Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
Language English Country United States Media electronic-ecollection
Document type Journal Article
Grant support
R21 ES021028
NIEHS NIH HHS - United States
PubMed
38060519
PubMed Central
PMC10703272
DOI
10.1371/journal.pgen.1011050
PII: PGENETICS-D-23-00743
Knihovny.cz E-resources
- MeSH
- Eukaryota * genetics MeSH
- Phylogeny MeSH
- Genomics MeSH
- Mitochondria genetics MeSH
- Oxymonadida * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.
Charles University Faculty of Science Department of Parasitology BIOCEV Vestec Czech Republic
Division of Infectious Diseases Department of Medicine University of Alberta Edmonton Canada
Ecology Systematics and Evolution Unit Université Paris Saclay CNRS Orsay France
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
University of Ostrava Faculty of Science Department of Biology and Ecology Ostrava Czech Republic
See more in PubMed
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27: R1177–R1192. doi: 10.1016/j.cub.2017.09.015 PubMed DOI
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, et al.. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76: 444–495. doi: 10.1128/MMBR.05024-11 PubMed DOI PMC
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc B. 2015;370: 20140326. doi: 10.1098/rstb.2014.0326 PubMed DOI PMC
Klinger CM, Karnkowska A, Herman EK, Hampl V, Dacks JB. Phylogeny and evolution. In: Walochnik J, Duchêne M, editors. Molecular parasitology: protozoan parasites and their molecules. Vienna: Springer; 2016. pp. 383–408. doi: 10.1007/978-3-7091-1416-2_12 DOI
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al.. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1: 0092. doi: 10.1038/s41559-017-0092 PubMed DOI PMC
Onuț-Brännström I, Stairs CW, Campos KIA, Thorén MH, Ettema TJG, Keeling PJ, et al.. A mitosome with distinct metabolism in the uncultured protist parasite Paramikrocytos canceri (Rhizaria, Ascetosporea). Genome Biol Evol. 2023;15: evad022. doi: 10.1093/gbe/evad022 PubMed DOI PMC
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, et al.. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26: 1274–1284. doi: 10.1016/j.cub.2016.03.053 PubMed DOI
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, et al.. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 2019;36: 2292–2312. doi: 10.1093/molbev/msz147 PubMed DOI PMC
Treitli SC, Peña-Diaz P, Hałakuc P, Karnkowska A, Hampl V. High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microb Genom. 2021;7: 000745. doi: 10.1099/mgen.0.000745 PubMed DOI PMC
Hampl V. Preaxostyla. In: Archibald JM, Simpson AGB, Slamovits CH, editors. Handbook of the Protists. Cham: Springer International Publishing; 2017. pp. 1139–1174. doi: 10.1007/978-3-319-28149-0_8 DOI
Yazaki E, Kume K, Shiratori T, Eglit Y, Tanifuji G, Harada R, et al.. Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proc Biol Sci. 2020;287: 20201538. doi: 10.1098/rspb.2020.1538 PubMed DOI PMC
Williams SK, Hultqvist JJ, Eglit Y, Salas-Leiva DE, Curtis B, Orr R, et al.. Extreme mitochondrial reduction in a novel group of free-living metamonads. bioRxiv; 2023. p. 2023.05.03.539051. doi: 10.1101/2023.05.03.539051 PubMed DOI PMC
Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, et al.. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021;31: 5605–5612.e5. doi: 10.1016/j.cub.2021.10.010 PubMed DOI
Zhang Q, Táborský P, Silberman JD, Pánek T, Čepička I, Simpson AGB. Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist. 2015;166: 468–491. doi: 10.1016/j.protis.2015.07.003 PubMed DOI
Hampl V, Silberman JD, Stechmann A, Diaz-Triviño S, Johnson PJ, Roger AJ. Genetic Evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One. 2008;3: e1383. doi: 10.1371/journal.pone.0001383 PubMed DOI PMC
Zubáčová Z, Novák L, Bublíková J, Vacek V, Fousek J, Rídl J, et al.. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One. 2013;8: e55417. doi: 10.1371/journal.pone.0055417 PubMed DOI PMC
Zítek J, Füssy Z, Treitli SC, Peña-Diaz P, Vaitová Z, Zavadska D, et al.. Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol. 2022;32: 5057–5068.e5. doi: 10.1016/j.cub.2022.10.028 PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31: 3210–3212. doi: 10.1093/bioinformatics/btv351 PubMed DOI
Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21: 245. doi: 10.1186/s13059-020-02134-9 PubMed DOI PMC
Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol. 2012;4: a011536. doi: 10.1101/cshperspect.a011536 PubMed DOI PMC
Treitli SC, Kotyk M, Yubuki N, Jirounková E, Vlasáková J, Smejkalová P, et al.. Molecular and morphological diversity of the oxymonad genera Monocercomonoides and Blattamonas gen. nov. Protist. 2018;169: 744–783. doi: 10.1016/j.protis.2018.06.005 PubMed DOI
Smith AC, Blackshaw JA, Robinson AJ. MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res. 2012;40: D1160–1167. doi: 10.1093/nar/gkr1101 PubMed DOI PMC
Smith AC, Robinson AJ. MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases. Nucleic Acids Res. 2019;47: D1225–D1228. doi: 10.1093/nar/gky1072 PubMed DOI PMC
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20: 267–284. doi: 10.1038/s41580-018-0092-0 PubMed DOI PMC
Eberhardt EL, Ludlam AV, Tan Z, Cianfrocco MA. Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci. 2020;29: 1269–1284. doi: 10.1002/pro.3839 PubMed DOI PMC
Vlahou G, Eliáš M, von Kleist-Retzow J-C, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol. 2011;90: 342–355. doi: 10.1016/j.ejcb.2010.10.012 PubMed DOI
Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, et al.. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol. 2017;15: e2003769. doi: 10.1371/journal.pbio.2003769 PubMed DOI PMC
Zítek J, King MS, Peña-Diaz P, Pyrihová E, King AC, Kunji ERS, et al.. The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools. Arch Biochem Biophys. 2023;742: 109638. doi: 10.1016/j.abb.2023.109638 PubMed DOI PMC
Tsaousis AD, Kunji ERS, Goldberg AV, Lucocq JM, Hirt RP, Embley TM. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature. 2008;453: 553–556. doi: 10.1038/nature06903 PubMed DOI
Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313: 314–318. doi: 10.1126/science.1127895 PubMed DOI
Lucattini R, Likic VA, Lithgow T. Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol. 2004;21: 652–658. doi: 10.1093/molbev/msh058 PubMed DOI
Fang Y-K, Vaitová Z, Hampl V. A mitochondrion-free eukaryote contains proteins capable of import into an exogenous mitochondrion-related organelle. Open Biol. 2023;13: 220238. doi: 10.1098/rsob.220238 PubMed DOI PMC
Borgese N, Brambillasca S, Colombo S. How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol. 2007;19: 368–375. doi: 10.1016/j.ceb.2007.04.019 PubMed DOI
Denic V. A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem Sci. 2012;37: 411–417. doi: 10.1016/j.tibs.2012.07.004 PubMed DOI PMC
Rada P, Makki A, Žárský V, Tachezy J. Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol. 2019;111: 588–603. doi: 10.1111/mmi.14175 PubMed DOI
van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013;5: a011072. doi: 10.1101/cshperspect.a011072 PubMed DOI PMC
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, et al.. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9: 434–450. doi: 10.1002/pmic.200800477 PubMed DOI PMC
Dean S, Sunter JD, Wheeler RJ. TrypTag.org: A trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017;33: 80–82. doi: 10.1016/j.pt.2016.10.009 PubMed DOI PMC
Peikert CD, Mani J, Morgenstern M, Käser S, Knapp B, Wenger C, et al.. Charting organellar importomes by quantitative mass spectrometry. Nat Commun. 2017;8: 15272. doi: 10.1038/ncomms15272 PubMed DOI PMC
Pyrih J, Hammond M, Alves A, Dean S, Sunter JD, Wheeler RJ, et al.. Comprehensive sub-mitochondrial protein map of the parasitic protist Trypanosoma brucei defines critical features of organellar biology. Cell Rep. 2023;42: 113083. doi: 10.1016/j.celrep.2023.113083 PubMed DOI
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, et al.. PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021;19: e3001365. doi: 10.1371/journal.pbio.3001365 PubMed DOI PMC
Duschak VG, Cazzulo JJ. Subcellular localization of glutamate dehydrogenases and alanine aminotransferase in epimastigotes of Trypanosoma cruzi. FEMS Microbiol Lett. 1991;67: 131–135. doi: 10.1016/0378-1097(91)90343-9 PubMed DOI
Saas J, Ziegelbauer K, von Haeseler A, Fast B, Boshart M. A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. J Biol Chem. 2000;275: 2745–2755. doi: 10.1074/jbc.275.4.2745 PubMed DOI
Yagi T, Shounaka M, Yamamoto S. Distribution of aspartate aminotrasnsferase activity in yeasts, and purification and characterization of mitochondrial and cytosolic isoenzymes from Rhodotorula marina. J Biochem. 1990;107: 151–159. doi: 10.1093/oxfordjournals.jbchem.a123000 PubMed DOI
Peña-Diaz J, Montalvetti A, Flores C-L, Constán A, Hurtado-Guerrero R, De Souza W, et al.. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae. Mol Biol Cell. 2004;15: 1356–1363. doi: 10.1091/mbc.e03-10-0720 PubMed DOI PMC
Lindmark DG, Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem. 1973;248: 7724–7728. doi: 10.1016/S0021-9258(19)43249-3 PubMed DOI
Williams K, Lowe PN, Leadlay PF. Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochem J. 1987;246: 529–536. doi: 10.1042/bj2460529 PubMed DOI PMC
Payne MJ, Chapman A, Cammack R. Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett. 1993;317: 101–104. doi: 10.1016/0014-5793(93)81500-y PubMed DOI
Tachezy J, Doležal P. Iron–sulfur proteins and iron–sulfur Cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin WF, Müller M, editors. Origin of Mitochondria and Hydrogenosomes. Berlin, Heidelberg: Springer; 2007. pp. 105–133. doi: 10.1007/978-3-540-38502-8_6 DOI
Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, et al.. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014;24: 1176–1186. doi: 10.1016/j.cub.2014.04.033 PubMed DOI
Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol. 2016;33: 2318–2336. doi: 10.1093/molbev/msw103 PubMed DOI PMC
Treitli SC, Hanousková P, Beneš V, Brune A, Čepička I, Hampl V. Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti. ISME J. 2023;17: 1884–1894. doi: 10.1038/s41396-023-01499-6 PubMed DOI PMC
Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al.. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10: 761–777. doi: 10.1038/ismej.2015.153 PubMed DOI PMC
Schut GJ, Adams MWW. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol. 2009;191: 4451–4457. doi: 10.1128/JB.01582-08 PubMed DOI PMC
Vargová R, Hanousková P, Salamonová J, Žihala D, Silberman JD, Eliáš M, et al.. Evidence for an independent hydrogenosome-to-mitosome transition in the CL3 lineage of fornicates. Front Microbiol. 2022;13: 866459. doi: 10.3389/fmicb.2022.866459 PubMed DOI PMC
Jerlström-Hultqdvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, et al.. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4: 2493. doi: 10.1038/ncomms3493 PubMed DOI PMC
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al.. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315: 207–212. doi: 10.1126/science.1132894 PubMed DOI PMC
Xu F, Jerlström-Hultqvist J, Einarsson E, Astvaldsson A, Svärd SG, Andersson JO. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014;10: e1004053. doi: 10.1371/journal.pgen.1004053 PubMed DOI PMC
Novák L, Zubáčová Z, Karnkowska A, Kolisko M, Hroudová M, Stairs CW, et al.. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol Biol. 2016;16: 197. doi: 10.1186/s12862-016-0771-4 PubMed DOI PMC
Anderson IJ, Loftus BJ. Entamoeba histolytica: observations on metabolism based on the genome sequence. Exp Parasitol. 2005;110: 173–177. doi: 10.1016/j.exppara.2005.03.010 PubMed DOI
Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25: 27–42. doi: 10.1016/j.cmet.2016.08.009 PubMed DOI PMC
Stipanuk MH. Metabolism of sulfur-containing amino acids. Annu Rev Nutr. 1986;6: 179–209. doi: 10.1146/annurev.nu.06.070186.001143 PubMed DOI
Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J, Pačes J, et al.. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol. 2015;32: 1039–1055. doi: 10.1093/molbev/msu408 PubMed DOI PMC
Spalding MD, Prigge ST. Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev. 2010;74: 200–228. doi: 10.1128/MMBR.00008-10 PubMed DOI PMC
Babady NE, Pang Y-P, Elpeleg O, Isaya G. Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci U S A. 2007;104: 6158–6163. doi: 10.1073/pnas.0610618104 PubMed DOI PMC
Petrat F, Paluch S, Dogruöz E, Dörfler P, Kirsch M, Korth H-G, et al.. Reduction of Fe(III) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro: implications for an enzymatic reduction of Fe(III) ions of the labile iron pool. J Biol Chem. 2003;278: 46403–46413. doi: 10.1074/jbc.M305291200 PubMed DOI
Igamberdiev AU, Bykova NV, Ens W, Hill RD. Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide. FEBS Lett. 2004;568: 146–150. doi: 10.1016/j.febslet.2004.05.024 PubMed DOI
Xia L, Björnstedt M, Nordman T, Eriksson LC, Olsson JM. Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway. Eur J Biochem. 2001;268: 1486–1490. doi: 10.1046/j.1432-1327.2001.02013.x PubMed DOI
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta Mol Cell Res. 2021;1868: 118863. doi: 10.1016/j.bbamcr.2020.118863 PubMed DOI
Vacek V, Novák LVF, Treitli SC, Táborský P, Čepička I, Kolísko M, et al.. Fe–S cluster assembly in oxymonads and related protists. Mol Biol Evol. 2018;35: 2712–2718. doi: 10.1093/molbev/msy168 PubMed DOI PMC
Peña-Diaz P, Braymer JJ, Vacek V, Zelená M, Lometto S, Hrdý I, et al.. Characterisation of the SUF FeS cluster machinery in the amitochondriate eukaryote Monocercomonoides exilis. bioRxiv; 2023. p. 2023.03.30.534840. doi: 10.1101/2023.03.30.534840 PubMed DOI
Andreini C, Banci L, Rosato A. Exploiting bacterial operons to illuminate human iron-sulfur proteins. J Proteome Res. 2016;15: 1308–1322. doi: 10.1021/acs.jproteome.6b00045 PubMed DOI
Le T, Žárský V, Nývltová E, Rada P, Harant K, Vancová M, et al.. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc Natl Acad Sci U S A. 2020;117: 2065–2075. doi: 10.1073/pnas.1909755117 PubMed DOI PMC
Verner Z, Žárský V, Le T, Narayanasamy RK, Rada P, Rozbeský D, et al.. Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol. PLoS Pathog. 2021;17: e1010041. doi: 10.1371/journal.ppat.1010041 PubMed DOI PMC
Záhonová K, Treitli SC, Le T, Škodová-Sveráková I, Hanousková P, Čepička I, et al.. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biol. 2022;20: 56. doi: 10.1186/s12915-022-01247-w PubMed DOI PMC
Záhonová K, Low RS, Warren CJ, Cantoni D, Herman EK, Yiangou L, et al.. Evolutionary analysis of cellular reduction and anaerobicity in the hyper-prevalent gut microbe Blastocystis. Curr Biol. 2023;33: 2449–2464.e8. doi: 10.1016/j.cub.2023.05.025 PubMed DOI
Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol. 2015;427: 1176–1190. doi: 10.1016/j.jmb.2015.02.005 PubMed DOI PMC
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc. 2022;97: 141–162. doi: 10.1111/brv.12794 PubMed DOI
Nakjang S, Williams TA, Heinz E, Watson AK, Foster PG, Sendra KM, et al.. Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biol Evol. 2013;5: 2285–2303. doi: 10.1093/gbe/evt184 PubMed DOI PMC
Harding T, Roger AJ, Simpson AGB. Adaptations to high salt in a halophilic protist: differential expression and gene acquisitions through duplications and gene transfers. Front Microbiol. 2017;8: 944. doi: 10.3389/fmicb.2017.00944 PubMed DOI PMC
Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, et al.. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One. 2013;8: e71328. doi: 10.1371/journal.pone.0071328 PubMed DOI PMC
Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, et al.. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genom. 2013;14: 617. doi: 10.1186/1471-2164-14-617 PubMed DOI PMC
O’Kelly CJ, Farmer MA, Nerad TA. Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: Similarities of Trimastix species with retortamonad and jakobid flagellates. Protist. 1999;150: 149–162. doi: 10.1016/S1434-4610(99)70018-0 PubMed DOI
Mowbrey K, Dacks JB. Evolution and diversity of the Golgi body. FEBS Lett. 2009;583: 3738–3745. doi: 10.1016/j.febslet.2009.10.025 PubMed DOI
Lee I, Tiwari N, Dunlop MH, Graham M, Liu X, Rothman JE. Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc Natl Acad Sci USA. 2014;111: 1849–1854. doi: 10.1073/pnas.1323895111 PubMed DOI PMC
Barlow LD, Nývltová E, Aguilar M, Tachezy J, Dacks JB. A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol. 2018;16: 27. doi: 10.1186/s12915-018-0492-9 PubMed DOI PMC
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Letters. 2019;593: 2289–2305. doi: 10.1002/1873-3468.13567 PubMed DOI
Boncompain G, Weigel AV. Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo. Curr Opin Cell Biol. 2018;50: 94–101. doi: 10.1016/j.ceb.2018.03.002 PubMed DOI
Ahat E, Li J, Wang Y. New insights into the Golgi stacking proteins. Front Cell Dev Biol. 2019;7: 131. doi: 10.3389/fcell.2019.00131 PubMed DOI PMC
Li J, Ahat E, Wang Y. Golgi structure and function in health, stress, and diseases. In: Kloc M, editor. The Golgi Apparatus and Centriole. Springer; Cham; 2019. pp. 441–485. doi: 10.1007/978-3-030-23173-6_19 PubMed DOI PMC
Park K, Ju S, Kim N, Park S-Y. The Golgi complex: a hub of the secretory pathway. BMB Rep. 2021;54: 246–252. doi: 10.5483/BMBRep.2021.54.5.270 PubMed DOI PMC
Aridor M. A tango for coats and membranes: New insights into ER-to-Golgi traffic. Cell Reports. 2022;38: 110258. doi: 10.1016/j.celrep.2021.110258 PubMed DOI
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, et al.. A eukaryote-wide perspective on the diversity and evolution of the ARF GTPase protein family. Genome Biol Evol. 2021;13: evab157. doi: 10.1093/gbe/evab157 PubMed DOI PMC
Poinar GO. Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasit Vectors. 2009;2: 12. doi: 10.1186/1756-3305-2-12 PubMed DOI PMC
Diamond LS. A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. J Parasitol. 1982;68: 958–959. doi: 10.2307/3281016 PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27: 722–736. doi: 10.1101/gr.215087.116 PubMed DOI PMC
Haddad I, Hiller K, Frimmersdorf E, Benkert B, Schomburg D, Jahn D. An emergent self-organizing map based analysis pipeline for comparative metabolome studies. In Silico Biol. 2009;9: 163–178. doi: 10.3233/ISB-2009-0396 PubMed DOI
Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci USA. 2019;116: 19675–19684. doi: 10.1073/pnas.1910793116 PubMed DOI PMC
Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12: 733–735. doi: 10.1038/nmeth.3444 PubMed DOI
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al.. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS One. 2014;9: e112963. doi: 10.1371/journal.pone.0112963 PubMed DOI PMC
Song L, Shankar DS, Florea L. Rascaf: Improving genome assembly with RNA sequencing data. Plant Genome. 2016;9: plantgenome2016.03.0027. doi: 10.3835/plantgenome2016.03.0027 PubMed DOI
Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;Chapter 4: 4.10.1–4.10.14. doi: 10.1002/0471250953.bi0410s25 PubMed DOI
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19 Suppl 2: ii215-225. doi: 10.1093/bioinformatics/btg1080 PubMed DOI
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, et al.. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31: 5654–5666. doi: 10.1093/nar/gkg770 PubMed DOI PMC
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al.. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9: R7. doi: 10.1186/gb-2008-9-1-r7 PubMed DOI PMC
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35: W182–185. doi: 10.1093/nar/gkm321 PubMed DOI PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7: e1002195. doi: 10.1371/journal.pcbi.1002195 PubMed DOI PMC
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al.. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community Journal. 2022;2: e56. doi: 10.24072/pcjournal.173 DOI
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16: 169. doi: 10.1186/s12859-015-0611-3 PubMed DOI PMC
Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, et al.. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008;18: 580–585. doi: 10.1016/j.cub.2008.03.037 PubMed DOI PMC
Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106: 21731–21736. doi: 10.1073/pnas.0907106106 PubMed DOI PMC
Barberà MJ, Ruiz-Trillo I, Tufts JYA, Bery A, Silberman JD, Roger AJ. Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell. 2010;9: 1913–1924. doi: 10.1128/EC.00122-10 PubMed DOI PMC
Alcock F, Webb CT, Dolezal P, Hewitt V, Shingu-Vasquez M, Likić VA, et al.. A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol Biol Evol. 2012;29: 113–122. doi: 10.1093/molbev/msr165 PubMed DOI
Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A, Hashimoto T, et al.. Metabolic capacity of mitochondrion-related organelles in the free-living anaerobic stramenopile Cantina marsupialis. Protist. 2015;166: 534–550. doi: 10.1016/j.protis.2015.08.002 PubMed DOI
Pyrihová E, Motyčková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, et al.. A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic Eukaryotes. Genome Biol Evol. 2018;10: 2813–2822. doi: 10.1093/gbe/evy215 PubMed DOI PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2: 953–971. doi: 10.1038/nprot.2007.131 PubMed DOI
Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14: 1113–1126. doi: 10.1074/mcp.M114.043083 PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305: 567–580. doi: 10.1006/jmbi.2000.4315 PubMed DOI
Imai K, Fujita N, Gromiha MM, Horton P. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins. BMC Genom. 2011;12: 79. doi: 10.1186/1471-2164-12-79 PubMed DOI PMC
McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16: 404–405. doi: 10.1093/bioinformatics/16.4.404 PubMed DOI
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al.. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38: D457–462. doi: 10.1093/nar/gkp851 PubMed DOI PMC
Consortium UniProt. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47: D506–D515. doi: 10.1093/nar/gky1049 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32: 268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC
Valasatava Y, Rosato A, Banci L, Andreini C. MetalPredator: a web server to predict iron–sulfur cluster binding proteomes. Bioinformatics. 2016;32: 2850–2852. doi: 10.1093/bioinformatics/btw238 PubMed DOI
Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al.. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49: D344–D354. doi: 10.1093/nar/gkaa977 PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428: 726–731. doi: 10.1016/j.jmb.2015.11.006 PubMed DOI
Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003;13: 2178–2189. doi: 10.1101/gr.1224503 PubMed DOI PMC
Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al.. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430: 2237–2243. doi: 10.1016/j.jmb.2017.12.007 PubMed DOI
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE). 2010. pp. 1–8. doi: 10.1109/GCE.2010.5676129 DOI
Hirst J, Schlacht A, Norcott JP, Traynor D, Bloomfield G, Antrobus R, et al.. Characterization of TSET, an ancient and widespread membrane trafficking complex. Elife. 2014;3: e02866. doi: 10.7554/eLife.02866 PubMed DOI PMC
Klinger CM, Klute MJ, Dacks JB. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS One. 2013;8: e76278. doi: 10.1371/journal.pone.0076278 PubMed DOI PMC
Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015;43: e78. doi: 10.1093/nar/gkv227 PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. doi: 10.1093/bioinformatics/btl446 PubMed DOI
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21: 2104–2105. doi: 10.1093/bioinformatics/bti263 PubMed DOI
Felsenstein J. PHYLIP-Phylogeny inference package (Version 3.2). Cladistics. 1989;5: 164–166. doi: 10.1111/j.1096-0031.1989.tb00562.x DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. doi: 10.1093/bioinformatics/17.8.754 PubMed DOI
Reconstructing the last common ancestor of all eukaryotes