• This record comes from PubMed

Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria

. 2023 Dec ; 19 (12) : e1011050. [epub] 20231207

Language English Country United States Media electronic-ecollection

Document type Journal Article

Grant support
R21 ES021028 NIEHS NIH HHS - United States

Links

PubMed 38060519
PubMed Central PMC10703272
DOI 10.1371/journal.pgen.1011050
PII: PGENETICS-D-23-00743
Knihovny.cz E-resources

The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.

See more in PubMed

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27: R1177–R1192. doi: 10.1016/j.cub.2017.09.015 PubMed DOI

Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, et al.. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76: 444–495. doi: 10.1128/MMBR.05024-11 PubMed DOI PMC

Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc B. 2015;370: 20140326. doi: 10.1098/rstb.2014.0326 PubMed DOI PMC

Klinger CM, Karnkowska A, Herman EK, Hampl V, Dacks JB. Phylogeny and evolution. In: Walochnik J, Duchêne M, editors. Molecular parasitology: protozoan parasites and their molecules. Vienna: Springer; 2016. pp. 383–408. doi: 10.1007/978-3-7091-1416-2_12 DOI

Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al.. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1: 0092. doi: 10.1038/s41559-017-0092 PubMed DOI PMC

Onuț-Brännström I, Stairs CW, Campos KIA, Thorén MH, Ettema TJG, Keeling PJ, et al.. A mitosome with distinct metabolism in the uncultured protist parasite Paramikrocytos canceri (Rhizaria, Ascetosporea). Genome Biol Evol. 2023;15: evad022. doi: 10.1093/gbe/evad022 PubMed DOI PMC

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, et al.. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26: 1274–1284. doi: 10.1016/j.cub.2016.03.053 PubMed DOI

Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, et al.. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 2019;36: 2292–2312. doi: 10.1093/molbev/msz147 PubMed DOI PMC

Treitli SC, Peña-Diaz P, Hałakuc P, Karnkowska A, Hampl V. High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microb Genom. 2021;7: 000745. doi: 10.1099/mgen.0.000745 PubMed DOI PMC

Hampl V. Preaxostyla. In: Archibald JM, Simpson AGB, Slamovits CH, editors. Handbook of the Protists. Cham: Springer International Publishing; 2017. pp. 1139–1174. doi: 10.1007/978-3-319-28149-0_8 DOI

Yazaki E, Kume K, Shiratori T, Eglit Y, Tanifuji G, Harada R, et al.. Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proc Biol Sci. 2020;287: 20201538. doi: 10.1098/rspb.2020.1538 PubMed DOI PMC

Williams SK, Hultqvist JJ, Eglit Y, Salas-Leiva DE, Curtis B, Orr R, et al.. Extreme mitochondrial reduction in a novel group of free-living metamonads. bioRxiv; 2023. p. 2023.05.03.539051. doi: 10.1101/2023.05.03.539051 PubMed DOI PMC

Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, et al.. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021;31: 5605–5612.e5. doi: 10.1016/j.cub.2021.10.010 PubMed DOI

Zhang Q, Táborský P, Silberman JD, Pánek T, Čepička I, Simpson AGB. Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist. 2015;166: 468–491. doi: 10.1016/j.protis.2015.07.003 PubMed DOI

Hampl V, Silberman JD, Stechmann A, Diaz-Triviño S, Johnson PJ, Roger AJ. Genetic Evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One. 2008;3: e1383. doi: 10.1371/journal.pone.0001383 PubMed DOI PMC

Zubáčová Z, Novák L, Bublíková J, Vacek V, Fousek J, Rídl J, et al.. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One. 2013;8: e55417. doi: 10.1371/journal.pone.0055417 PubMed DOI PMC

Zítek J, Füssy Z, Treitli SC, Peña-Diaz P, Vaitová Z, Zavadska D, et al.. Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol. 2022;32: 5057–5068.e5. doi: 10.1016/j.cub.2022.10.028 PubMed DOI PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31: 3210–3212. doi: 10.1093/bioinformatics/btv351 PubMed DOI

Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21: 245. doi: 10.1186/s13059-020-02134-9 PubMed DOI PMC

Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol. 2012;4: a011536. doi: 10.1101/cshperspect.a011536 PubMed DOI PMC

Treitli SC, Kotyk M, Yubuki N, Jirounková E, Vlasáková J, Smejkalová P, et al.. Molecular and morphological diversity of the oxymonad genera Monocercomonoides and Blattamonas gen. nov. Protist. 2018;169: 744–783. doi: 10.1016/j.protis.2018.06.005 PubMed DOI

Smith AC, Blackshaw JA, Robinson AJ. MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res. 2012;40: D1160–1167. doi: 10.1093/nar/gkr1101 PubMed DOI PMC

Smith AC, Robinson AJ. MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases. Nucleic Acids Res. 2019;47: D1225–D1228. doi: 10.1093/nar/gky1072 PubMed DOI PMC

Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20: 267–284. doi: 10.1038/s41580-018-0092-0 PubMed DOI PMC

Eberhardt EL, Ludlam AV, Tan Z, Cianfrocco MA. Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci. 2020;29: 1269–1284. doi: 10.1002/pro.3839 PubMed DOI PMC

Vlahou G, Eliáš M, von Kleist-Retzow J-C, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol. 2011;90: 342–355. doi: 10.1016/j.ejcb.2010.10.012 PubMed DOI

Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, et al.. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol. 2017;15: e2003769. doi: 10.1371/journal.pbio.2003769 PubMed DOI PMC

Zítek J, King MS, Peña-Diaz P, Pyrihová E, King AC, Kunji ERS, et al.. The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools. Arch Biochem Biophys. 2023;742: 109638. doi: 10.1016/j.abb.2023.109638 PubMed DOI PMC

Tsaousis AD, Kunji ERS, Goldberg AV, Lucocq JM, Hirt RP, Embley TM. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature. 2008;453: 553–556. doi: 10.1038/nature06903 PubMed DOI

Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313: 314–318. doi: 10.1126/science.1127895 PubMed DOI

Lucattini R, Likic VA, Lithgow T. Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol. 2004;21: 652–658. doi: 10.1093/molbev/msh058 PubMed DOI

Fang Y-K, Vaitová Z, Hampl V. A mitochondrion-free eukaryote contains proteins capable of import into an exogenous mitochondrion-related organelle. Open Biol. 2023;13: 220238. doi: 10.1098/rsob.220238 PubMed DOI PMC

Borgese N, Brambillasca S, Colombo S. How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol. 2007;19: 368–375. doi: 10.1016/j.ceb.2007.04.019 PubMed DOI

Denic V. A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem Sci. 2012;37: 411–417. doi: 10.1016/j.tibs.2012.07.004 PubMed DOI PMC

Rada P, Makki A, Žárský V, Tachezy J. Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol. 2019;111: 588–603. doi: 10.1111/mmi.14175 PubMed DOI

van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013;5: a011072. doi: 10.1101/cshperspect.a011072 PubMed DOI PMC

Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, et al.. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9: 434–450. doi: 10.1002/pmic.200800477 PubMed DOI PMC

Dean S, Sunter JD, Wheeler RJ. TrypTag.org: A trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017;33: 80–82. doi: 10.1016/j.pt.2016.10.009 PubMed DOI PMC

Peikert CD, Mani J, Morgenstern M, Käser S, Knapp B, Wenger C, et al.. Charting organellar importomes by quantitative mass spectrometry. Nat Commun. 2017;8: 15272. doi: 10.1038/ncomms15272 PubMed DOI PMC

Pyrih J, Hammond M, Alves A, Dean S, Sunter JD, Wheeler RJ, et al.. Comprehensive sub-mitochondrial protein map of the parasitic protist Trypanosoma brucei defines critical features of organellar biology. Cell Rep. 2023;42: 113083. doi: 10.1016/j.celrep.2023.113083 PubMed DOI

Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, et al.. PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021;19: e3001365. doi: 10.1371/journal.pbio.3001365 PubMed DOI PMC

Duschak VG, Cazzulo JJ. Subcellular localization of glutamate dehydrogenases and alanine aminotransferase in epimastigotes of Trypanosoma cruzi. FEMS Microbiol Lett. 1991;67: 131–135. doi: 10.1016/0378-1097(91)90343-9 PubMed DOI

Saas J, Ziegelbauer K, von Haeseler A, Fast B, Boshart M. A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. J Biol Chem. 2000;275: 2745–2755. doi: 10.1074/jbc.275.4.2745 PubMed DOI

Yagi T, Shounaka M, Yamamoto S. Distribution of aspartate aminotrasnsferase activity in yeasts, and purification and characterization of mitochondrial and cytosolic isoenzymes from Rhodotorula marina. J Biochem. 1990;107: 151–159. doi: 10.1093/oxfordjournals.jbchem.a123000 PubMed DOI

Peña-Diaz J, Montalvetti A, Flores C-L, Constán A, Hurtado-Guerrero R, De Souza W, et al.. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae. Mol Biol Cell. 2004;15: 1356–1363. doi: 10.1091/mbc.e03-10-0720 PubMed DOI PMC

Lindmark DG, Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem. 1973;248: 7724–7728. doi: 10.1016/S0021-9258(19)43249-3 PubMed DOI

Williams K, Lowe PN, Leadlay PF. Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochem J. 1987;246: 529–536. doi: 10.1042/bj2460529 PubMed DOI PMC

Payne MJ, Chapman A, Cammack R. Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett. 1993;317: 101–104. doi: 10.1016/0014-5793(93)81500-y PubMed DOI

Tachezy J, Doležal P. Iron–sulfur proteins and iron–sulfur Cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin WF, Müller M, editors. Origin of Mitochondria and Hydrogenosomes. Berlin, Heidelberg: Springer; 2007. pp. 105–133. doi: 10.1007/978-3-540-38502-8_6 DOI

Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, et al.. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014;24: 1176–1186. doi: 10.1016/j.cub.2014.04.033 PubMed DOI

Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol. 2016;33: 2318–2336. doi: 10.1093/molbev/msw103 PubMed DOI PMC

Treitli SC, Hanousková P, Beneš V, Brune A, Čepička I, Hampl V. Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti. ISME J. 2023;17: 1884–1894. doi: 10.1038/s41396-023-01499-6 PubMed DOI PMC

Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al.. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10: 761–777. doi: 10.1038/ismej.2015.153 PubMed DOI PMC

Schut GJ, Adams MWW. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol. 2009;191: 4451–4457. doi: 10.1128/JB.01582-08 PubMed DOI PMC

Vargová R, Hanousková P, Salamonová J, Žihala D, Silberman JD, Eliáš M, et al.. Evidence for an independent hydrogenosome-to-mitosome transition in the CL3 lineage of fornicates. Front Microbiol. 2022;13: 866459. doi: 10.3389/fmicb.2022.866459 PubMed DOI PMC

Jerlström-Hultqdvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, et al.. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4: 2493. doi: 10.1038/ncomms3493 PubMed DOI PMC

Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al.. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315: 207–212. doi: 10.1126/science.1132894 PubMed DOI PMC

Xu F, Jerlström-Hultqvist J, Einarsson E, Astvaldsson A, Svärd SG, Andersson JO. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014;10: e1004053. doi: 10.1371/journal.pgen.1004053 PubMed DOI PMC

Novák L, Zubáčová Z, Karnkowska A, Kolisko M, Hroudová M, Stairs CW, et al.. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol Biol. 2016;16: 197. doi: 10.1186/s12862-016-0771-4 PubMed DOI PMC

Anderson IJ, Loftus BJ. Entamoeba histolytica: observations on metabolism based on the genome sequence. Exp Parasitol. 2005;110: 173–177. doi: 10.1016/j.exppara.2005.03.010 PubMed DOI

Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25: 27–42. doi: 10.1016/j.cmet.2016.08.009 PubMed DOI PMC

Stipanuk MH. Metabolism of sulfur-containing amino acids. Annu Rev Nutr. 1986;6: 179–209. doi: 10.1146/annurev.nu.06.070186.001143 PubMed DOI

Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J, Pačes J, et al.. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol. 2015;32: 1039–1055. doi: 10.1093/molbev/msu408 PubMed DOI PMC

Spalding MD, Prigge ST. Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev. 2010;74: 200–228. doi: 10.1128/MMBR.00008-10 PubMed DOI PMC

Babady NE, Pang Y-P, Elpeleg O, Isaya G. Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci U S A. 2007;104: 6158–6163. doi: 10.1073/pnas.0610618104 PubMed DOI PMC

Petrat F, Paluch S, Dogruöz E, Dörfler P, Kirsch M, Korth H-G, et al.. Reduction of Fe(III) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro: implications for an enzymatic reduction of Fe(III) ions of the labile iron pool. J Biol Chem. 2003;278: 46403–46413. doi: 10.1074/jbc.M305291200 PubMed DOI

Igamberdiev AU, Bykova NV, Ens W, Hill RD. Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide. FEBS Lett. 2004;568: 146–150. doi: 10.1016/j.febslet.2004.05.024 PubMed DOI

Xia L, Björnstedt M, Nordman T, Eriksson LC, Olsson JM. Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway. Eur J Biochem. 2001;268: 1486–1490. doi: 10.1046/j.1432-1327.2001.02013.x PubMed DOI

Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta Mol Cell Res. 2021;1868: 118863. doi: 10.1016/j.bbamcr.2020.118863 PubMed DOI

Vacek V, Novák LVF, Treitli SC, Táborský P, Čepička I, Kolísko M, et al.. Fe–S cluster assembly in oxymonads and related protists. Mol Biol Evol. 2018;35: 2712–2718. doi: 10.1093/molbev/msy168 PubMed DOI PMC

Peña-Diaz P, Braymer JJ, Vacek V, Zelená M, Lometto S, Hrdý I, et al.. Characterisation of the SUF FeS cluster machinery in the amitochondriate eukaryote Monocercomonoides exilis. bioRxiv; 2023. p. 2023.03.30.534840. doi: 10.1101/2023.03.30.534840 PubMed DOI

Andreini C, Banci L, Rosato A. Exploiting bacterial operons to illuminate human iron-sulfur proteins. J Proteome Res. 2016;15: 1308–1322. doi: 10.1021/acs.jproteome.6b00045 PubMed DOI

Le T, Žárský V, Nývltová E, Rada P, Harant K, Vancová M, et al.. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc Natl Acad Sci U S A. 2020;117: 2065–2075. doi: 10.1073/pnas.1909755117 PubMed DOI PMC

Verner Z, Žárský V, Le T, Narayanasamy RK, Rada P, Rozbeský D, et al.. Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol. PLoS Pathog. 2021;17: e1010041. doi: 10.1371/journal.ppat.1010041 PubMed DOI PMC

Záhonová K, Treitli SC, Le T, Škodová-Sveráková I, Hanousková P, Čepička I, et al.. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biol. 2022;20: 56. doi: 10.1186/s12915-022-01247-w PubMed DOI PMC

Záhonová K, Low RS, Warren CJ, Cantoni D, Herman EK, Yiangou L, et al.. Evolutionary analysis of cellular reduction and anaerobicity in the hyper-prevalent gut microbe Blastocystis. Curr Biol. 2023;33: 2449–2464.e8. doi: 10.1016/j.cub.2023.05.025 PubMed DOI

Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol. 2015;427: 1176–1190. doi: 10.1016/j.jmb.2015.02.005 PubMed DOI PMC

Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc. 2022;97: 141–162. doi: 10.1111/brv.12794 PubMed DOI

Nakjang S, Williams TA, Heinz E, Watson AK, Foster PG, Sendra KM, et al.. Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biol Evol. 2013;5: 2285–2303. doi: 10.1093/gbe/evt184 PubMed DOI PMC

Harding T, Roger AJ, Simpson AGB. Adaptations to high salt in a halophilic protist: differential expression and gene acquisitions through duplications and gene transfers. Front Microbiol. 2017;8: 944. doi: 10.3389/fmicb.2017.00944 PubMed DOI PMC

Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, et al.. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One. 2013;8: e71328. doi: 10.1371/journal.pone.0071328 PubMed DOI PMC

Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, et al.. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genom. 2013;14: 617. doi: 10.1186/1471-2164-14-617 PubMed DOI PMC

O’Kelly CJ, Farmer MA, Nerad TA. Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: Similarities of Trimastix species with retortamonad and jakobid flagellates. Protist. 1999;150: 149–162. doi: 10.1016/S1434-4610(99)70018-0 PubMed DOI

Mowbrey K, Dacks JB. Evolution and diversity of the Golgi body. FEBS Lett. 2009;583: 3738–3745. doi: 10.1016/j.febslet.2009.10.025 PubMed DOI

Lee I, Tiwari N, Dunlop MH, Graham M, Liu X, Rothman JE. Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc Natl Acad Sci USA. 2014;111: 1849–1854. doi: 10.1073/pnas.1323895111 PubMed DOI PMC

Barlow LD, Nývltová E, Aguilar M, Tachezy J, Dacks JB. A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol. 2018;16: 27. doi: 10.1186/s12915-018-0492-9 PubMed DOI PMC

Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Letters. 2019;593: 2289–2305. doi: 10.1002/1873-3468.13567 PubMed DOI

Boncompain G, Weigel AV. Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo. Curr Opin Cell Biol. 2018;50: 94–101. doi: 10.1016/j.ceb.2018.03.002 PubMed DOI

Ahat E, Li J, Wang Y. New insights into the Golgi stacking proteins. Front Cell Dev Biol. 2019;7: 131. doi: 10.3389/fcell.2019.00131 PubMed DOI PMC

Li J, Ahat E, Wang Y. Golgi structure and function in health, stress, and diseases. In: Kloc M, editor. The Golgi Apparatus and Centriole. Springer; Cham; 2019. pp. 441–485. doi: 10.1007/978-3-030-23173-6_19 PubMed DOI PMC

Park K, Ju S, Kim N, Park S-Y. The Golgi complex: a hub of the secretory pathway. BMB Rep. 2021;54: 246–252. doi: 10.5483/BMBRep.2021.54.5.270 PubMed DOI PMC

Aridor M. A tango for coats and membranes: New insights into ER-to-Golgi traffic. Cell Reports. 2022;38: 110258. doi: 10.1016/j.celrep.2021.110258 PubMed DOI

Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, et al.. A eukaryote-wide perspective on the diversity and evolution of the ARF GTPase protein family. Genome Biol Evol. 2021;13: evab157. doi: 10.1093/gbe/evab157 PubMed DOI PMC

Poinar GO. Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasit Vectors. 2009;2: 12. doi: 10.1186/1756-3305-2-12 PubMed DOI PMC

Diamond LS. A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. J Parasitol. 1982;68: 958–959. doi: 10.2307/3281016 PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27: 722–736. doi: 10.1101/gr.215087.116 PubMed DOI PMC

Haddad I, Hiller K, Frimmersdorf E, Benkert B, Schomburg D, Jahn D. An emergent self-organizing map based analysis pipeline for comparative metabolome studies. In Silico Biol. 2009;9: 163–178. doi: 10.3233/ISB-2009-0396 PubMed DOI

Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci USA. 2019;116: 19675–19684. doi: 10.1073/pnas.1910793116 PubMed DOI PMC

Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12: 733–735. doi: 10.1038/nmeth.3444 PubMed DOI

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al.. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS One. 2014;9: e112963. doi: 10.1371/journal.pone.0112963 PubMed DOI PMC

Song L, Shankar DS, Florea L. Rascaf: Improving genome assembly with RNA sequencing data. Plant Genome. 2016;9: plantgenome2016.03.0027. doi: 10.3835/plantgenome2016.03.0027 PubMed DOI

Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;Chapter 4: 4.10.1–4.10.14. doi: 10.1002/0471250953.bi0410s25 PubMed DOI

Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19 Suppl 2: ii215-225. doi: 10.1093/bioinformatics/btg1080 PubMed DOI

Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, et al.. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31: 5654–5666. doi: 10.1093/nar/gkg770 PubMed DOI PMC

Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al.. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9: R7. doi: 10.1186/gb-2008-9-1-r7 PubMed DOI PMC

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35: W182–185. doi: 10.1093/nar/gkm321 PubMed DOI PMC

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7: e1002195. doi: 10.1371/journal.pcbi.1002195 PubMed DOI PMC

Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al.. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community Journal. 2022;2: e56. doi: 10.24072/pcjournal.173 DOI

Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16: 169. doi: 10.1186/s12859-015-0611-3 PubMed DOI PMC

Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, et al.. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008;18: 580–585. doi: 10.1016/j.cub.2008.03.037 PubMed DOI PMC

Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106: 21731–21736. doi: 10.1073/pnas.0907106106 PubMed DOI PMC

Barberà MJ, Ruiz-Trillo I, Tufts JYA, Bery A, Silberman JD, Roger AJ. Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell. 2010;9: 1913–1924. doi: 10.1128/EC.00122-10 PubMed DOI PMC

Alcock F, Webb CT, Dolezal P, Hewitt V, Shingu-Vasquez M, Likić VA, et al.. A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol Biol Evol. 2012;29: 113–122. doi: 10.1093/molbev/msr165 PubMed DOI

Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A, Hashimoto T, et al.. Metabolic capacity of mitochondrion-related organelles in the free-living anaerobic stramenopile Cantina marsupialis. Protist. 2015;166: 534–550. doi: 10.1016/j.protis.2015.08.002 PubMed DOI

Pyrihová E, Motyčková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, et al.. A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic Eukaryotes. Genome Biol Evol. 2018;10: 2813–2822. doi: 10.1093/gbe/evy215 PubMed DOI PMC

Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2: 953–971. doi: 10.1038/nprot.2007.131 PubMed DOI

Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14: 1113–1126. doi: 10.1074/mcp.M114.043083 PubMed DOI PMC

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305: 567–580. doi: 10.1006/jmbi.2000.4315 PubMed DOI

Imai K, Fujita N, Gromiha MM, Horton P. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins. BMC Genom. 2011;12: 79. doi: 10.1186/1471-2164-12-79 PubMed DOI PMC

McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16: 404–405. doi: 10.1093/bioinformatics/16.4.404 PubMed DOI

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al.. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38: D457–462. doi: 10.1093/nar/gkp851 PubMed DOI PMC

Consortium UniProt. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47: D506–D515. doi: 10.1093/nar/gky1049 PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32: 268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC

Valasatava Y, Rosato A, Banci L, Andreini C. MetalPredator: a web server to predict iron–sulfur cluster binding proteomes. Bioinformatics. 2016;32: 2850–2852. doi: 10.1093/bioinformatics/btw238 PubMed DOI

Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al.. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49: D344–D354. doi: 10.1093/nar/gkaa977 PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428: 726–731. doi: 10.1016/j.jmb.2015.11.006 PubMed DOI

Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003;13: 2178–2189. doi: 10.1101/gr.1224503 PubMed DOI PMC

Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al.. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430: 2237–2243. doi: 10.1016/j.jmb.2017.12.007 PubMed DOI

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC

Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE). 2010. pp. 1–8. doi: 10.1109/GCE.2010.5676129 DOI

Hirst J, Schlacht A, Norcott JP, Traynor D, Bloomfield G, Antrobus R, et al.. Characterization of TSET, an ancient and widespread membrane trafficking complex. Elife. 2014;3: e02866. doi: 10.7554/eLife.02866 PubMed DOI PMC

Klinger CM, Klute MJ, Dacks JB. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS One. 2013;8: e76278. doi: 10.1371/journal.pone.0076278 PubMed DOI PMC

Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015;43: e78. doi: 10.1093/nar/gkv227 PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. doi: 10.1093/bioinformatics/btl446 PubMed DOI

Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21: 2104–2105. doi: 10.1093/bioinformatics/bti263 PubMed DOI

Felsenstein J. PHYLIP-Phylogeny inference package (Version 3.2). Cladistics. 1989;5: 164–166. doi: 10.1111/j.1096-0031.1989.tb00562.x DOI

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. doi: 10.1093/bioinformatics/17.8.754 PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Reconstructing the last common ancestor of all eukaryotes

. 2024 Nov ; 22 (11) : e3002917. [epub] 20241125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...