Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
20-01331X
Grantová Agentura České Republiky - International
CEITEC 2020 (LQ1601)
Ministry of Education, Youth and Sports of the Czech Republic - International
project SYMBIT, reg. no.CZ.02.1.01/0.0/0.0/15_003/0000477
European Regional Development Fund - International
PubMed
33050064
PubMed Central
PMC7658794
DOI
10.3390/biom10101425
PII: biom10101425
Knihovny.cz E-zdroje
- Klíčová slova
- evolution, plant TERT, plant TR., telomerase, telomerase RNA (TR), telomerase reverse transcriptase (TERT),
- MeSH
- biologická evoluce * MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- lidé MeSH
- RNA fyziologie MeSH
- telomerasa chemie fyziologie MeSH
- telomery metabolismus MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase-a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase-its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component-were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Zobrazit více v PubMed
Olovnikov A.M. Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk SSSR. 1971;201:1496–1499. PubMed
Greider C.W. Telomeres and senescence: The history, the experiment, the future. Curr. Biol. 1998;8:R178–R181. doi: 10.1016/S0960-9822(98)70105-8. PubMed DOI
Aubert G., Lansdorp P.M. Telomeres and Aging. Physiol. Rev. 2008;88:557–579. doi: 10.1152/physrev.00026.2007. PubMed DOI
Leman A., Noguchi E. The Replication Fork: Understanding the Eukaryotic Replication Machinery and the Challenges to Genome Duplication. Genes. 2013;4:1–32. doi: 10.3390/genes4010001. PubMed DOI PMC
Gilson E., Géli V. How telomeres are replicated. Nat. Rev. Mol. Cell Biol. 2007;8:825–838. doi: 10.1038/nrm2259. PubMed DOI
Diede S.J., Gottschling D.E. Telomerase-Mediated Telomere Addition In Vivo Requires DNA Primase and DNA Polymerases α and δ. Cell. 1999;99:723–733. doi: 10.1016/S0092-8674(00)81670-0. PubMed DOI
Procházková Schrumpfová P., Fojtová M., Fajkus J. Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells. 2019;8:58. doi: 10.3390/cells8010058. PubMed DOI PMC
Shay J.W., Wright W.E. Senescence and immortalization: Role of telomeres and telomerase. Carcinogenesis. 2005;26:867–874. doi: 10.1093/carcin/bgh296. PubMed DOI
Fajkus J., Kovařík A., Královics R. Telomerase activity in plant cells. FEBS Lett. 1996;391:307–309. doi: 10.1016/0014-5793(96)00757-0. PubMed DOI
Jurečková J.F., Sýkorová E., Hafidh S., Honys D., Fajkus J., Fojtová M. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum. Planta. 2017;245:549–561. doi: 10.1007/s00425-016-2624-1. PubMed DOI
Ogrocká A., Sýkorová E., Fajkus J., Fojtová M. Developmental silencing of the AtTERT gene is associated with increased H3K27me3 loading and maintenance of its euchromatic environment. J. Exp. Bot. 2012;63:4233–4241. doi: 10.1093/jxb/ers107. PubMed DOI PMC
Riha K., Fajkus J., Siroky J., Vyskot B. Developmental Control of Telomere Lengths and Telomerase Activity in Plants. Plant Cell. 1998;10:1691–1698. doi: 10.1105/tpc.10.10.1691. PubMed DOI PMC
Zachová D., Fojtová M., Dvořáčková M., Mozgová I., Lermontova I., Peška V., Schubert I., Fajkus J., Sýkorová E. Structure-function relationships during transgenic telomerase expression in Arabidopsis. Physiol. Plant. 2013;149:114–126. doi: 10.1111/ppl.12021. PubMed DOI
Shay J.W., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI
Cong Y.-S., Wright W.E., Shay J.W. Human Telomerase and Its Regulation. Microbiol. Mol. Biol. Rev. 2002;66:407–425. doi: 10.1128/MMBR.66.3.407-425.2002. PubMed DOI PMC
Avilion A.A., Piatyszek M.A., Gupta J., Shay J.W., Bacchetti S., Greider C.W. Human Telomerase RNA and Telomerase Activity in Immortal Cell Lines and Tumor Tissues. Cancer Res. 1996;1996:645–650. PubMed
Liu K., Hodes R.J., Weng N. Cutting Edge: Telomerase Activation in Human T Lymphocytes Does Not Require Increase in Telomerase Reverse Transcriptase (hTERT) Protein but Is Associated with hTERT Phosphorylation and Nuclear Translocation. J. Immunol. 2001;166:4826–4830. doi: 10.4049/jimmunol.166.8.4826. PubMed DOI
Weng N., Levine B.L., June C.H., Hodes R.J. Regulation of telomerase RNA template expression in human T lymphocyte development and activation. J. Immunol. 1997;158:3215–3220. PubMed
Fajkus P., Peška V., Závodník M., Fojtová M., Fulnečková J., Dobias Š., Kilar A., Dvořáčková M., Zachová D., Nečasová I., et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019;47:9842–9856. doi: 10.1093/nar/gkz695. PubMed DOI PMC
Wu J., Okada T., Fukushima T., Tsudzuki T., Sugiura M., Yukawa Y. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol. 2012;9:302–313. doi: 10.4161/rna.19101. PubMed DOI
Greider C.W., Blackburn E.H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987;51:887–898. doi: 10.1016/0092-8674(87)90576-9. PubMed DOI
Procházková Schrumpfová P., Schořová Š., Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00851. PubMed DOI PMC
Kim S., Parrinello S., Kim J., Campisi J. Mus musculus and Mus spretus homologues of the human telomere-associated protein TIN2. Genomics. 2003;81:422–432. doi: 10.1016/S0888-7543(02)00033-2. PubMed DOI
Burki F., Roger A.J., Brown M.W., Simpson A.G.B. The New Tree of Eukaryotes. Trends Ecol. Evol. 2020;35:43–55. doi: 10.1016/j.tree.2019.08.008. PubMed DOI
Aksenova A.Y., Mirkin S.M. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes. 2019;10:118. doi: 10.3390/genes10020118. PubMed DOI PMC
Sepsiova R., Necasova I., Willcox S., Prochazkova K., Gorilak P., Nosek J., Hofr C., Griffith J.D., Tomaska L. Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins. PLoS ONE. 2016;11:e0154225. doi: 10.1371/journal.pone.0154225. PubMed DOI PMC
Kuznetsova V., Grozeva S., Gokhman V. Telomere structure in insects: A review. J. Zool. Syst. Evol. Res. 2020;58:127–158. doi: 10.1111/jzs.12332. DOI
Vítková M., Král J., Traut W., Zrzavý J., Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG) N. Chromosome Res. 2005;13:145–156. doi: 10.1007/s10577-005-7721-0. PubMed DOI
Wicky C., Villeneuve A.M., Lauper N., Codourey L., Tobler H., Muller F. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 1996;93:8983–8988. doi: 10.1073/pnas.93.17.8983. PubMed DOI PMC
Červenák F., Juríková K., Sepšiová R., Neboháčová M., Nosek J., Tomáška L. Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle. 2017;16:1568–1577. doi: 10.1080/15384101.2017.1356511. PubMed DOI PMC
Fujiwara H., Osanai M., Matsumoto T., Kojima K.K. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res. 2005;13:455–467. doi: 10.1007/s10577-005-0990-9. PubMed DOI
Casacuberta E. Drosophila: Retrotransposons Making up Telomeres. Viruses. 2017;9:192. doi: 10.3390/v9070192. PubMed DOI PMC
Servant G., Deininger P.L. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front. Genet. 2016;6 doi: 10.3389/fgene.2015.00358. PubMed DOI PMC
Sasaki T., Fujiwara H. Detection and distribution patterns of telomerase activity in insects: Telomerase activity in insects. Eur. J. Biochem. 2000;267:3025–3031. doi: 10.1046/j.1432-1033.2000.01323.x. PubMed DOI
Takahashi H., Okazaki S., Fujiwara H. A New Family of Site-Specific Retrotransposons, SART1, Is Inserted into Telomeric Repeats of the Silkworm, Bombyx Mori. Nucleic Acids Res. 1997;25:1578–1584. doi: 10.1093/nar/25.8.1578. PubMed DOI PMC
Mason J.M., Randall T.A., Capkova Frydrychova R. Telomerase lost? Chromosoma. 2016;125:65–73. doi: 10.1007/s00412-015-0528-7. PubMed DOI PMC
Koonin E.V. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol. Direct. 2006;1:22. doi: 10.1186/1745-6150-1-22. PubMed DOI PMC
Fulnečková J., Ševčíková T., Fajkus J., Lukešová A., Lukeš M., Vlček Č., Lang B.F., Kim E., Eliáš M., Sýkorová E. A Broad Phylogenetic Survey Unveils the Diversity and Evolution of Telomeres in Eukaryotes. Genome Biol. Evol. 2013;5:468–483. doi: 10.1093/gbe/evt019. PubMed DOI PMC
Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., et al. The Revised Classification of Eukaryotes. J. Eukaryot. Microbiol. 2012;59:429–514. doi: 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC
Richards E.J., Ausubel F.M. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988;53:127–136. doi: 10.1016/0092-8674(88)90494-1. PubMed DOI
Sýkorová E., Lim K.Y., Kunická Z., Chase M.W., Bennett M.D., Fajkus J., Leitch A.R. Telomere variability in the monocotyledonous plant order Asparagales. Proc. R. Soc. Lond. B. 2003;270:1893–1904. doi: 10.1098/rspb.2003.2446. PubMed DOI PMC
Sýkorová E., Leitch A.R., Fajkus J. Asparagales Telomerases which Synthesize the Human Type of Telomeres. Plant Mol. Biol. 2006;60:633–646. doi: 10.1007/s11103-005-5091-9. PubMed DOI
Fajkus P., Peška V., Sitová Z., Fulnečková J., Dvořáčková M., Gogela R., Sýkorová E., Hapala J., Fajkus J. Allium telomeres unmasked: The unusual telomeric sequence (CTCGGTTATGGG) n is synthesized by telomerase. Plant J. 2016;85:337–347. doi: 10.1111/tpj.13115. PubMed DOI
Peška V., Fajkus P., Fojtová M., Dvořáčková M., Hapala J., Dvořáček V., Polanská P., Leitch A.R., Sýkorová E., Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG) n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015;82:644–654. doi: 10.1111/tpj.12839. PubMed DOI
Tran T.D., Cao H.X., Jovtchev G., Neumann P., Novák P., Fojtová M., Vu G.T.H., Macas J., Fajkus J., Schubert I., et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015;84:1087–1099. doi: 10.1111/tpj.13058. PubMed DOI
Fulnečková J., Ševčíková T., Lukešová A., Sýkorová E. Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales) Chromosoma. 2016;125:437–451. doi: 10.1007/s00412-015-0557-2. PubMed DOI
Peska V., Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. Front. Plant Sci. 2020;11:117. doi: 10.3389/fpls.2020.00117. PubMed DOI PMC
De Lange T. A loopy view of telomere evolution. Front. Genet. 2015;6:321. doi: 10.3389/fgene.2015.00321. PubMed DOI PMC
Lambowitz A.M., Zimmerly S. Group II Introns: Mobile Ribozymes that Invade DNA. Cold Spring Harbor Perspect. Biol. 2011;3:a003616. doi: 10.1101/cshperspect.a003616. PubMed DOI PMC
Nakamura T.M. Telomerase Catalytic Subunit Homologs from Fission Yeast and Human. Science. 1997;277:955–959. doi: 10.1126/science.277.5328.955. PubMed DOI
Lingner J. Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase. Science. 1997;276:561–567. doi: 10.1126/science.276.5312.561. PubMed DOI
Boeke J.D. The Unusual Phylogenetic Distribution of Retrotransposons: A Hypothesis. Genome Res. 2003;13:1975–1983. doi: 10.1101/gr.1392003. PubMed DOI
Dreesen O. Telomere structure and shortening in telomerase-deficient Trypanosoma brucei. Nucleic Acids Res. 2005;33:4536–4543. doi: 10.1093/nar/gki769. PubMed DOI PMC
Giardini M.A., Lira C.B.B., Conte F.F., Camillo L.R., de Siqueira Neto J.L., Ramos C.H.I., Cano M.I.N. The putative telomerase reverse transcriptase component of Leishmania amazonensis: Gene cloning and characterization. Parasitol. Res. 2006;98:447–454. doi: 10.1007/s00436-005-0036-4. PubMed DOI
Podlevsky J.D., Chen J.J.-L. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016;13:720–732. doi: 10.1080/15476286.2016.1205768. PubMed DOI PMC
Dey A., Chakrabarti K. Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int. J. Mol. Sci. 2018;19:333. doi: 10.3390/ijms19020333. PubMed DOI PMC
Fragnet L., Blasco M.A., Klapper W., Rasschaert D. The RNA Subunit of Telomerase Is Encoded by Marek’s Disease Virus. JVI. 2003;77:5985–5996. doi: 10.1128/JVI.77.10.5985-5996.2003. PubMed DOI PMC
Trapp-Fragnet L., Marie-Egyptienne D., Fakhoury J., Rasschaert D., Autexier C. The human telomerase catalytic subunit and viral telomerase RNA reconstitute a functional telomerase complex in a cell-free system, but not in human cells. Cell. Mol. Biol. Lett. 2012;17 doi: 10.2478/s11658-012-0031-6. PubMed DOI PMC
Bryan T.M., Englezou A., Gupta J., Bacchetti S., Reddel R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14:4240–4248. doi: 10.1002/j.1460-2075.1995.tb00098.x. PubMed DOI PMC
Dunham M.A., Neumann A.A., Fasching C.L., Reddel R.R. Telomere maintenance by recombination in human cells. Nat. Genet. 2000;26:447–450. doi: 10.1038/82586. PubMed DOI
Lundblad V., Blackburn E.H. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell. 1993;73:347–360. doi: 10.1016/0092-8674(93)90234-H. PubMed DOI
Růčková E., Friml J., Procházková Schrumpfová P., Fajkus J. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol. Biol. 2008;66:637–646. doi: 10.1007/s11103-008-9295-7. PubMed DOI
Kachouri-Lafond R., Dujon B., Gilson E., Westhof E., Fairhead C., Teixeira M.T. Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata. FEBS Lett. 2009;583:3605–3610. doi: 10.1016/j.febslet.2009.10.034. PubMed DOI
Egan E.D., Collins K. Biogenesis of telomerase ribonucleoproteins. RNA. 2012;18:1747–1759. doi: 10.1261/rna.034629.112. PubMed DOI PMC
Collins K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 2006;7:484–494. doi: 10.1038/nrm1961. PubMed DOI PMC
Feng J., Funk W., Wang S., Weinrich S., Avilion A., Chiu C., Adams R., Chang E., Allsopp R., Yu J., et al. The RNA component of human telomerase. Science. 1995;269:1236–1241. doi: 10.1126/science.7544491. PubMed DOI
Dew-Budd K., Cheung J., Palos K., Forsythe E.S., Beilstein M.A. Evolutionary and biochemical analyses reveal conservation of the Brassicaceae telomerase ribonucleoprotein complex. PLoS ONE. 2020;15:e0222687. doi: 10.1371/journal.pone.0222687. PubMed DOI PMC
Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D.E. Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. USA. 2011;108:73–78. doi: 10.1073/pnas.1013021107. PubMed DOI PMC
Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D.E. Retraction for Cifuentes-Rojas et al., Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. USA. 2019;116:24908. doi: 10.1073/pnas.1918863116. PubMed DOI PMC
Wu R.A., Upton H.E., Vogan J.M., Collins K. Telomerase Mechanism of Telomere Synthesis. Annu. Rev. Biochem. 2017;86:439–460. doi: 10.1146/annurev-biochem-061516-045019. PubMed DOI PMC
Song J., Logeswaran D., Castillo-González C., Li Y., Bose S., Aklilu B.B., Ma Z., Polkhovskiy A., Chen J.J.-L., Shippen D.E. The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans. Proc. Natl. Acad. Sci. USA. 2019;116:24542–24550. doi: 10.1073/pnas.1915312116. PubMed DOI PMC
Jiang J., Chan H., Cash D.D., Miracco E.J., Ogorzalek Loo R.R., Upton H.E., Cascio D., O’Brien Johnson R., Collins K., Loo J.A., et al. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science. 2015;350:aab4070. doi: 10.1126/science.aab4070. PubMed DOI PMC
Xie M., Podlevsky J.D., Qi X., Bley C.J., Chen J.J.-L. A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res. 2010;38:1982–1996. doi: 10.1093/nar/gkp1198. PubMed DOI PMC
Chan H., Wang Y., Feigon J. Progress in Human and Tetrahymena Telomerase Structure Determination. Annu. Rev. Biophys. 2017;46:199–225. doi: 10.1146/annurev-biophys-062215-011140. PubMed DOI PMC
Sýkorová E., Fajkus J. Structure-function relationships in telomerase genes. Biol. Cell. 2009;101:375–406. doi: 10.1042/BC20080205. PubMed DOI
Lukowiak A.A., Narayanan A., Li Z.H., Terns R.M., Terns M.P. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA. 2001;7:1833–1844. PubMed PMC
Zhu Y., Tomlinson R.L., Lukowiak A.A., Terns R.M., Terns M.P. Telomerase RNA Accumulates in Cajal Bodies in Human Cancer Cells. Mol. Biol. Cell. 2004;15:81–90. doi: 10.1091/mbc.e03-07-0525. PubMed DOI PMC
Blasco M., Funk W., Villeponteau B., Greider C. Functional characterization and developmental regulation of mouse telomerase RNA. Science. 1995;269:1267–1270. doi: 10.1126/science.7544492. PubMed DOI
Kiss T., Filipowicz W. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 1995;9:1411–1424. doi: 10.1101/gad.9.11.1411. PubMed DOI
Kiss T., Fayet-Lebaron E., Jády B.E. Box H/ACA Small Ribonucleoproteins. Mol. Cell. 2010;37:597–606. doi: 10.1016/j.molcel.2010.01.032. PubMed DOI
Galloway A., Cowling V.H. mRNA cap regulation in mammalian cell function and fate. Biochim. Biophys. Acta -Gene Regul. Mech. 2019;1862:270–279. doi: 10.1016/j.bbagrm.2018.09.011. PubMed DOI PMC
Chen L., Roake C.M., Galati A., Bavasso F., Micheli E., Saggio I., Schoeftner S., Cacchione S., Gatti M., Artandi S.E., et al. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep. 2020;30:1358–1372. doi: 10.1016/j.celrep.2020.01.004. PubMed DOI PMC
Jády B.E., Bertrand E., Kiss T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body–specific localization signal. J. Cell Biol. 2004;164:647–652. doi: 10.1083/jcb.200310138. PubMed DOI PMC
MacNeil D., Bensoussan H., Autexier C. Telomerase Regulation from Beginning to the End. Genes. 2016;7:64. doi: 10.3390/genes7090064. PubMed DOI PMC
Rubtsova M., Dontsova O. Human Telomerase RNA: Telomerase Component or More? Biomolecules. 2020;10:873. doi: 10.3390/biom10060873. PubMed DOI PMC
Robart A.R., Collins K. Investigation of Human Telomerase Holoenzyme Assembly, Activity, and Processivity Using Disease-linked Subunit Variants. J. Biol. Chem. 2010;285:4375–4386. doi: 10.1074/jbc.M109.088575. PubMed DOI PMC
Huang J., Brown A.F., Wu J., Xue J., Bley C.J., Rand D.P., Wu L., Zhang R., Chen J.J.-L., Lei M. Structural basis for protein-RNA recognition in telomerase. Nat. Struct. Mol. Biol. 2014;21:507–512. doi: 10.1038/nsmb.2819. PubMed DOI PMC
Chen Y., Podlevsky J.D., Logeswaran D., Chen J.J. A single nucleotide incorporation step limits human telomerase repeat addition activity. EMBO J. 2018;37:e97953. doi: 10.15252/embj.201797953. PubMed DOI PMC
Collins K., Greider C.W. Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. Genes Dev. 1993;7:1364–1376. doi: 10.1101/gad.7.7b.1364. PubMed DOI
Lue N.F. A Physical and Functional Constituent of Telomerase Anchor Site. J. Biol. Chem. 2005;280:26586–26591. doi: 10.1074/jbc.M503028200. PubMed DOI PMC
Akiyama B.M., Parks J.W., Stone M.D. The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA-DNA hybrids. Nucleic Acids Res. 2015;43:5537–5549. doi: 10.1093/nar/gkv406. PubMed DOI PMC
Patrick E.M., Slivka J.D., Payne B., Comstock M.J., Schmidt J.C. Observation of processive telomerase catalysis using high-resolution optical tweezers. Nat. Chem. Biol. 2020;16:801–809. doi: 10.1038/s41589-020-0478-0. PubMed DOI PMC
Moriarty T.J., Marie-Egyptienne D.T., Autexier C. Functional Organization of Repeat Addition Processivity and DNA Synthesis Determinants in the Human Telomerase Multimer. Mol. Cell. Biol. 2004;24:3720–3733. doi: 10.1128/MCB.24.9.3720-3733.2004. PubMed DOI PMC
Sauerwald A., Sandin S., Cristofari G., Scheres S.H.W., Lingner J., Rhodes D. Structure of active dimeric human telomerase. Nat. Struct. Mol. Biol. 2013;20:454–460. doi: 10.1038/nsmb.2530. PubMed DOI PMC
Sandin S., Rhodes D. Telomerase structure. Curr. Opin. Struct. Biol. 2014;25:104–110. doi: 10.1016/j.sbi.2014.02.003. PubMed DOI PMC
Nguyen T.H.D., Tam J., Wu R.A., Greber B.J., Toso D., Nogales E., Collins K. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature. 2018;557:190–195. doi: 10.1038/s41586-018-0062-x. PubMed DOI PMC
Jiang J., Miracco E.J., Hong K., Eckert B., Chan H., Cash D.D., Min B., Zhou Z.H., Collins K., Feigon J. The architecture of Tetrahymena telomerase holoenzyme. Nature. 2013;496:187–192. doi: 10.1038/nature12062. PubMed DOI PMC
Majerská J., Procházková Schrumpfová P., Dokládal L., Schořová Š., Stejskal K., Obořil M., Honys D., Kozáková L., Polanská P.S., Sýkorová E. Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. Protoplasma. 2017;254:1547–1562. doi: 10.1007/s00709-016-1042-3. PubMed DOI
Dergai O., Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes. Trends Genet. 2019;35:457–469. doi: 10.1016/j.tig.2019.04.001. PubMed DOI
Cunningham D.D., Collins K. Biological and Biochemical Functions of RNA in the Tetrahymena Telomerase Holoenzyme. Mol. Cell. Biol. 2005;25:4442–4454. doi: 10.1128/MCB.25.11.4442-4454.2005. PubMed DOI PMC
Roake C.M., Artandi S.E. Regulation of human telomerase in homeostasis and disease. Nat. Rev. Mol. Cell Biol. 2020;21:384–397. doi: 10.1038/s41580-020-0234-z. PubMed DOI PMC
Malik H.S., Burke W.D., Eickbush T.H. Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene. 2000;251:101–108. doi: 10.1016/S0378-1119(00)00207-9. PubMed DOI
Lai A.G., Pouchkina-Stantcheva N., Di Donfrancesco A., Kildisiute G., Sahu S., Aboobaker A.A. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evol. Biol. 2017;17:107. doi: 10.1186/s12862-017-0949-4. PubMed DOI PMC
Chung J., Khadka P., Chung I.K. Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation. J. Cell Sci. 2012;125:2684–2697. doi: 10.1242/jcs.099267. PubMed DOI
Hoffman H., Rice C., Skordalakes E. Structural Analysis Reveals the Deleterious Effects of Telomerase Mutations in Bone Marrow Failure Syndromes. J. Biol. Chem. 2017;292:4593–4601. doi: 10.1074/jbc.M116.771204. PubMed DOI PMC
Autexier C., Lue N.F. The Structure and Function of Telomerase Reverse Transcriptase. Annu. Rev. Biochem. 2006;75:493–517. doi: 10.1146/annurev.biochem.75.103004.142412. PubMed DOI
Kilian A., Bowtell D.D.L., Abud H.E., Hime G.R., Venter D.J., Keese P.K., Duncan E.L., Reddel R.R., Jefferson R.A. Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types. Hum. Mol. Genet. 1997;6:2011–2019. doi: 10.1093/hmg/6.12.2011. PubMed DOI
Harrington L., Zhou W., McPhail T., Oulton R., Yeung D.S.K., Mar V., Bass M.B., Robinson M.O. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 1997;11:3109–3115. doi: 10.1101/gad.11.23.3109. PubMed DOI PMC
Meyerson M., Counter C.M., Eaton E.N., Ellisen L.W., Steiner P., Caddle S.D., Ziaugra L., Beijersbergen R.L., Davidoff M.J., Liu Q., et al. hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization. Cell. 1997;90:785–795. doi: 10.1016/S0092-8674(00)80538-3. PubMed DOI
Sýkorová E., Fulnečková J., Mokroš P., Fajkus J., Fojtová M., Peška V. Three TERT genes in Nicotiana tabacum. Chromosome Res. 2012;20:381–394. doi: 10.1007/s10577-012-9282-3. PubMed DOI
Khattar E., Tergaonkar V. Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC. Front. Cell Dev. Biol. 2017;5 doi: 10.3389/fcell.2017.00001. PubMed DOI PMC
Jie M.-M., Chang X., Zeng S., Liu C., Liao G.-B., Wu Y.-R., Liu C.-H., Hu C.-J., Yang S.-M., Li X.-Z. Diverse regulatory manners of human telomerase reverse transcriptase. Cell Commun. Signal. 2019;17:63. doi: 10.1186/s12964-019-0372-0. PubMed DOI PMC
Ramlee M., Wang J., Toh W., Li S. Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes. 2016;7:50. doi: 10.3390/genes7080050. PubMed DOI PMC
Flavin P., Redmond A., McBryan J., Cocchiglia S., Tibbitts P., Fahy-Browne P., Kay E., Treumann A., Perrem K., McIlroy M., et al. RuvBl2 cooperates with Ets2 to transcriptionally regulate hTERT in colon cancer. FEBS Lett. 2011;585:2537–2544. doi: 10.1016/j.febslet.2011.07.005. PubMed DOI
Takakura M., Kyo S., Kanaya T., Hirano H., Takeda J., Yutsudo M., Inoue M. Cloning of Human Telomerase Catalytic Subunit (hTERT) Gene Promoter and Identification of Proximal Core Promoter Sequences Essential for Transcriptional Activation in Immortalized and Cancer Cells. Cancer Research. 1999;59:551–557. PubMed
Horikawa I., Cable P.L., Afshari C., Barrett J.C. Cloning and Characterization of the Promoter Region of Human Telomerase Reverse Transcriptase Gene. Cancer Res. 1999;59:826–830. PubMed
Crhák T., Zachová D., Fojtová M., Sýkorová E. The region upstream of the telomerase reverse transcriptase gene is essential for in planta telomerase complementation. Plant Sci. 2019;281:41–51. doi: 10.1016/j.plantsci.2019.01.001. PubMed DOI
Stern J.L., Theodorescu D., Vogelstein B., Papadopoulos N., Cech T.R. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev. 2015;29:2219–2224. doi: 10.1101/gad.269498.115. PubMed DOI PMC
Akıncılar S.C., Khattar E., Boon P.L.S., Unal B., Fullwood M.J., Tergaonkar V. Long-Range Chromatin Interactions Drive Mutant TERT Promoter Activation. Cancer Discov. 2016;6:1276–1291. doi: 10.1158/2159-8290.CD-16-0177. PubMed DOI
Fajkus J., Fulnečková J., Hulánová M., Berková K., Říha K., Matyášek R. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol. Gen. Genet. 1998;260:470–474. doi: 10.1007/s004380050918. PubMed DOI
Cong Y., Wen J., Bacchetti S. The human telomerase catalytic subunit hTERT: Organization of the gene and characterization of the promoter. Hum. Mol. Genet. 1999;8:137–142. doi: 10.1093/hmg/8.1.137. PubMed DOI
Antosz W., Pfab A., Ehrnsberger H.F., Holzinger P., Köllen K., Mortensen S.A., Bruckmann A., Schubert T., Längst G., Griesenbeck J., et al. The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors. Plant Cell. 2017;29:854–870. doi: 10.1105/tpc.16.00735. PubMed DOI PMC
Stern J.L., Paucek R.D., Huang F.W., Ghandi M., Nwumeh R., Costello J.C., Cech T.R. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes. Cell Rep. 2017;21:3700–3707. doi: 10.1016/j.celrep.2017.12.001. PubMed DOI PMC
Bodnar A.G. Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science. 1998;279:349–352. doi: 10.1126/science.279.5349.349. PubMed DOI
Hrdlickova R., Nehyba J., Bose H.R. Alternatively Spliced Telomerase Reverse Transcriptase Variants Lacking Telomerase Activity Stimulate Cell Proliferation. Mol. Cell. Biol. 2012;32:4283–4296. doi: 10.1128/MCB.00550-12. PubMed DOI PMC
Kang S.S., Kwon T., Kwon D.Y., Do S.I. Akt Protein Kinase Enhances Human Telomerase Activity through Phosphorylation of Telomerase Reverse Transcriptase Subunit. J. Biol. Chem. 1999;274:13085–13090. doi: 10.1074/jbc.274.19.13085. PubMed DOI
Kim J.H. Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev. 2005;19:776–781. doi: 10.1101/gad.1289405. PubMed DOI PMC
Oguchi K., Tamura K., Takahashi H. Characterization of Oryza sativa telomerase reverse transcriptase and possible role of its phosphorylation in the control of telomerase activity. Gene. 2004;342:57–66. doi: 10.1016/j.gene.2004.07.011. PubMed DOI
Yang S.W., Jin E., Chung I.K., Kim W.T. Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. Plant J. 2002;29:617–626. doi: 10.1046/j.0960-7412.2001.01244.x. PubMed DOI
Jeong S.A., Kim K., Lee J.H., Cha J.S., Khadka P., Cho H.-S., Chung I.K. Akt-mediated phosphorylation increases the binding affinity of hTERT for importin to promote nuclear translocation. J. Cell Sci. 2015;128:2287–2301. doi: 10.1242/jcs.166132. PubMed DOI
Fitzgerald M.S., Riha K., Gao F., Ren S., McKnight T.D., Shippen D.E. Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc. Natl. Acad. Sci. USA. 1999;96:14813–14818. doi: 10.1073/pnas.96.26.14813. PubMed DOI PMC
Atkinson S.P., Hoare S.F., Glasspool R.M., Keith W.N. Lack of Telomerase Gene Expression in Alternative Lengthening of Telomere Cells Is Associated with Chromatin Remodeling of the hTR and hTERT Gene Promoters. Cancer Res. 2005;65:7585–7590. doi: 10.1158/0008-5472.CAN-05-1715. PubMed DOI
Cairney C.J., Hoare S.F., Daidone M.-G., Zaffaroni N., Keith W.N. High level of telomerase RNA gene expression is associated with chromatin modification, the ALT phenotype and poor prognosis in liposarcoma. Br. J. Cancer. 2008;98:1467–1474. doi: 10.1038/sj.bjc.6604328. PubMed DOI PMC
Schořová Š., Fajkus J., Záveská Drábková L., Honys D., Procházková Schrumpfová P. The plant Pontin and Reptin homologues, Ruv BL 1 and Ruv BL 2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. Plant J. 2019;98:195–212. doi: 10.1111/tpj.14306. PubMed DOI
Pendle A.F., Clark G.P., Boon R., Lewandowska D., Lam Y.W., Andersen J., Mann M., Lamond A.I., Brown J.W.S., Shaw P.J. Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar Functions. Mol. Biol. Cell. 2005;16:260–269. doi: 10.1091/mbc.e04-09-0791. PubMed DOI PMC
Lermontova I., Schubert V., Börnke F., Macas J., Schubert I. Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Mol. Biol. 2007;65:615–626. doi: 10.1007/s11103-007-9226-z. PubMed DOI
Khurts S., Masutomi K., Delgermaa L., Arai K., Oishi N., Mizuno H., Hayashi N., Hahn W.C., Murakami S. Nucleolin Interacts with Telomerase. J. Biol. Chem. 2004;279:51508–51515. doi: 10.1074/jbc.M407643200. PubMed DOI
Pontvianne F., Carpentier M.-C., Durut N., Pavlištová V., Jaške K., Schořová Š., Parrinello H., Rohmer M., Pikaard C.S., Fojtová M., et al. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome. Cell Rep. 2016;16:1574–1587. doi: 10.1016/j.celrep.2016.07.016. PubMed DOI PMC
Pontvianne F., Abou-Ellail M., Douet J., Comella P., Matia I., Chandrasekhara C., DeBures A., Blevins T., Cooke R., Medina F.J., et al. Nucleolin Is Required for DNA Methylation State and the Expression of rRNA Gene Variants in Arabidopsis thaliana. PLoS Genet. 2010;6:e1001225. doi: 10.1371/journal.pgen.1001225. PubMed DOI PMC
Venteicher A.S., Meng Z., Mason P.J., Veenstra T.D., Artandi S.E. Identification of ATPases Pontin and Reptin as Telomerase Components Essential for Holoenzyme Assembly. Cell. 2008;132:945–957. doi: 10.1016/j.cell.2008.01.019. PubMed DOI PMC
Poole A.R., Hebert M.D. SMN and coilin negatively regulate dyskerin association with telomerase RNA. Biol. Open. 2016;5:726–735. doi: 10.1242/bio.018804. PubMed DOI PMC
Hebert M.D., Shpargel K.B., Ospina J.K., Tucker K.E., Matera A.G. Coilin Methylation Regulates Nuclear Body Formation. Dev. Cell. 2002;3:329–337. doi: 10.1016/S1534-5807(02)00222-8. PubMed DOI
Dvorackova M. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: 2010. Analysis of Arabidopsis Telomere-Associated Proteins in Vivo.
Zhong F.L., Batista L.F.Z., Freund A., Pech M.F., Venteicher A.S., Artandi S.E. TPP1 OB-Fold Domain Controls Telomere Maintenance by Recruiting Telomerase to Chromosome Ends. Cell. 2012;150:481–494. doi: 10.1016/j.cell.2012.07.012. PubMed DOI PMC
Procházková Schrumpfová P., Vychodilová I., Dvořáčková M., Majerská J., Dokládal L., Schořová Š., Fajkus J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 2014;77:770–781. doi: 10.1111/tpj.12428. PubMed DOI PMC
Ulaner G.A., Hu J.F., Vu T.H., Giudice L.C., Hoffman A.R. Telomerase Activity in Human Development Is Regulated by Human Telomerase Reverse Transcriptase (hTERT) Transcription and by Alternate Splicing of hTERT Transcripts. Cancer Res. 1998;58:4168–4172. PubMed
Nehyba J., Hrdlickova R., Bose H.R. The Regulation of Telomerase by Alternative Splicing of TERT. In: Li B., editor. Reviews on Selected Topics of Telomere Biology. InTech; London, UK: 2012.
Ulaner G.A., Hu J.F., Vu T.H., Giudice L.C., Hoffman A.R. Tissue-specific alternate splicing of human telomerase reverse transcriptase (hTERT) influences telomere lengths during human development. Int. J. Cancer. 2001;91:644–649. doi: 10.1002/1097-0215(200002)9999:9999<::AID-IJC1103>3.0.CO;2-V. PubMed DOI
Brenner C.A., Wolny Y.M., Adler R.R., Cohen J. Alternative splicing of the telomerase catalytic subunit in human oocytes and embryos. MHR Basic Sci. Reprod. Med. 1999;5:845–850. doi: 10.1093/molehr/5.9.845. PubMed DOI
Kaneko R., Esumi S., Yagi T., Hirabayashi T. Predominant Expression of rTERTb, an Inactive TERT Variant, in the Adult Rat Brain. Protein Pept. Lett. 2006;13:59–65. doi: 10.2174/092986606774502108. PubMed DOI
Ludlow A.T., Slusher A.L., Sayed M.E. Insights into Telomerase/hTERT Alternative Splicing Regulation Using Bioinformatics and Network Analysis in Cancer. Cancers. 2019;11:666. doi: 10.3390/cancers11050666. PubMed DOI PMC
Wong M.S., Wright W.E., Shay J.W. Alternative splicing regulation of telomerase: A new paradigm? Trends Genet. 2014;30:430–438. doi: 10.1016/j.tig.2014.07.006. PubMed DOI PMC
Colgin L.M., Wilkinso C., Englezou A., Kilian A., Robinson M.O., Reddel R.R. The hTERTα Splice Variant is a Dominant Negative Inhibitor of Telomerase Activity. Neoplasia. 2000;2:426–432. doi: 10.1038/sj.neo.7900112. PubMed DOI PMC
Kunická Z., Mucha I., Fajkus J. Telomerase activity in head and neck cancer. Anticancer Res. 2008;28:3125–3129. PubMed
Listerman I., Sun J., Gazzaniga F.S., Lukas J.L., Blackburn E.H. The Major Reverse Transcriptase-Incompetent Splice Variant of the Human Telomerase Protein Inhibits Telomerase Activity but Protects from Apoptosis. Cancer Res. 2013;73:2817–2828. doi: 10.1158/0008-5472.CAN-12-3082. PubMed DOI PMC
Rossignol P., Collier S., Bush M., Shaw P., Doonan J.H. Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J. Cell Sci. 2007;120:3678–3687. doi: 10.1242/jcs.004119. PubMed DOI
Rotková G., Sýkorová E., Fajkus J. Protect and regulate: Recent findings on plant POT1-like proteins. Biol. Plant. 2009;53:1–4. doi: 10.1007/s10535-009-0001-7. DOI
Tamura K., Liu H., Takahashi H. Auxin Induction of Cell Cycle Regulated Activity of Tobacco Telomerase. J. Biol. Chem. 1999;274:20997–21002. doi: 10.1074/jbc.274.30.20997. PubMed DOI
Ren S., Johnston J.S., Shippen D.E., McKnight T.D. TELOMERASE ACTIVATOR1 Induces Telomerase Activity and Potentiates Responses to Auxin in Arabidopsis. Plant Cell. 2004;16:2910–2922. doi: 10.1105/tpc.104.025072. PubMed DOI PMC
Ren S., Mandadi K.K., Boedeker A.L., Rathore K.S., McKnight T.D. Regulation of Telomerase in Arabidopsis by BT2, an Apparent Target of TELOMERASE ACTIVATOR1. Plant Cell. 2007;19:23–31. doi: 10.1105/tpc.106.044321. PubMed DOI PMC
Nguyen D., Grenier St-Sauveur V., Bergeron D., Dupuis-Sandoval F., Scott M.S., Bachand F. A Polyadenylation-Dependent 3′ End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep. 2015;13:2244–2257. doi: 10.1016/j.celrep.2015.11.003. PubMed DOI
Tseng C.-K., Wang H.-F., Burns A.M., Schroeder M.R., Gaspari M., Baumann P. Human Telomerase RNA Processing and Quality Control. Cell Rep. 2015;13:2232–2243. doi: 10.1016/j.celrep.2015.10.075. PubMed DOI
Majerská J., Sýkorová E., Fajkus J. Non-telomeric activities of telomerase. Mol. BioSyst. 2011;7:1013. doi: 10.1039/c0mb00268b. PubMed DOI
Blasco M.A., Rizen M., Greider C.W., Hanahan D. Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nat. Genet. 1996;12:200–204. doi: 10.1038/ng0296-200. PubMed DOI
Kedde M., le Sage C., Duursma A., Zlotorynski E., van Leeuwen B., Nijkamp W., Beijersbergen R., Agami R. Telomerase-independent Regulation of ATR by Human Telomerase RNA. J. Biol. Chem. 2006;281:40503–40514. doi: 10.1074/jbc.M607676200. PubMed DOI
Ségal-Bendirdjian E., Geli V. Non-canonical Roles of Telomerase: Unraveling the Imbroglio. Front. Cell Dev. Biol. 2019;7:332. doi: 10.3389/fcell.2019.00332. PubMed DOI PMC
Dokládal L., Benková E., Honys D., Dupľáková N., Lee L.-Y., Gelvin S.B., Sýkorová E. An armadillo-domain protein participates in a telomerase interaction network. Plant Mol. Biol. 2018;97:407–420. doi: 10.1007/s11103-018-0747-4. PubMed DOI
Park J.-I., Venteicher A.S., Hong J.Y., Choi J., Jun S., Shkreli M., Chang W., Meng Z., Cheung P., Ji H., et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460:66–72. doi: 10.1038/nature08137. PubMed DOI PMC
Yu Y.-T., Meier U.T. RNA-guided isomerization of uridine to pseudouridine—Pseudouridylation. RNA Biol. 2014;11:1483–1494. doi: 10.4161/15476286.2014.972855. PubMed DOI PMC
Lee J.H., Lee Y.S., Jeong S.A., Khadka P., Roth J., Chung I.K. Catalytically active telomerase holoenzyme is assembled in the dense fibrillar component of the nucleolus during S phase. Histochem. Cell Biol. 2014;141:137–152. doi: 10.1007/s00418-013-1166-x. PubMed DOI
Cheung D.H.-C., Ho S.-T., Lau K.-F., Jin R., Wang Y.-N., Kung H.-F., Huang J.-J., Shaw P.-C. Nucleophosmin Interacts with PIN2/TERF1-interacting Telomerase Inhibitor 1 (PinX1) and Attenuates the PinX1 Inhibition on Telomerase Activity. Sci. Rep. 2017;7:43650. doi: 10.1038/srep43650. PubMed DOI PMC
Nguyen K.T.T.T., Wong J.M.Y. Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners. Cancers. 2020;12:1679. doi: 10.3390/cancers12061679. PubMed DOI PMC
Broome H.J., Carrero Z.I., Douglas H.E., Hebert M.D. Phosphorylation regulates coilin activity and RNA association. Biol. Open. 2013;2:407–415. doi: 10.1242/bio.20133863. PubMed DOI PMC
Broome H.J., Hebert M.D. Coilin Displays Differential Affinity for Specific RNAs In Vivo and Is Linked to Telomerase RNA Biogenesis. J. Mol. Biol. 2013;425:713–724. doi: 10.1016/j.jmb.2012.12.014. PubMed DOI PMC
Mahmoudi S., Henriksson S., Weibrecht I., Smith S., Söderberg O., Strömblad S., Wiman K.G., Farnebo M. WRAP53 Is Essential for Cajal Body Formation and for Targeting the Survival of Motor Neuron Complex to Cajal Bodies. PLoS Biol. 2010;8:e1000521. doi: 10.1371/journal.pbio.1000521. PubMed DOI PMC
Venteicher A.S., Abreu E.B., Meng Z., McCann K.E., Terns R.M., Veenstra T.D., Terns M.P., Artandi S.E. A Human Telomerase Holoenzyme Protein Required for Cajal Body Localization and Telomere Synthesis. Science. 2009;323:644–648. doi: 10.1126/science.1165357. PubMed DOI PMC
Sweetlove L., Gutierrez C. The journey to the end of the chromosome: Delivering active telomerase to telomeres in plants. Plant J. 2019;98:193–194. doi: 10.1111/tpj.14328. PubMed DOI
Love A.J., Yu C., Petukhova N.V., Kalinina N.O., Chen J., Taliansky M.E. Cajal bodies and their role in plant stress and disease responses. RNA Biol. 2017;14:779–790. doi: 10.1080/15476286.2016.1243650. PubMed DOI PMC
Schrumpfová P., Kuchař M., Miková G., Skříovská L., Kubičárová T., Fajkus J. Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence. Genome. 2004;47:316–324. doi: 10.1139/g03-136. PubMed DOI
Mozgová I., Procházková Schrumpfová P., Hofr C., Fajkus J. Functional characterization of domains in AtTRB1, a putative telomere-binding protein in Arabidopsis thaliana. Phytochemistry. 2008;69:1814–1819. doi: 10.1016/j.phytochem.2008.04.001. PubMed DOI
Peska V., Procházková Schrumpfová P., Fajkus J. Using the Telobox to Search for Plant Telomere Binding Proteins. Curr. Protein Pept. Sci. 2011;12:75–83. doi: 10.2174/138920311795684968. PubMed DOI
Reconstructing the last common ancestor of all eukaryotes
Characterisation of the Arabidopsis thaliana telomerase TERT-TR complex
Telomerase Interaction Partners-Insight from Plants