Reconstructing the last common ancestor of all eukaryotes

. 2024 Nov ; 22 (11) : e3002917. [epub] 20241125

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39585925

Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA's gene content.

Barcelona Supercomputing Centre Barcelona Spain

Catalan Institution for Research and Advanced Studies Barcelona Spain

Cell Biochemistry Groningen Biomolecular Sciences and Biotechnology Institute Rijksuniversiteit Groningen Groningen the Netherlands

Center for Mechanisms of Evolution School of Life Sciences Arizona State University Tempe Arizona United States of America

Centre for Genomic Regulation Barcelona Spain

Centre for Life's Origins and Evolution Department of Genetics Evolution and Environment University College London United Kingdom

Charles University Faculty of Science Department of Parasitology BIOCEV Vestec Czech Republic

CIBER de Enfermedades Infecciosas Instituto de Salud Carlos 3 Madrid Spain

Department of Algal Development and Evolution Max Planck Institute for Biology Tübingen Tübingen Germany

Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics Dalhousie University Halifax Canada

Department of Biological Sciences Purdue University West Lafayette Indiana United States of America

Department of Biology Lund University Lund Sweden

Department of Biology University of Massachusetts Amherst Amherst Massachusetts United States of America

Department of Biology University of Oxford Oxford United Kingdom

Department of Cell and Molecular Biology The University of Rhode Island Kingston Rhode Island United States of America

Department of Computational Biology University of Lausanne Lausanne Switzerland

Department of Ecology Evolution and Marine Biology University of California Santa Barbara California United States of America

Department of Evolution Ecology and Behaviour Institute of Infection Veterinary and Ecological Sciences University of Liverpool Liverpool United Kingdom

Division of Infectious Diseases Department of Medicine and Department of Biological Sciences University of Alberta Edmonton Canada

Ecologie Systématique Evolution CNRS Université Paris Saclay AgroParisTech Gif sur Yvette France

Hubrecht Institute KNAW Oncode Institute UMC Utrecht Utrecht the Netherlands

Institut de Biologia Evolutiva Barcelona Spain

Institute for Research in Biomedicine The Barcelona Institute of Science and Technology Barcelona Spain

Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic

Laboratory of Microbiology Wageningen University and Research Wageningen the Netherlands

Okinawa Institute of Science and Technology Graduate University Okinawa Japan

School of Biological and Behavioural Sciences Queen Mary University of London London United States of America

School of Biological Sciences University of Bristol Bristol United Kingdom

School of Life Sciences University of Nottingham Nottingham United Kingdom

Swiss Institute of Bioinformatics Lausanne Switzerland

Theoretical Biology and Bioinformatics Department of Biology Faculty of Science Utrecht University Utrecht the Netherlands

Zobrazit více v PubMed

Stanier RY, Doudoroff M, Adelberg EA. The microbial world: Prentice-Hall; 1957.

Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–934. doi: 10.1038/nature09486 . PubMed DOI

Booth A, Doolittle WF. Eukaryogenesis, how special really? Proc Natl Acad Sci U S A. 2015;112(33):10278–10285. doi: 10.1073/pnas.1421376112 PubMed DOI PMC

Booth A, Doolittle WF. Reply to Lane and Martin: Being and becoming eukaryotes. Proc Natl Acad Sci U S A. 2015;112(35):E4824–E. doi: 10.1073/pnas.1513285112 PubMed DOI PMC

Lane N, Martin WF. Eukaryotes really are special, and mitochondria are why. Proc Natl Acad Sci U S A. 2015;112(35):E4823–E. doi: 10.1073/pnas.1509237112 PubMed DOI PMC

López-García P, Moreira D. Open questions on the origin of eukaryotes. Trends Ecol Evol. 2015;30(11):697–708. doi: 10.1016/j.tree.2015.09.005 PubMed DOI PMC

Purificación L-G, David M. The symbiotic origin of the eukaryotic cell. C R Biol. 2023;346:55–73. doi: 10.5802/crbiol.118 PubMed DOI

Eme L, Tamarit D, Caceres EF, Stairs CW, De Anda V, Schön ME, et al.. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature. 2023;618(7967):992–999. doi: 10.1038/s41586-023-06186-2 PubMed DOI PMC

Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al.. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521(7551):173–9. Epub 20150506. doi: 10.1038/nature14447 ; PubMed Central PMCID: PMC4444528. PubMed DOI PMC

Eme L, Sharpe SC, Brown MW, Roger AJ. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol. 2014;6(8). Epub 20140801. doi: 10.1101/cshperspect.a016139 ; PubMed Central PMCID: PMC4107988. PubMed DOI PMC

Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun. 2021;12(1):1879. doi: 10.1038/s41467-021-22044-z PubMed DOI PMC

Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PCJ, Pisani D. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat Ecol Evol. 2018;2(10):1556–62. Epub 20180820. doi: 10.1038/s41559-018-0644-x ; PubMed Central PMCID: PMC6152910. PubMed DOI PMC

Philippe H, Vienne DM, Ranwez V, Roure B, Baurain D, Delsuc F. Pitfalls in supermatrix phylogenomics. Eur J Taxon. 2017;0(283). doi: 10.5852/ejt.2017.283 DOI

Simion P, Delsuc F, Philippe H. To what extent current limits of phylogenomics can be overcome? In: Scornavacca C, Delsuc F, Galtier N, editors. Phylogenetics in the Genomic Era: No commercial publisher | Authors open access book; 2020. p. 2.1:—2.1:34.

Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet. 2023;24(12):834–50. Epub 20230627. doi: 10.1038/s41576-023-00620-x . PubMed DOI PMC

Dacks JB, Field MC, Buick R, Eme L, Gribaldo S, Roger AJ, et al.. The changing view of eukaryogenesis–fossils, cells, lineages and how they all come together. J Cell Sci. 2016;129(20):3695–3703. doi: 10.1242/jcs.178566 PubMed DOI

Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol. 2013;48(4):373–396. doi: 10.3109/10409238.2013.821444 ; PubMed Central PMCID: PMC3791482. PubMed DOI PMC

O’Malley MA, Leger MM, Wideman JG, Ruiz-Trillo I. Concepts of the last eukaryotic common ancestor. Nat Ecol Evol. 2019;3(3):338–344. doi: 10.1038/s41559-019-0796-3 PubMed DOI

Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504(7479):231–236. doi: 10.1038/nature12779 PubMed DOI

Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM. The archaebacterial origin of eukaryotes. Proc Natl Acad Sci U S A. 2008;105(51):20356–20361. doi: 10.1073/pnas.0810647105 PubMed DOI PMC

Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature. 2024;633:295–305. doi: 10.1038/s41586-024-07677-6 PubMed DOI

Bonen L, Cunningham RS, Gray MW, Doolittle WF. Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature. Nucleic Acids Res. 1977;4(3):663–671. doi: 10.1093/nar/4.3.663 866186; PubMed Central PMCID: PMC342470. PubMed DOI PMC

Muñoz-Gómez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, et al.. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known alphaproteobacteria. Nat Ecol Evol. 2022;6(3):253–262. doi: 10.1038/s41559-021-01638-2 PubMed DOI

Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature. 2018;557(7703):101–5. Epub 20180425. doi: 10.1038/s41586-018-0059-5 . PubMed DOI

Gabaldón T. Relative timing of mitochondrial endosymbiosis and the “pre-mitochondrial symbioses” hypothesis. IUBMB Life. 2018;70(12):1188–1196. doi: 10.1002/iub.1950 PubMed DOI PMC

López-García P, Moreira D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol. 2020;5(5):655–67. Epub 20200427. doi: 10.1038/s41564-020-0710-4 . PubMed DOI

Stairs CW, Dharamshi JE, Tamarit D, Eme L, Jørgensen SL, Spang A, et al.. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci Adv. 2020;6(35):eabb7258. doi: 10.1126/sciadv.abb7258 PubMed DOI PMC

Devos DP, Reynaud EG. Intermediate steps. Science. 2010;330(6008):1187–1188. doi: 10.1126/science.1196720 . PubMed DOI

Bell PJL. Eukaryogenesis: the rise of an emergent superorganism. Front Microbiol. 2022:13. doi: 10.3389/fmicb.2022.858064 PubMed DOI PMC

Moreira D, López-García P. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc Lond B Biol Sci. 2015;370(1678):20140327. doi: 10.1098/rstb.2014.0327 PubMed DOI PMC

Forterre P, Gaïa M. Giant viruses and the origin of modern eukaryotes. Curr Opin Microbiol. 2016;31:44–49. doi: 10.1016/j.mib.2016.02.001 PubMed DOI

Karki S, Barth ZK, Aylward FO. Chimeric origin of eukaryotes from Asgard archaea and ancestral giant viruses. bioRxiv. 2024:2024.04.22.590592. doi: 10.1101/2024.04.22.590592 DOI

Bell PJL. Evidence supporting a viral origin of the eukaryotic nucleus. Virus Res. 2020;289:198168. doi: 10.1016/j.virusres.2020.198168 PubMed DOI

Irwin NAT, Pittis AA, Richards TA, Keeling PJ. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat Microbiol. 2022;7(2):327–336. doi: 10.1038/s41564-021-01026-3 PubMed DOI

Bonen L, Doolittle WF. On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci U S A. 1975;72(6):2310–2314. doi: 10.1073/pnas.72.6.2310 PubMed DOI PMC

Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392(6671):37–41. doi: 10.1038/32096 PubMed DOI

Baum DA, Baum B. An inside-out origin for the eukaryotic cell. BMC Biol. 2014;12(1):76. doi: 10.1186/s12915-014-0076-2 PubMed DOI PMC

Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al.. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature. 2020;577(7791):519–25. Epub 20200115. doi: 10.1038/s41586-019-1916-6 ; PubMed Central PMCID: PMC7015854. PubMed DOI PMC

Martijn J, Ettema TJ. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans. 2013;41(1):451–457. doi: 10.1042/BST20120292 . PubMed DOI

Margulis L. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci U S A. 1996;93(3):1071–1076. doi: 10.1073/pnas.93.3.1071 PubMed DOI PMC

Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. Protoplasma. 2022;259(3):487–593. Epub 20211223. doi: 10.1007/s00709-021-01665-7 ; PubMed Central PMCID: PMC9010356. PubMed DOI PMC

Martin W, Hoffmeister M, Rotte C, Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2001;382(11):1521–1539. doi: 10.1515/BC.2001.187 . PubMed DOI

McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, et al.. Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays. 2011;33(11):810–7. Epub 20110822. doi: 10.1002/bies.201100045 ; PubMed Central PMCID: PMC3795523. PubMed DOI PMC

Donoghue PCJ, Kay C, Spang A, Szöllősi G, Nenarokova A, Moody ERR, et al.. Defining eukaryotes to dissect eukaryogenesis. Curr Biol. 2023;33(17):R919–R929. doi: 10.1016/j.cub.2023.07.048 PubMed DOI

Raval PK, Garg SG, Gould SB. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. Elife. 2022;11:e81033. doi: 10.7554/eLife.81033 PubMed DOI PMC

Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat Rev Microbiol. 2017;15(12):711–723. doi: 10.1038/nrmicro.2017.133 . PubMed DOI

Pittis AA, Gabaldón T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature. 2016;531(7592):101–104. doi: 10.1038/nature16941 PubMed DOI PMC

Vosseberg J, van Hooff JJE, Marcet-Houben M, van Vlimmeren A, van Wijk LM, Gabaldón T, et al.. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat Ecol Evol. 2021;5(1):92–100. doi: 10.1038/s41559-020-01320-z PubMed DOI PMC

Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et al.. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541(7637):353–358. doi: 10.1038/nature21031 PubMed DOI

Lazcano A, Peretó J. Prokaryotic symbiotic consortia and the origin of nucleated cells: a critical review of Lynn Margulis hypothesis. Biosystems. 2021;204:104408. doi: 10.1016/j.biosystems.2021.104408 PubMed DOI

Rochette NC, Brochier-Armanet C, Gouy M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol. 2014;31(4):832–45. Epub 20140107. doi: 10.1093/molbev/mst272 ; PubMed Central PMCID: PMC3969559. PubMed DOI PMC

Barrera-Redondo J, Lotharukpong JS, Drost HG, Coelho SM. Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biol. 2023;24(1):54. Epub 20230324. doi: 10.1186/s13059-023-02895-z ; PubMed Central PMCID: PMC10037820. PubMed DOI PMC

Newman D, Whelan FJ, Moore M, Rusilowicz M, McInerney JO. Reconstructing and analysing the genome of the last eukaryote common ancestor to better understand the transition from FECA to LECA. bioRxiv. 2019:538264. doi: 10.1101/538264 DOI

Koreny L, Field MC. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol. 2016;8(9):2663–2671. doi: 10.1093/gbe/evw087 PubMed DOI PMC

Mans B, Anantharaman V, Aravind L, Koonin EV. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore pomplex. Cell Cycle. 2004;3(12):1625–1650. doi: 10.4161/cc.3.12.1316 PubMed DOI

Makarov AA, Padilla-Mejia NE, Field MC. Evolution and diversification of the nuclear pore complex. Biochem Soc Trans. 2021;49(4):1601–1619. doi: 10.1042/BST20200570 ; PubMed Central PMCID: PMC8421043. PubMed DOI PMC

Neumann N, Lundin D, Poole AM. Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS ONE. 2010;5(10):e13241. doi: 10.1371/journal.pone.0013241 PubMed DOI PMC

Wickstead B, Gull K. The evolution of the cytoskeleton. J Cell Biol. 2011;194(4):513–525. doi: 10.1083/jcb.201102065 ; PubMed Central PMCID: PMC3160578. PubMed DOI PMC

Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005;436(7054):1113–1118. doi: 10.1038/nature03949 PubMed DOI

Wickstead B, Gull K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic. 2007;8(12):1708–21. Epub 20070926. doi: 10.1111/j.1600-0854.2007.00646.x ; PubMed Central PMCID: PMC2239267. PubMed DOI PMC

Wickstead B, Gull K, Richards TA. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol Biol. 2010;10:110. Epub 20100427. doi: 10.1186/1471-2148-10-110 ; PubMed Central PMCID: PMC2867816. PubMed DOI PMC

Velle KB, Fritz-Laylin LK. Diversity and evolution of actin-dependent phenotypes. Curr Opin Genet Dev. 2019;58–59:40–8. Epub 20190826. doi: 10.1016/j.gde.2019.07.016 . PubMed DOI

Eme L, Moreira D, Talla E, Brochier-Armanet C. A complex cell division machinery was present in the last common ancestor of eukaryotes. PLoS ONE. 2009;4(4):e5021. doi: 10.1371/journal.pone.0005021 PubMed DOI PMC

Eme L, Trilles A, Moreira D, Brochier-Armanet C. The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modern-like control of the cell cycle in the last common ancestor of eukaryotes. BMC Evol Biol. 2011;11(1):265. doi: 10.1186/1471-2148-11-265 PubMed DOI PMC

Tromer EC, van Hooff JJE, Kops G, Snel B. Mosaic origin of the eukaryotic kinetochore. Proc Natl Acad Sci U S A. 2019;116(26):12873–82. Epub 20190524. doi: 10.1073/pnas.1821945116 ; PubMed Central PMCID: PMC6601020. PubMed DOI PMC

van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 2017;18(9):1559–71. Epub 20170622. doi: 10.15252/embr.201744102 ; PubMed Central PMCID: PMC5579357. PubMed DOI PMC

Malik SB, Ramesh MA, Hulstrand AM, Logsdon JM Jr. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol Biol Evol. 2007;24(12):2827–41. Epub 20071005. doi: 10.1093/molbev/msm217 . PubMed DOI

Ramesh MA, Malik SB, Logsdon JM Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005;15(2):185–191. doi: 10.1016/j.cub.2005.01.003 . PubMed DOI

Wilkins AS, Holliday R. The evolution of meiosis from mitosis. Genetics. 2009;181(1):3–12. doi: 10.1534/genetics.108.099762 ; PubMed Central PMCID: PMC2621177. PubMed DOI PMC

Hurst LD, Nurse P. A note on the evolution of meiosis. J Theor Biol. 1991;150(4):561–563. doi: 10.1016/s0022-5193(05)80447-3 PubMed DOI

More K, Klinger CM, Barlow LD, Dacks JB. Evolution and natural history of membrane trafficking in eukaryotes. Biol Rev. 2020;30(10):R553–R564. doi: 10.1016/j.cub.2020.03.068 PubMed DOI

Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev. 2023;98(6):1910–1927. doi: 10.1111/brv.12988 PubMed DOI PMC

Jansen RLM, Santana-Molina C, van den Noort M, Devos DP, van der Klei IJ. Comparative genomics of peroxisome biogenesis proteins: making sense of the PEX proteins. Front Cell Dev Biol. 2021;9:654163. Epub 20210520. doi: 10.3389/fcell.2021.654163 ; PubMed Central PMCID: PMC8172628. PubMed DOI PMC

Gabaldón T. Evolution of the peroxisomal proteome. Subcell Biochem. 2018;89:221–233. doi: 10.1007/978-981-13-2233-4_9 . PubMed DOI

Grau-Bové X, Navarrete C, Chiva C, Pribasnig T, Antó M, Torruella G, et al.. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nat Ecol Evol. 2022;6(7):1007–1023. doi: 10.1038/s41559-022-01771-6 PubMed DOI PMC

Irwin NA, Richards TA. Self-assembling viral histones are evolutionary intermediates between archaeal and eukaryotic nucleosomes. Nat Microbiol. 2024:1–12. PubMed PMC

van Hooff JJE, Raas MWD, Tromer EC, Eme L. Shaping up genomes: prokaryotic roots and eukaryotic diversification of SMC complexes. bioRxiv. 2024:2024.01.07.573240. doi: 10.1101/2024.01.07.573240 DOI

Yoshinaga M, Inagaki Y. Ubiquity and origins of structural maintenance of chromosomes (SMC) proteins in eukaryotes. Genome Biol Evol. 2021;13(12):evab256. doi: 10.1093/gbe/evab256 PubMed DOI PMC

Aves SJ, Liu Y, Richards TA. Evolutionary diversification of eukaryotic DNA replication machinery. Subcell Biochem. 2012;62:19–35. doi: 10.1007/978-94-007-4572-8_2 . PubMed DOI

Liu Y, Richards TA, Aves SJ. Ancient diversification of eukaryotic MCM DNA replication proteins. BMC Evol Biol. 2009;9:60. Epub 20090317. doi: 10.1186/1471-2148-9-60 ; PubMed Central PMCID: PMC2667178. PubMed DOI PMC

Vosseberg J, Schinkel M, Gremmen S, Snel B. The spread of the first introns in proto-eukaryotic paralogs. Comun Biol. 2022;5(1):476. doi: 10.1038/s42003-022-03426-5 PubMed DOI PMC

Vosseberg J, Stolker D, von der Dunk SHA, Snel B. Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome. Mol Biol Evol. 2023;40(1):msad011. doi: 10.1093/molbev/msad011 PubMed DOI PMC

Koonin EV. Intron-dominated genomes of early ancestors of eukaryotes. J Hered. 2009;100(5):618–623. doi: 10.1093/jhered/esp056 PubMed DOI PMC

Simpson AGB, MacQuarrie EK, Roger AJ. Early origin of canonical introns. Nature. 2002;419(6904):270. doi: 10.1038/419270a PubMed DOI

Collins L, Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol. 2005;22(4):1053–66. Epub 20050119. doi: 10.1093/molbev/msi091 . PubMed DOI

Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct. 2006;1(1):22. doi: 10.1186/1745-6150-1-22 PubMed DOI PMC

Schrumpfová PP, Fajkus J. Composition and function of telomerase—a polymerase associated with the origin of eukaryotes. Biomol [Internet]. 2020;10(10). doi: 10.3390/biom10101425 PubMed DOI PMC

de Lange T. A loopy view of telomere evolution. Front Genet. 2015:6. doi: 10.3389/fgene.2015.00321 PubMed DOI PMC

de Mendoza A, Sebé-Pedrós A. Origin and evolution of eukaryotic transcription factors. Curr Opin Genet Dev. 2019;58–59:25–32. Epub 20190826. doi: 10.1016/j.gde.2019.07.010 . PubMed DOI

de Mendoza A, Sebé-Pedrós A, Šestak MS, Matejcic M, Torruella G, Domazet-Loso T, et al.. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci U S A. 2013;110(50):E4858–66. Epub 20131125. doi: 10.1073/pnas.1311818110 ; PubMed Central PMCID: PMC3864300. PubMed DOI PMC

Iyer LM, Anantharaman V, Wolf MY, Aravind L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol. 2008;38(1):1–31. Epub 20070915. doi: 10.1016/j.ijpara.2007.07.018 . PubMed DOI

Lombard J, López-García P, Moreira D. The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol. 2012;10(7):507–515. doi: 10.1038/nrmicro2815 PubMed DOI

Desmond E, Gribaldo S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol. 2009;1:364–81. Epub 20090910. doi: 10.1093/gbe/evp036 ; PubMed Central PMCID: PMC2817430. PubMed DOI PMC

Gabaldón T. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci. 2010;365(1541):765–773. doi: 10.1098/rstb.2009.0240 ; PubMed Central PMCID: PMC2817229. PubMed DOI PMC

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27(21):R1177–R1192. doi: 10.1016/j.cub.2017.09.015 PubMed DOI

Gabaldón T, Huynen MA. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol. 2007;3(11):e219. doi: 10.1371/journal.pcbi.0030219 PubMed DOI PMC

Sinha SD, Wideman JG. The persistent homology of mitochondrial ATP synthases. iScience. 2023;26(5):106700. doi: 10.1016/j.isci.2023.106700 PubMed DOI PMC

Mani J, Meisinger C, Schneider A. Peeping at TOMs—diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol Biol Evol. 2016;33(2):337–351. doi: 10.1093/molbev/msv219 PubMed DOI

Butenko A, Lukeš J, Speijer D, Wideman JG. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol. 2024;22(1):15. doi: 10.1186/s12915-024-01824-1 PubMed DOI PMC

Petrů M, Dohnálek V, Füssy Z, Doležal P. Fates of Sec, Tat, and YidC translocases in mitochondria and other eukaryotic compartments. Mol Biol Evol. 2021;38(12):5241–5254. doi: 10.1093/molbev/msab253 ; PubMed Central PMCID: PMC8662606. PubMed DOI PMC

Torruella G, Galindo LJ, Moreira D, López-García P. Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life. bioRxiv. 2024:2024.05.15.594285. doi: 10.1101/2024.05.15.594285 PubMed DOI

Wickstead B, Gull K. A "holistic" kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell. 2006;17(4):1734–43. Epub 20060215. doi: 10.1091/mbc.e05-11-1090 ; PubMed Central PMCID: PMC1415282. PubMed DOI PMC

Moran J, McKean PG, Ginger ML. Eukaryotic flagella: variations in form, function, and composition during evolution. Bioscience. 2014;64(12):1103–1114. doi: 10.1093/biosci/biu175 DOI

Žárský V, Tachezy J. Evolutionary loss of peroxisomes–not limited to parasites. Biol Direct. 2015;10(1):74. doi: 10.1186/s13062-015-0101-6 PubMed DOI PMC

Merényi Z, Krizsán K, Sahu N, Liu X-B, Bálint B, Stajich JE, et al.. Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits. Nat Ecol Evol. 2023;7(8):1221–1231. doi: 10.1038/s41559-023-02095-9 PubMed DOI PMC

Richards TA, Leonard G, Wideman JG. What defines the “kingdom” Fungi? Microbiol Spectr. 2017;5(3):10.1128/microbiolspec.funk-0044-2017. doi: 10.1128/microbiolspec.FUNK-0044-2017 PubMed DOI

Moreira D, Blaz J, Kim E, Eme L. A gene-rich mitochondrion with a unique ancestral protein transport system. bioRxiv. 2024:2024.01.30.577968. doi: 10.1016/j.cub.2024.07.017 PubMed DOI

Novák LVF, Treitli SC, Pyrih J, Hałakuc P, Pipaliya SV, Vacek V, et al.. Genomics of preaxostyla flagellates illuminates the path towards the loss of mitochondria. PLoS Genet. 2023;19(12):e1011050. doi: 10.1371/journal.pgen.1011050 PubMed DOI PMC

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, et al.. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26(10):1274–84. Epub 20160512. doi: 10.1016/j.cub.2016.03.053 . PubMed DOI

Fukasawa Y, Oda T, Tomii K, Imai K. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol Biol Evol. 2017;34(7):1574–1586. doi: 10.1093/molbev/msx096 ; PubMed Central PMCID: PMC5455965. PubMed DOI PMC

Burger G, Gray MW, Forget L, Lang BF. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout Jakobid protists. Genome Biol Evol. 2013;5(2):418–438. doi: 10.1093/gbe/evt008 PubMed DOI PMC

Irwin NAT, Martin BJE, Young BP, Browne MJG, Flaus A, Loewen CJR, et al.. Viral proteins as a potential driver of histone depletion in dinoflagellates. Nat Commun. 2018;9(1):1535. Epub 20180418. doi: 10.1038/s41467-018-03993-4 ; PubMed Central PMCID: PMC5906630. PubMed DOI PMC

Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden GI, Waller RF. Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr Biol. 2012;22(24):2303–2312. doi: 10.1016/j.cub.2012.10.036 PubMed DOI

Doolittle WF. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998;14(8):307–311. doi: 10.1016/s0168-9525(98)01494-2 . PubMed DOI

Husnik F, McCutcheon JP. Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol. 2018;16(2):67–79. Epub 20171127. doi: 10.1038/nrmicro.2017.137 . PubMed DOI

Savory F, Leonard G, Richards TA. The role of horizontal gene transfer in the evolution of the oomycetes. PLoS Pathog. 2015;11(5):e1004805. doi: 10.1371/journal.ppat.1004805 PubMed DOI PMC

Sibbald SJ, Eme L, Archibald JM, Roger AJ. Lateral gene transfer mechanisms and pan-genomes in eukaryotes. Trends Parasitol. 2020;36(11):927–41. Epub 20200819. doi: 10.1016/j.pt.2020.07.014 . PubMed DOI

Milner DS, Attah V, Cook E, Maguire F, Savory FR, Morrison M, et al.. Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proc Natl Acad Sci U S A. 2019;116(12):5613–5622. doi: 10.1073/pnas.1815994116 PubMed DOI PMC

Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet. 2024. Epub 20240123. doi: 10.1038/s41576-023-00688-5 . PubMed DOI

Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. The origin of plastids. Philos Trans R Soc Lond B Biol Sci. 2008;363(1504):2675–2685. doi: 10.1098/rstb.2008.0050 PubMed DOI PMC

Gray MW. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A. 2015;112(33):10133–10138. doi: 10.1073/pnas.1421379112 PubMed DOI PMC

Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, Martin WF. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A. 2015;112(33):10139–10146. doi: 10.1073/pnas.1421385112 PubMed DOI PMC

Esser C, Martin W, Dagan T. The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett. 2007;3(2):180–184. doi: 10.1098/rsbl.2006.0582 ; PubMed Central PMCID: PMC2375920. PubMed DOI PMC

Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al.. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631–642. doi: 10.1016/j.cell.2010.01.032 PubMed DOI

Hartman H, Fedorov A. The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci U S A. 2002;99(3):1420–1425. doi: 10.1073/pnas.032658599 PubMed DOI PMC

Jian H, Lesley JC. Eukaryotic signature proteins. J Proteom Genom Res. 2012;1(1):2–8. doi: 10.14302/issn.2326-0793.jpgr-12-101 DOI

Koonin EV, Yutin N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb Perspect Biol. 2014;6(4):a016188. Epub 20140401. doi: 10.1101/cshperspect.a016188 ; PubMed Central PMCID: PMC3970416. PubMed DOI PMC

Baños H, Susko E, Roger AJ. Is over-parameterization a problem for profile mixture models? Syst Biol. 2023:syad063. doi: 10.1093/sysbio/syad063 PubMed DOI PMC

Susko E, Lincker L, Roger AJ. Accelerated estimation of frequency classes in site-heterogeneous profile mixture models. Mol Biol Evol. 2018;35(5):1266–1283. doi: 10.1093/molbev/msy026 PubMed DOI

Susko E, Roger AJ. On reduced amino acid alphabets for phylogenetic inference. Mol Biol Evol. 2007;24(9):2139–2150. doi: 10.1093/molbev/msm144 PubMed DOI

Susko E, Roger AJ. On the use of information criteria for model selection in phylogenetics. Mol Biol Evol. 2020;37(2):549–562. doi: 10.1093/molbev/msz228 PubMed DOI

Weisman CM, Murray AW, Eddy SR. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol. 2020;18(11):e3000862. doi: 10.1371/journal.pbio.3000862 PubMed DOI PMC

Ohno S. Evolution by gene duplication. Springer-Verlag; 1970.

Sebé-Pedrós A, Grau-Bové X, Richards TA, Ruiz-Trillo I. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol. 2014;6(2):290–305. doi: 10.1093/gbe/evu013 ; PubMed Central PMCID: PMC3942036. PubMed DOI PMC

Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. Thousands of Rab GTPases for the cell biologist. PLoS Comput Biol. 2011;7(10):e1002217. doi: 10.1371/journal.pcbi.1002217 PubMed DOI PMC

Jackson CL, Ménétrey J, Sivia M, Dacks JB, Eliáš M. An evolutionary perspective on Arf family GTPases. Curr Opin Cell Biol. 2023;85:102268. doi: 10.1016/j.ceb.2023.102268 PubMed DOI

van Wijk LM, Snel B. The first eukaryotic kinome tree illuminates the dynamic history of present-day kinases. bioRxiv. 2020:2020.01.27.920793. doi: 10.1101/2020.01.27.920793 DOI

Archibald JM, Logsdon JM Jr, Doolittle WF. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol. 2000;17(10):1456–1466. doi: 10.1093/oxfordjournals.molbev.a026246 . PubMed DOI

Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature. 2018;564(7736):410–414. doi: 10.1038/s41586-018-0708-8 PubMed DOI

Eglit Y, Shiratori T, Jerlström-Hultqvist J, Williamson K, Roger AJ, Ishida K-I, et al.. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. bioRxiv. 2023:2023.08.13.553137. doi: 10.1101/2023.08.13.553137 PubMed DOI

Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, Belyaev AO, Mathur V, Karpov SA, et al.. Microbial predators form a new supergroup of eukaryotes. Nature. 2022;612(7941):714–719. doi: 10.1038/s41586-022-05511-5 PubMed DOI

Lewin HA, Richards S, Lieberman Aiden E, Allende ML, Archibald JM, Bálint M, et al.. The Earth BioGenome Project 2020: Starting the clock. Proc Natl Acad Sci U S A. 2022;119(4). doi: 10.1073/pnas.2115635118 ; PubMed Central PMCID: PMC8795548. PubMed DOI PMC

Consortium DToLP. Sequence locally, think globally: the Darwin tree of life project. Proc Natl Acad Sci U S A. 2022;119(4). doi: 10.1073/pnas.2115642118 ; PubMed Central PMCID: PMC8797607. PubMed DOI PMC

McKenna V, Archibald JM, Beinart R, Dawson M, Hentschel U, Keeling PJ, et al.. The aquatic symbiosis genomics project: probing the evolution of symbiosis across the tree of life. Wellcome Open Res. 2021;6:254. doi: 10.12688/wellcomeopenres.17222.1 DOI

Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al.. A new view of the tree of life. Nat Microbiol. 2016;1:16048. Epub 20160411. doi: 10.1038/nmicrobiol.2016.48 . PubMed DOI

Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, et al.. The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9(1):386. doi: 10.1186/1471-2105-9-386 PubMed DOI PMC

Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020;36(6):1925–1927. doi: 10.1093/bioinformatics/btz848 PubMed DOI PMC

Szánthó LL, Lartillot N, Szöllősi GJ, Schrempf D. Compositionally constrained sites drive long-branch attraction. Syst Biol. 2023;72(4):767–780. doi: 10.1093/sysbio/syad013 PubMed DOI PMC

Minh BQ, Dang CC, Vinh LS, Lanfear R. QMaker: fast and accurate method to estimate empirical models of protein evolution. Syst Biol. 2021;70(5):1046–1060. doi: 10.1093/sysbio/syab010 PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC

Moi D, Bernard C, Steinegger M, Nevers Y, Langleib M, Dessimoz C. Structural phylogenetics unravels the evolutionary diversification of communication systems in gram-positive bacteria and their viruses. bioRxiv. 2023:2023.09.19.558401. doi: 10.1101/2023.09.19.558401 DOI

Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 2005;39:309–338. doi: 10.1146/annurev.genet.39.073003.114725 . PubMed DOI

Yan K-K, Wang D, Rozowsky J, Zheng H, Cheng C, Gerstein M. OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biol Evol. 2014;15(8):R100. doi: 10.1186/gb-2014-15-8-r100 PubMed DOI PMC

Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–2189. doi: 10.1101/gr.1224503 ; PubMed Central PMCID: PMC403725. PubMed DOI PMC

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. Epub 20191114. doi: 10.1186/s13059-019-1832-y ; PubMed Central PMCID: PMC6857279. PubMed DOI PMC

Liebeskind BJ, McWhite CD, Marcotte EM. Towards consensus gene ages. Genome Biol Evol. 2016;8(6):1812–1823. doi: 10.1093/gbe/evw113 PubMed DOI PMC

Deutekom ES, Snel B, van Dam TJP. Benchmarking orthology methods using phylogenetic patterns defined at the base of eukaryotes. Brief Bioinform. 2021;22(3):bbaa206. doi: 10.1093/bib/bbaa206 PubMed DOI PMC

Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125(10):2500–2508. doi: 10.1242/jcs.101378 PubMed DOI PMC

Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, et al.. A eukaryote-wide perspective on the diversity and evolution of the ARF GTPase protein family. Genome Biol Evol. 2021;13(8):evab157. doi: 10.1093/gbe/evab157 PubMed DOI PMC

Salomaki ED, Eme L, Brown MW, Kolisko M. Releasing uncurated datasets is essential for reproducible phylogenomics. Nat Ecol Evol. 2020;4(11):1435–1437. doi: 10.1038/s41559-020-01296-w PubMed DOI

Holland BR, Ketelaar-Jones S, O’Mara AR, Woodhams MD, Jordan GJ. Accuracy of ancestral state reconstruction for non-neutral traits. Sci Rep. 2020;10(1):7644. doi: 10.1038/s41598-020-64647-4 PubMed DOI PMC

Gàlvez-Morante A, Guéguen L, Natsidis P, Telford MJ, Richter DJ. Dollo parsimony overestimates ancestral gene content reconstructions. Genome Biol Evol. 2024;16(4):evae062. doi: 10.1093/gbe/evae062 PubMed DOI PMC

Szöllősi GJ, Rosikiewicz W, Boussau B, Tannier E, Daubin V. Efficient exploration of the space of reconciled gene trees. Syst Biol. 2013;62(6):901–912. doi: 10.1093/sysbio/syt054 PubMed DOI PMC

Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, et al.. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A. 2015;112(7):E693–E699. doi: 10.1073/pnas.1420657112 PubMed DOI PMC

He D, Fiz-Palacios O, Fu CJ, Fehling J, Tsai CC, Baldauf SL. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24(4):465–70. Epub 20140206. doi: 10.1016/j.cub.2014.01.036 . PubMed DOI

Al Jewari C, Baldauf SL. An excavate root for the eukaryote tree of life. Sci Adv. 2023;9(17):eade4973. Epub 20230428. doi: 10.1126/sciadv.ade4973 ; PubMed Central PMCID: PMC10146883. PubMed DOI PMC

Roger AJ, Williamson K, Eme L, Baños H, McCarthy C, Susko E, et al.. A robustly rooted tree of eukaryotes reveals their excavate ancestry. Res Sq. 2024. doi: 10.21203/rs.3.rs-5059906/v1 DOI

Nevers Y, Jones TEM, Jyothi D, Yates B, Ferret M, Portell-Silva L, et al.. The Quest for Orthologs orthology benchmark service in 2022. Nucleic Acids Res. 2022;50(W1):W623–W632. doi: 10.1093/nar/gkac330 PubMed DOI PMC

Dessimoz C, Gabaldón T, Roos DS, Sonnhammer ELL, Herrero J, Consortium tQfO. Toward community standards in the quest for orthologs. Bioinformatics. 2012;28(6):900–904. doi: 10.1093/bioinformatics/bts050 PubMed DOI PMC

Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001;313(4):903–919. doi: 10.1006/jmbi.2001.5080 . PubMed DOI

Eddy SR. Hidden Markov models. Curr Opin Struct Biol. 1996;6(3):361–365. doi: 10.1016/s0959-440x(96)80056-x PubMed DOI

Söding J. Protein homology detection by HMM–HMM comparison. Bioinformatics. 2005;21(7):951–960. doi: 10.1093/bioinformatics/bti125 PubMed DOI

Jablonowski K. Hidden Markov Models for protein domain homology Identification and analysis. Methods Mol Biol. 2017;1555:47–58. doi: 10.1007/978-1-4939-6762-9_3 . PubMed DOI

Srivastava PK, Desai DK, Nandi S, Lynn AM. HMM-ModE—improved classification using profile hidden Markov models by optimising the discrimination threshold and modifying emission probabilities with negative training sequences. BMC Bioinformatics. 2007;8:104. Epub 20070327. doi: 10.1186/1471-2105-8-104 ; PubMed Central PMCID: PMC1852395. PubMed DOI PMC

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–D462. doi: 10.1093/nar/gkv1070 PubMed DOI PMC

Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al.. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022:2. doi: 10.24072/pcjournal.173 PubMed DOI

Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 2019;1962:227–245. doi: 10.1007/978-1-4939-9173-0_14 . PubMed DOI

Nevers Y, Warwick Vesztrocy A, Rossier V, Train C-M, Altenhoff A, Dessimoz C, et al.. Quality assessment of gene repertoire annotations with OMArk. Nat Biotechnol. 2024. doi: 10.1038/s41587-024-02147-w PubMed DOI

Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, et al.. PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021;19(8):e3001365. doi: 10.1371/journal.pbio.3001365 PubMed DOI PMC

Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19(2):R81–R88. doi: 10.1016/j.cub.2008.11.067 PubMed DOI

Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol. 2013;64(1):583–607. doi: 10.1146/annurev-arplant-050312-120144 PubMed DOI

Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, et al.. Multiple independent origins of apicomplexan-like parasites. Curr Biol. 2019;29(17):2936–41.e5. doi: 10.1016/j.cub.2019.07.019 PubMed DOI

Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G, Paszkiewicz K, et al.. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci U S A. 2011;108(37):15258–15263. doi: 10.1073/pnas.1105100108 PubMed DOI PMC

Bartošová-Sojková P, Butenko A, Richtová J, Fiala I, Oborník M, Lukeš J. Inside the host: understanding the evolutionary trajectories of intracellular parasitism. Annu Rev Microbiol. 2024. Epub 20240429. doi: 10.1146/annurev-micro-041222-025305 . PubMed DOI

Poulin R, Randhawa HS. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology. 2015;142(Suppl 1):S6–s15. Epub 20131111. doi: 10.1017/S0031182013001674 ; PubMed Central PMCID: PMC4413784. PubMed DOI PMC

Herron MD, Conlin PL, Ratcliff WC. The evolution of multicellularity. Taylor & Francis Group; 2022.

Blaz J, Galindo LJ, Heiss AA, Kaur H, Torruella G, Yang A, et al.. One high quality genome and two transcriptome datasets for new species of Mantamonas, a deep-branching eukaryote clade. Sci Data. 2023;10(1):603. doi: 10.1038/s41597-023-02488-2 PubMed DOI PMC

Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, et al.. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun. 2021;12(1):2947. doi: 10.1038/s41467-021-23046-7 PubMed DOI PMC

Cotton JA, McInerney JO. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc Natl Acad Sci U S A. 2010;107(40):17252–5. Epub 20100917. doi: 10.1073/pnas.1000265107 ; PubMed Central PMCID: PMC2951413. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...