A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family

. 2021 Aug 03 ; 13 (8) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34247240

Grantová podpora
R21 ES021028 NIEHS NIH HHS - United States
R35 GM122568 NIGMS NIH HHS - United States

The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.

Zobrazit více v PubMed

Al-Bassam J.2017. Revisiting the tubulin cofactors and Arl2 in the regulation of soluble αβ-tubulin pools and their effect on microtubule dynamics. Mol Biol Cell. 28(3):359–363. PubMed PMC

Altschul SF, et al.1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–3402. PubMed PMC

Anantharaman V, Abhiman S, de Souza RF, Aravind L.. 2011. Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system. Gene 475(2):63–78. PubMed PMC

Behnia R, Panic B, Whyte JRC, Munro S.. 2004. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol. 6(5):405–413. PubMed

Bologna G, Yvon C, Duvaud S, Veuthey A-L.. 2004. N-Terminal myristoylation predictions by ensembles of neural networks. Proteomics 4(6):1626–1632. PubMed

Bosgraaf L, Van Haastert PJM.. 2003. Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta. 1643(1–3):5–10. PubMed

Botuyan MV, Mer G.. 2016. Chapter 8 – tudor domains as methyl-lysine and methyl-arginine readers. In: Binda O, Fernandez-Zapico ME, editors. Chromatin signaling and diseases. Boston: Academic Press. p. 149–165.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T.. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. PubMed PMC

Casanova JE.2007. Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8(11):1476–1485. PubMed

Cevik S, et al.2010. Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol. 188(6):953–969. PubMed PMC

Cevik S, et al.2013. Active transport and diffusion barriers restrict Joubert syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet. 9(12):e1003977. PubMed PMC

Clark J, et al.1993. Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes. Proc Natl Acad Sci U S A. 90(19):8952–8956. PubMed PMC

Colicelli J.2004. Human RAS superfamily proteins and related GTPases. Sci STKE. 2004(250):RE13. PubMed PMC

Cotton M, et al.2007. Endogenous ARF6 interacts with Rac1 upon angiotensin II stimulation to regulate membrane ruffling and cell migration. Mol Biol Cell. 18(2):501–511. PubMed PMC

Crooks GE, Hon G, Chandonia J-M, Brenner SE.. 2004. WebLogo: a Sequence Logo Generator. Genome Res. 14(6):1188–1190. PubMed PMC

Dacks JB, et al.2016. The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J Cell Sci. 129(20):3695–3703. PubMed

Dacks JB, Robinson MS.. 2017. Outerwear through the ages: evolutionary cell biology of vesicle coats. Curr Opin Cell Biol. 47:108–116. PubMed

Derelle R, et al.2015. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A. 112(7):E693–E699. PubMed PMC

Devos D, et al.2004. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2(12):e380. PubMed PMC

Dian C, et al.2020. High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation. Nat Commun. 11(1):1132. PubMed PMC

Diekmann Y, et al.2011. Thousands of Rab GTPases for the cell biologist. PLoS Comput Biol. 7(10):e1002217. PubMed PMC

Donaldson JG, Jackson CL.. 2011. Arf family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 12(6):362–375. PubMed PMC

D’Souza-Schorey C, Chavrier P.. 2006. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 7(5):347–358. PubMed

D’Souza-Schorey C, Stahl PD.. 1995. Myristoylation is required for the intracellular localization and endocytic function of ARF6. Exp Cell Res. 221(1):153–159. PubMed

Duronio RJ, Rudnick DA, Adams SP, Towler DA, Gordon JI.. 1991. Analyzing the substrate specificity of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase by co-expressing it with mammalian G protein α subunits in Escherichia coli. J Biol Chem. 266(16):10498–10504. PubMed

Elias M, Archibald JM.. 2009. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus. Gene 442(1–2):63–72. PubMed

Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB.. 2012. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 125(Pt 10):2500–2508. PubMed PMC

Eliáš M, Klimeš V, Derelle R, Petrželková R, Tachezy J.. 2016. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol Direct. 11(1):5. PubMed PMC

Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG.. 2017. Archaea and the origin of eukaryotes. Nat Rev Microbiol. 15(12):711–723. PubMed

Fansa EK, Wittinghofer A.. 2016. Sorting of lipidated cargo by the Arl2/Arl3 system. Small GTPases. 7(4):222–230. PubMed PMC

Field MC, Rout MP.. 2019. Pore timing: the evolutionary origins of the nucleus and nuclear pore complex. F1000Res. 8:369. PubMed PMC

Fielding AB, et al.2005. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 24(19):3389–3399. PubMed PMC

Finn RD, et al.2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1):D279–D285. PubMed PMC

Fisher S, Kuna D, Caspary T, Kahn RA, Sztul E.. 2020. ARF family GTPases with links to cilia. Am J Physiol Cell Physiol. 319(2):C404–C418. PubMed PMC

Flot J-F, et al.2013. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500(7463):453–457. PubMed

Francis JW, Goswami D, et al.2017. Nucleotide binding to ARL2 in the TBCD·ARL2·β-tubulin complex drives conformational changes in β-tubulin. J Mol Biol. 429(23):3696–3716. PubMed PMC

Francis JW, Newman LE, Cunningham LA, Kahn RA.. 2017. A trimer consisting of the tubulin-specific chaperone D (TBCD), regulatory GTPase ARL2, and β-tubulin is required for maintaining the microtubule network. J Biol Chem. 292(10):4336–4349. PubMed PMC

Francis JW, Turn RE, Newman LE, Schiavon C, Kahn RA.. 2016. Higher order signaling: ARL2 as regulator of both mitochondrial fusion and microtubule dynamics allows integration of 2 essential cell functions. Small GTPases. 7(4):188–196. PubMed PMC

Fu HW, Casey PJ.. 1999. Enzymology and biology of CaaX protein prenylation. Recent Prog Horm Res. 54:315–342. Discussion 342–343. PubMed

Funakoshi Y, Hasegawa H, Kanaho Y.. 2011. Regulation of PIP5K activity by Arf6 and its physiological significance. J Cell Physiol. 226(4):888–895. PubMed

Gabernet-Castello C, O’Reilly AJ, Dacks JB, Field MC.. 2013. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol Biol Cell. 24(10):1574–1583. PubMed PMC

Gaillard AR, Diener DR, Rosenbaum JL, Sale WS.. 2001. Flagellar radial spoke protein 3 is an A-kinase anchoring protein (AKAP). J Cell Biol. 153(2):443–448. PubMed PMC

Genschik P, Sumara I, Lechner E.. 2013. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32(17):2307–2320. PubMed PMC

Gigante ED, Taylor MR, Ivanova AA, Kahn RA, Caspary T.. 2020. ARL13B regulates Sonic hedgehog signaling from outside primary cilia. Elife 9:e50434. PubMed PMC

Gillingham AK, Munro S.. 2007. The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol. 23:579–611. PubMed

Goodstadt L, Ponting CP.. 2001. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17(9):845–846. PubMed

Gotthardt K, et al.2015. A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. Elife 4:e11859. PubMed PMC

Guerini D.1997. Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Commun. 235(2):271–275. PubMed

Guindon S, et al.2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321. PubMed

Hall TA.1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95–98.

Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH.. 2007. SUBA: the Arabidopsis subcellular database. Nucleic Acids Res. 35(Database issue):D213–D218. PubMed PMC

Higginbotham H, et al.2012. Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev Cell. 23(5):925–938. PubMed PMC

Hofmann I, Munro S.. 2006. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci. 119(Pt 8):1494–1503. PubMed

Hofmann I, Thompson A, Sanderson CM, Munro S.. 2007. The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol. 17(8):711–716. PubMed

Hori Y, Kobayashi T, Kikko Y, Kontani K, Katada T.. 2008. Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation. Biochem Biophys Res Commun. 373(1):119–124. PubMed

Houghton FJ, et al.2012. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport. Exp Cell Res. 318(5):464–477. PubMed

Ishida M, E Oguchi M, Fukuda M.. 2016. Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct Funct. 41(2):61–79. PubMed

Ivanova AA, et al.2017. Biochemical characterization of purified mammalian ARL13B protein indicates that it is an atypical GTPase and ARL3 guanine nucleotide exchange factor (GEF). J Biol Chem. 292(26):11091–11108. PubMed PMC

Jackson CL.2014. Arf proteins and their regulators: at the interface between membrane lipids and the protein trafficking machinery. In: Wittinghofer A, editor. Ras superfamily small G proteins: biology and mechanisms 2: transport. Cham: Springer International Publishing. p. 151–180.

Jackson CL, Bouvet S.. 2014. Arfs at a glance. J Cell Sci. 127(Pt 19):4103–4109. PubMed

Jivan A, Earnest S, Juang Y-C, Cobb MH.. 2009. Radial spoke protein 3 is a mammalian protein kinase A-anchoring protein that binds ERK1/2. J Biol Chem. 284(43):29437–29445. PubMed PMC

Jones S, et al.1999. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics 152(4):1543–1556. PubMed PMC

Kaessmann H, Vinckenbosch N, Long M.. 2009. RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet. 10(1):19–31. PubMed PMC

Kahn RA.2009. Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett. 583(23):3872–3879. PubMed PMC

Kahn RA, et al.2006. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol. 172(5):645–650. PubMed PMC

Kahn RA, et al.2008. Consensus nomenclature for the human ArfGAP domain-containing proteins. J Cell Biol. 182(6):1039–1044. PubMed PMC

Kahn RA, Goddard C, Newkirk M.. 1988. Chemical and immunological characterization of the 21-kDa ADP-ribosylation factor of adenylate cyclase. J Biol Chem. 263(17):8282–8287. PubMed

Katoh K, Standley DM.. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780. PubMed PMC

Keenan RJ, Freymann DM, Stroud RM, Walter P.. 2001. The signal recognition particle. Annu Rev Biochem. 70:755–775. PubMed

Khatter D, Sindhwani A, Sharma M.. 2015. Arf-like GTPase Arl8: moving from the periphery to the center of lysosomal biology. Cell Logist 5:e1086501. PubMed PMC

Klinger CM, Ramirez-Macias I, et al.2016. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol. 209(1–2):88–103. PubMed PMC

Klinger CM, Spang A, Dacks JB, Ettema TJ.. 2016. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol. 33(6):1528–1541. PubMed

Klöpper TH, Kienle N, Fasshauer D, Munro S.. 2012. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol. 10:71. PubMed PMC

Kumari B, Kumar R, Kumar M.. 2014. PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One 9(2):e89246. PubMed PMC

Lee FJ, et al.1997. Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J Biol Chem. 272(49):30998–31005. PubMed

Leipe DD, Wolf YI, Koonin EV, Aravind L.. 2002. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol. 317(1):41–72. PubMed

Lemmon MA.2007. Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp. 74(1):81–93. PubMed PMC

Letunic I, Bork P.. 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46(D1):D493–D496. PubMed PMC

Li C-C, et al.2007. ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell. 18(11):4420–4437. PubMed PMC

Li S, et al.2015. In silico identification of protein S-palmitoylation sites and their involvement in human inherited disease. J Chem Inf Model. 55(9):2015–2025. PubMed

Li Y, et al.2004. Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J. 18(15):1834–1850. PubMed

Lin C-Y, Li C-C, Huang P-H, Lee F-JS.. 2002. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Sci. 115(Pt 23):4433–4445. PubMed

Liu Y, Kahn RA, Prestegard JH.. 2009. Structure and membrane interaction of myristoylated ARF1. Structure 17(1):79–87. PubMed PMC

Liu Y, Kahn RA, Prestegard JH.. 2010. Dynamic structure of membrane-anchored ArfGTP. Nat Struct Mol Biol. 17(7):876–881. PubMed PMC

Makiuchi T, Nozaki T.. 2014. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100:3–17. PubMed

Manolea F, et al.2010. Arf3 is activated uniquely at the trans-Golgi network by brefeldin A-inhibited guanine nucleotide exchange factors. Mol Biol Cell. 21(11):1836–1849. PubMed PMC

Marchler-Bauer A, et al.2015. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43(Database issue):D222–D226. PubMed PMC

Maurer-Stroh S, Eisenhaber B, Eisenhaber F.. 2002. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol. 317(4):541–557. PubMed

Melville DB, Studer S, Schekman R.. 2020. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem. 295(25):8401–8412. PubMed PMC

Meza I, Talamás-Rohana P, Vargas MA.. 2006. The cytoskeleton of Entamoeba histolytica: structure, function, and regulation by signaling pathways. Arch Med Res. 37(2):234–243. PubMed

Miertzschke M, Koerner C, Spoerner M, Wittinghofer A.. 2014. Structural insights into the small G-protein Arl13B and implications for Joubert syndrome. Biochem J. 457(2):301–311. PubMed

Miller EA, Barlowe C.. 2010. Regulation of coat assembly–sorting things out at the ER. Curr Opin Cell Biol. 22(4):447–453. PubMed PMC

Miller MA, Pfeiffer W, Schwartz T.. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). p. 1–8.

Minh BQ, Nguyen MAT, von Haeseler A.. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 30(5):1188–1195. PubMed PMC

Mizuno-Yamasaki E, Rivera-Molina F, Novick P.. 2012. GTPase networks in membrane traffic. Annu Rev Biochem. 81:637–659. PubMed PMC

More K, Klinger CM, Barlow LD, Dacks JB.. 2020. Evolution and natural history of membrane trafficking in eukaryotes. Curr Biol. 30(10):R553–R564. PubMed

Mourão A, Nager AR, Nachury MV, Lorentzen E.. 2014. Structural basis for membrane targeting of the BBSome by ARL6. Nat Struct Mol Biol. 21(12):1035–1041. PubMed PMC

Nabais C, Peneda C, Bettencourt-Dias M.. 2020. Evolution of centriole assembly. Curr Biol. 30(10):R494–R502. PubMed

Neuwald AF.2007. Gα-Gβγ dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair. Protein Sci. 16(11):2570–2577. PubMed PMC

Newman LE, Schiavon CR, Turn RE, Kahn RA.. 2017. The ARL2 GTPase regulates mitochondrial fusion from the intermembrane space. Cell Logist 7(3):e1340104. PubMed PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ.. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274. PubMed PMC

Panic B, Whyte JRC, Munro S.. 2003. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol. 13(5):405–410. PubMed

Pasqualato S, Renault L, Cherfils J.. 2002. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front–back’ communication. EMBO Rep. 3(11):1035–1041. PubMed PMC

Patel M, Chiang T-C, Tran V, Lee F-JS, Côté J-F.. 2011. The Arf family GTPase Arl4A complexes with ELMO proteins to promote actin cytoskeleton remodeling and reveals a versatile Ras-binding domain in the ELMO proteins family. J Biol Chem. 286(45):38969–38979. PubMed PMC

Pereira-Leal JB.2008. The Ypt/Rab family and the evolution of trafficking in fungi. Traffic 9(1):27–38. PubMed

Petrželková R, Eliáš M.. 2014. Contrasting patterns in the evolution of the Rab GTPase family in Archaeplastida. Acta Soc Bot Pol. 83(4):303–315.

Pipaliya SV, Schlacht A, Klinger CM, Kahn RA, Dacks J.. 2019. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol Biol Cell. 30(15):1846–1863. PubMed PMC

Resh MD.1999. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1451(1):1–16. PubMed

Rojas AM, Fuentes G, Rausell A, Valencia A.. 2012. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 196(2):189–201. PubMed PMC

Ronquist F, et al.2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542. PubMed PMC

Rosa-Ferreira C, Christis C, Torres IL, Munro S.. 2015. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biol Open. 4(4):474–481. PubMed PMC

Roy D, Lohia A.. 2004. Sequence divergence of Entamoeba histolytica tubulin is responsible for its altered tertiary structure. Biochem Biophys Res Commun. 319(3):1010–1016. PubMed

Roy K, et al.2017. Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation. J Biol Chem. 292(43):17703–17717. PubMed PMC

Sarma GN, et al.2010. Structure of D-AKAP2: PKA RI complex: insights into AKAP specificity and selectivity. Structure. 18(2):155–166. PubMed PMC

Sato K, Nakano A.. 2007. Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett. 581(11):2076–2082. PubMed

Schlacht A, Dacks JB.. 2015. Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol Evol. 7(4):1098–1109. PubMed PMC

Schmidt HA, Strimmer K, Vingron M, von Haeseler A.. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3):502–504. PubMed

Schwartz T, Blobel G.. 2003. Structural basis for the function of the β subunit of the eukaryotic signal recognition particle receptor. Cell 112(6):793–803. PubMed

Schweitzer JK, Sedgwick AE, D’Souza-Schorey C.. 2011. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin Cell Dev Biol. 22(1):39–47. PubMed PMC

Seidel RD, Amor JC, Kahn RA, Prestegard JH.. 2004. Conformational changes in human Arf1 on nucleotide exchange and deletion of membrane-binding elements. J Biol Chem. 279(46):48307–48318. PubMed

Setty SRG, Shin ME, Yoshino A, Marks MS, Burd CG.. 2003. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol. 13(5):401–404. PubMed

Setty SRG, Strochlic TI, Tong AHY, Boone C, Burd CG.. 2004. Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nat Cell Biol. 6(5):414–419. PubMed

Sharer JD, Shern JF, Van Valkenburgh H, Wallace DC, Kahn RA.. 2002. ARL2 and BART enter mitochondria and bind the adenine nucleotide transporter. Mol Biol Cell. 13(1):71–83. PubMed PMC

Shi S-P, et al.2013. The prediction of palmitoylation site locations using a multiple feature extraction method. J Mol Graph Model. 40:125–130. PubMed

Smith JC, Northey JGB, Garg J, Pearlman RE, Siu KWM.. 2005. Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res. 4(3):909–919. PubMed

Söding J, Biegert A, Lupas AN.. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33(Web Server issue):W244–W248. PubMed PMC

Stephen LA, Ismail S.. 2016. Shuttling and sorting lipid-modified cargo into the cilia. Biochem Soc Trans. 44(5):1273–1280. PubMed

Sztul E, et al.2019. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell. 30(11):1249–1271. PubMed PMC

Tamkun JW, et al.1991. The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc Natl Acad Sci U S A. 88(8):3120–3124. PubMed PMC

Tria FDK, Landan G, Dagan T.. 2017. Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol. 1:193. PubMed

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ.. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44(W1):W232–W235. PubMed PMC

Turn RE, East MP, Prekeris R, Kahn RA.. 2020. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell. 31(18):2070–2091. PubMed PMC

van Dam TJP, Bos JL, Snel B.. 2011. Evolution of the Ras-like small GTPases and their regulators. Small GTPases. 2(1):4–16. PubMed PMC

Van Valkenburgh H, Shern JF, Sharer JD, Zhu X, Kahn RA.. 2001. ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem. 276(25):22826–22837. PubMed

Vernoud V, Horton AC, Yang Z, Nielsen E.. 2003. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 131(3):1191–1208. PubMed PMC

Vetter IR.2014. The structure of the G domain of the Ras superfamily. In: Wittinghofer A, editor. Ras superfamily small G proteins: biology and mechanisms 1: general features, signaling. Vienna: Springer. p. 25–50.

Vichi A, Moss J, Vaughan M.. 2005. ADP-ribosylation factor domain protein 1 (ARD1), a multifunctional protein with ubiquitin E3 ligase, GAP, and ARF domains. Meth Enzymol. 404:195–206. PubMed

Vlahou G, Eliáš M, von Kleist-Retzow J-C, Wiesner RJ, Rivero F.. 2011. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol. 90(4):342–355. PubMed

Vosseberg J, et al.2021. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat Ecol Evol. 5(1):92–100. PubMed PMC

Wang X-B, Wu L-Y, Wang Y-C, Deng N-Y.. 2009. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng Des Sel. 22(11):707–712. PubMed

Weeks G, Gaudet P, Insall R.. 2005. The small GTPase superfamily. In: Loomis WF, Kuspa A, editors. Dictyostelium Genomics. Norfolk: Horizon Bioscience. p. 173–210.

Wilson GM, et al.2005. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol Biol Cell. 16(2):849–860. PubMed PMC

Wirschell M, et al.2008. Building a radial spoke: flagellar radial spoke protein 3 (RSP3) is a dimer. Cell Motil Cytoskeleton. 65(3):238–248. PubMed

Wuichet K, Søgaard-Andersen L.. 2014. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes. Genome Biol Evol. 7(1):57–70. PubMed PMC

Xie Y, et al.2016. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci Rep. 6:28249. PubMed PMC

Xu Y, Wang Z, Li C, Chou K-C.. 2017. iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med Chem. 13(6):544–551. PubMed

Yang Y-K, et al.2011. ARF-like protein 16 (ARL16) inhibits RIG-I by binding with its C-terminal domain in a GTP-dependent manner. J Biol Chem. 286(12):10568–10580. PubMed PMC

Yoon HS, et al.2017. Rhodophyta. In: Archibald JM, Simpson AGB, Slamovits CH, editors. Handbook of the protists. Cham: Springer International Publishing. p. 89–133.

Yu C-J, Lee F-JS.. 2017. Multiple activities of Arl1 GTPase in the trans-Golgi network. J Cell Sci. 130(10):1691–1699. PubMed

Zahn C, et al.2006. Knockout of Arfrp1 leads to disruption of ARF-like1 (ARL1) targeting to the trans-Golgi in mouse embryos and HeLa cells. Mol Membr Biol. 23(6):475–485. PubMed

Záhonová K, et al.2018. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep. 8(1):5239. PubMed PMC

Zhang Y, et al.2018. The unusual flagellar-targeting mechanism and functions of the trypanosome ortholog of the ciliary GTPase Arl13b. J Cell Sci. 131:jcs219071. PubMed PMC

Zhou B, Cox AD.. 2014. Posttranslational modifications of small G proteins. In: Wittinghofer A, editor. Ras superfamily small G proteins: biology and mechanisms 1: general features, signaling. Vienna: Springer. p. 99–131.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace