced a hydrogenosome-to-mitosome transition independent from that previously documented for the lineage leading to Giardia.
Department of Biological Sciences University of Arkansas Fayetteville AR United States
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czechia
Department of Zoology Faculty of Science Charles University Prague Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Adl S. M., Bass D., Lane C. E., Lukeš J., Schoch C. L., Smirnov A., et al. (2019). Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J. Eukaryot. Microbiol. 66 4–119. 10.1111/jeu.12691 PubMed DOI PMC
Almagro Armenteros J. J., Salvatore M., Emanuelsson O., Winther O., von Heijne G., Elofsson A., et al. (2019). Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2:e201900429. 10.26508/lsa.201900429 PubMed DOI PMC
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Barberà M. J., Ruiz-Trillo I., Tufts J. Y., Bery A., Silberman J. D., Roger A. J. (2010). Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot. Cell 9 1913–1924. 10.1128/EC.00122-10 PubMed DOI PMC
Berto P., D’Adamo S., Bergantino E., Vallese F., Giacometti G. M., Costantini P. (2011). The cyanobacterium Synechocystis sp. PCC 6803 is able to express an active [FeFe]-hydrogenase without additional maturation proteins. Biochem. Biophys. Res. Commun. 405 678–683. 10.1016/j.bbrc.2011.01.095 PubMed DOI
Braymer J. J., Freibert S. A., Rakwalska-Bange M., Lill R. (2021). Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim. Biophys. Acta Mol. Cell Res. 1868:118863. 10.1016/j.bbamcr.2020.118863 PubMed DOI
Brugerolle G., Regnault J. P. (2001). Ultrastructure of the enteromonad flagellate Caviomonas mobilis. Parasitol. Res. 87 662–665. 10.1007/s004360100423 PubMed DOI
Burki F., Corradi N., Sierra R., Pawlowski J., Meyer G. R., Abbott C. L., et al. (2013). Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in Rhizaria. Curr. Biol. 23 1541–1547. 10.1016/j.cub.2013.06.033 PubMed DOI
Burki F., Roger A. J., Brown M. W., Simpson A. G. B. (2020). The New Tree of Eukaryotes. Trends Ecol. Evol. 35 43–55. 10.1016/j.tree.2019.08.008 PubMed DOI
Capella-Gutiérrez S., Silla-Martínez J. M., Gabaldón T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 1972–1973. 10.1093/bioinformatics/btp348 PubMed DOI PMC
Chiba Y., Terada T., Kameya M., Shimizu K., Arai H., Ishii M., et al. (2012). Mechanism for folate-independent aldolase reaction catalyzed by serine hydroxymethyltransferase. FEBS J. 279 504–514. 10.1111/j.1742-4658.2011.08443.x PubMed DOI
Diamond L. S. (1982). A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. J. Parasitol. 68 958–959. 10.2307/3281016 PubMed DOI
Dolezal P., Makki A., Dyall S. D. (2019). “Protein import into hydrogenosomes and mitosomes,” in Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes, Microbiology Monographs 9, ed. Tachezy J. (Cham: Springer Nature; ), 31–84. 10.1007/978-3-030-17941-0_3 DOI
Ducker G. S., Rabinowitz J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metab. 25 27–42. 10.1016/j.cmet.2016.08.009 PubMed DOI PMC
Dyall S. D., Yan W., Delgadillo-Correa M. G., Lunceford A., Loo J. A., Clarke C. F., et al. (2004). Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431 1103–1107. 10.1038/nature02990 PubMed DOI
Eddy S. R. (2011). Accelerated Profile HMM Searches. PLoS Comput. Biol. 7:e1002195. 10.1371/journal.pcbi.1002195 PubMed DOI PMC
Fukasawa Y., Tsuji J., Fu S. C., Tomii K., Horton P., Imai K. (2015). MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics 14 1113–1126. 10.1074/mcp.M114.043083 PubMed DOI PMC
Füssy Z., Vinopalová M., Treitli S. C., Pánek T., Smejkalová P., Čepička I., et al. (2021). Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads. Parasitol. Int. 82:102308. 10.1016/j.parint.2021.102308 PubMed DOI PMC
Gawryluk R. M. R., Stairs C. W. (2021). Diversity of electron transport chains in anaerobic protists. Biochim. Biophys. Acta Bioenerg. 1862:148334. 10.1016/j.bbabio.2020.148334 PubMed DOI
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Gray M. W., Burger G., Derelle R., Klimeš V., Leger M. M., Sarrasin M., et al. (2020). The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 18:22. 10.1186/s12915-020-0741-6 PubMed DOI PMC
Haas B., Papanicolaou A. (2017). TransDecoder. Available online at: https://transdecoder.github.io. (accessed on Aug 10, 2021).
Hall T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41 95–98.
Hamann E., Tegetmeyer H. E., Riedel D., Littmann S., Ahmerkamp S., Chen J., et al. (2017). Syntrophic linkage between predatory Carpediemonas and specific prokaryotic populations. ISME J. 11 1205–1217. 10.1038/ismej.2016.197 PubMed DOI PMC
Horváthová L., Žárskı V., Pánek T., Derelle R., Pyrih J., Motyčková A., et al. (2021). Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat. Commun. 12:2947. 10.1038/s41467-021-23046-7 PubMed DOI PMC
Janouškovec J., Tikhonenkov D. V., Burki F., Howe A. T., Rohwer F. L., Mylnikov A. P., et al. (2017). A New Lineage of Eukaryotes Illuminates Early Mitochondrial Genome Reduction. Curr. Biol. 27 3717.e–3724.e. 10.1016/j.cub.2017.10.051 PubMed DOI
Jerlström-Hultqvist J., Einarsson E., Xu F., Hjort K., Ek B., Steinhauf D., et al. (2013). Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat. Commun. 4:2493. 10.1038/ncomms3493 PubMed DOI PMC
John U., Lu Y., Wohlrab S., Groth M., Janouškovec J., Kohli G. S., et al. (2019). An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 5:eaav1110. 10.1126/sciadv.aav1110 PubMed DOI PMC
Karnkowska A., Treitli S. C., Brzoò O., Novák L., Vacek V., Soukal P., et al. (2019). The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion. Mol. Biol. Evol. 36 2292–2312. 10.1093/molbev/msz147 PubMed DOI PMC
Karnkowska A., Vacek V., Zubáčová Z., Treitli S. C., Petrželková R., Eme L., et al. (2016). A Eukaryote without a Mitochondrial Organelle. Curr. Biol. 26 1274–1284. 10.1016/j.cub.2016.03.053 PubMed DOI
Katoh K., Rozewicki J., Yamada K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC
Kolisko M., Silberman J. D., Cepicka I., Yubuki N., Takishita K., Yabuki A., et al. (2010). A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ. Microbiol. 12 2700–2710. 10.1111/j.1462-2920.2010.02239.x PubMed DOI
Kuchenreuther J. M., Britt R. D., Swartz J. R. (2012). New insights into [FeFe] hydrogenase activation and maturase function. PLoS One 7:e45850. 10.1371/journal.pone.0045850 PubMed DOI PMC
Kulda J., Nohınková E., Čepička I. (2017). “Retortamonadida (with Notes on Carpediemonas-Like Organisms and Caviomonadidae),” in Handbook of the Protists, eds Archibald J., et al. (Cham: Springer; ), 1247–1278. 10.1007/978-3-319-32669-6_3-1 DOI
Kume K., Amagasa T., Hashimoto T., Kitagawa H. (2018). NommPred: prediction of Mitochondrial and Mitochondrion-Related Organelle Proteins of Nonmodel Organisms. Evol. Bioinform. Online 14:1176934318819835. 10.1177/1176934318819835 PubMed DOI PMC
Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Leger M. M., Kolisko M., Kamikawa R., Stairs C. W., Kume K., Čepička I., et al. (2017). Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1:0092. 10.1038/s41559-017-0092 PubMed DOI PMC
Leger M. M., Kolísko M., Stairs C. W., Simpson A. G. B. (2019). “Mitochondrion-Related Organelles in Free-Living Protists,” in Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes, Microbiology Monographs 9, ed. Tachezy J. (Cham: Springer Nature; ), 287–308. 10.1007/978-3-030-17941-0_12 DOI
Leger M. M., Petrù M., Žárskı V., Eme L., Vlček Č, Harding T., et al. (2015). An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc. Natl. Acad. Sci. U.S.A. 112 10239–10246. 10.1073/pnas.1421392112 PubMed DOI PMC
Letunic I., Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC
Lewis W. H., Lind A. E., Sendra K. M., Onsbring H., Williams T. A., Esteban G. F., et al. (2020). Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Mol. Biol. Evol. 37 524–539. 10.1093/molbev/msz239 PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Lill R., Freibert S. A. (2020). Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis. Annu. Rev. Biochem. 89 471–499. 10.1146/annurev-biochem-013118-111540 PubMed DOI
Maciszewski K., Karnkowska A. (2019). Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr. Opin. Genet. Dev. 5 33–39. 10.1016/j.gde.2019.07.013 PubMed DOI
Maguire F., Richards T. A. (2014). Organelle evolution: a mosaic of ‘mitochondrial’ functions. Curr. Biol. 24 R518–R520. 10.1016/j.cub.2014.03.075 PubMed DOI
Mai Z., Ghosh S., Frisardi M., Rosenthal B., Rogers R., Samuelson J. (1999). Hsp60 is targeted to a cryptic mitochondrion-derived organelle (”crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol. Cell Biol. 19 2198–2205. 10.1128/MCB.19.3.2198 PubMed DOI PMC
Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G. A., Sonnhammer E. L. L., et al. (2021). Pfam: the protein families database in 2021. Nucleic Acids Res. 49 D412–D419. 10.1093/nar/gkaa913 PubMed DOI PMC
Müller M. (2007). “The Road to Hydrogenosomes,” in Origin of Mitochondria and Hydrogenosomes, eds Martin W. F., Müller M. (Berlin: Springer; ), 1–11. 10.1007/978-3-540-38502-8_1 DOI
Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Nie D. (1950). Morphology and taxonomy of the intestinal protozoa of the guinea-pig Cavia porcella. J. Morphol. 86 391–493. 10.1002/jmor.1050860302 PubMed DOI
Pánek T., Žihala D., Sokol M., Derelle R., Klimeš V., Hradilová M., et al. (2017). Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol. 15:8. 10.1186/s12915-017-0353-y PubMed DOI PMC
Parfrey L. W., Lahr D. J., Knoll A. H., Katz L. A. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. U.S.A. 108 13624–13629. 10.1073/pnas.1110633108 PubMed DOI PMC
Park J. S., Kolisko M., Heiss A. A., Simpson A. G. (2009). Light microscopic observations, ultrastructure, and molecular phylogeny of Hicanonectes teleskopos n. g., n. sp., a deep-branching relative of diplomonads. J. Eukaryot. Microbiol. 56 373–384. 10.1111/j.1550-7408.2009.00412.x PubMed DOI
Pyrih J., Pánek T., Durante I. M., Rašková V., Cimrhanzlová K., Kriegová E., et al. (2021). Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria. Mol. Biol. Evol. 38 3170–3187. 10.1093/molbev/msab090 PubMed DOI PMC
Pyrihová E., Motycková A., Voleman L., Wandyszewska N., Fišer R., Seydlová G., et al. (2018). A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes. Genom. Biol. Evol. 10 2813–2822. 10.1093/gbe/evy215 PubMed DOI PMC
Rada P., Makki A. R., Zimorski V., Garg S., Hampl V., Hrdı I., et al. (2015). N-Terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot. Cell 14 1264–1275. 10.1128/EC.00104-15 PubMed DOI PMC
Reynolds E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17 208–212. 10.1083/jcb.17.1.208 PubMed DOI PMC
Richter D. J., Berney C., Strassert J. F. H., Burki F. (2020). EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. bioRxiv 2020.06.30.180687, [preprint]. 10.1101/2020.06.30.180687 DOI
Roger A. J., Muñoz-Gómez S. A., Kamikawa R. (2017). The Origin and Diversification of Mitochondria. Curr. Biol. 27 R1177–R1192. 10.1016/j.cub.2017.09.015 PubMed DOI
Rotterová J., Salomaki E., Pánek T., Bourland W., Žihala D., Táborskı P., et al. (2020). Genomics of New Ciliate Lineages Provides Insight into the Evolution of Obligate Anaerobiosis. Curr. Biol. 30 2037.e–2050.e. 10.1016/j.cub.2020.03.064 PubMed DOI
Santos H. J., Makiuchi T., Nozaki T. (2018). Reinventing an Organelle: the Reduced Mitochondrion in Parasitic Protists. Trends Parasitol. 34 1038–1055. 10.1016/j.pt.2018.08.008 PubMed DOI
Simão F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V., Zdobnov E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI
Smutná T., Dohnálková A., Sutak R., Narayanasamy R. K., Tachezy J., Hrdı I. (2022). A cytosolic ferredoxin-independent hydrogenase possibly mediates hydrogen uptake in Trichomonas vaginalis. Curr. Biol. 32 124.E–135.E. 10.1016/j.cub.2021.10.050 PubMed DOI
Stairs C. W., Leger M. M., Roger A. J. (2015). Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20140326. 10.1098/rstb.2014.0326 PubMed DOI PMC
Stairs C. W., Roger A. J., Hampl V. (2011). Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a Firmicute. Mol. Biol. Evol. 28 2087–2099. 10.1093/molbev/msr032 PubMed DOI
Stairs C. W., Táborskı P., Salomaki E. D., Kolisko M., Pánek T., Eme L., et al. (2021). Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 19 5605–5612. 10.1016/j.cub.2021.10.010 PubMed DOI
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Stoeck T., Kasper J., Bunge J., Leslin C., Ilyin V., Epstein S. (2007). Protistan diversity in the Arctic: a case of paleoclimate shaping modern biodiversity? PLoS One 2:e728. 10.1371/journal.pone.0000728 PubMed DOI PMC
Tachezy J., Šmíd O. (2019). “Mitosomes in Parasitic Protists,” in Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes, Microbiology Monographs 9, ed. Tachezy J. (Cham: Springer Nature; ), 205–242. 10.1007/978-3-030-17941-0_9 DOI
Takishita K., Kolisko M., Komatsuzaki H., Yabuki A., Inagaki Y., Cepicka I., et al. (2012). Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of ‘amitochondriate’ diplomonads and retortamonads. Protist 163 344–355. 10.1016/j.protis.2011.12.007 PubMed DOI
Tanifuji G., Takabayashi S., Kume K., Takagi M., Nakayama T., Kamikawa R., et al. (2018). The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One 13:e0194487. 10.1371/journal.pone.0194487 PubMed DOI PMC
Tice A. K., Žihala D., Pánek T., Jones R. E., Salomaki E. D., Nenarokov S., et al. (2021). PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19:e3001365. 10.1371/journal.pbio.3001365 PubMed DOI PMC
Tovar J., León-Avila G., Sánchez L. B., Sutak R., Tachezy J., van der Giezen M., et al. (2003). Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426 172–176. 10.1038/nature01945 PubMed DOI
Wang H. C., Minh B. Q., Susko E., Roger A. J. (2018). Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. Syst. Biol. 67 216–235. 10.1093/sysbio/syx068 PubMed DOI
Williams B. A., Hirt R. P., Lucocq J. M., Embley T. M. (2002). A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418 865–869. 10.1038/nature00949 PubMed DOI
Xu F., Jerlström-Hultqvist J., Kolisko M., Simpson A. G., Roger A. J., Svärd S. G., et al. (2016). On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol. 14:62. 10.1186/s12915-016-0284-z PubMed DOI PMC
Yahalomi D., Atkinson S. D., Neuhof M., Chang E. S., Philippe H., Cartwright P., et al. (2020). A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc. Natl. Acad. Sci. U.S.A. 117 5358–5363. 10.1073/pnas.1909907117 PubMed DOI PMC
Yazaki E., Kume K., Shiratori T., Eglit Y., Tanifuji G., Harada R., et al. (2020). Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proc. Biol. Sci. 287:20201538. 10.1098/rspb.2020.1538 PubMed DOI PMC
Yubuki N., Huang S. S., Leander B. S. (2016). Comparative Ultrastructure of Fornicate Excavates, Including a Novel Free-living Relative of Diplomonads: Aduncisulcus paluster gen. et sp. nov. Protist 167 584–596. 10.1016/j.protis.2016.10.001 PubMed DOI
Yubuki N., Zadrobílková E., Čepička I. (2017). Ultrastructure and Molecular Phylogeny of Iotanema spirale gen. nov. et sp. nov., a New Lineage of Endobiotic Fornicata with Strikingly Simplified Ultrastructure. J. Eukaryot. Microbiol. 64 422–433. 10.1111/jeu.12376 PubMed DOI
Zubáčová Z., Novák L., Bublíková J., Vacek V., Fousek J., Rídl J., et al. (2013). The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One 8:e55417. 10.1371/journal.pone.0055417 PubMed DOI PMC
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis