Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes

. 2020 Oct 08 ; 10 (10) : . [epub] 20201008

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu historické články, časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33050064

Grantová podpora
20-01331X Grantová Agentura České Republiky - International
CEITEC 2020 (LQ1601) Ministry of Education, Youth and Sports of the Czech Republic - International
project SYMBIT, reg. no.CZ.02.1.01/0.0/0.0/15_003/0000477 European Regional Development Fund - International

The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase-a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase-its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component-were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.

Zobrazit více v PubMed

Olovnikov A.M. Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk SSSR. 1971;201:1496–1499. PubMed

Greider C.W. Telomeres and senescence: The history, the experiment, the future. Curr. Biol. 1998;8:R178–R181. doi: 10.1016/S0960-9822(98)70105-8. PubMed DOI

Aubert G., Lansdorp P.M. Telomeres and Aging. Physiol. Rev. 2008;88:557–579. doi: 10.1152/physrev.00026.2007. PubMed DOI

Leman A., Noguchi E. The Replication Fork: Understanding the Eukaryotic Replication Machinery and the Challenges to Genome Duplication. Genes. 2013;4:1–32. doi: 10.3390/genes4010001. PubMed DOI PMC

Gilson E., Géli V. How telomeres are replicated. Nat. Rev. Mol. Cell Biol. 2007;8:825–838. doi: 10.1038/nrm2259. PubMed DOI

Diede S.J., Gottschling D.E. Telomerase-Mediated Telomere Addition In Vivo Requires DNA Primase and DNA Polymerases α and δ. Cell. 1999;99:723–733. doi: 10.1016/S0092-8674(00)81670-0. PubMed DOI

Procházková Schrumpfová P., Fojtová M., Fajkus J. Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells. 2019;8:58. doi: 10.3390/cells8010058. PubMed DOI PMC

Shay J.W., Wright W.E. Senescence and immortalization: Role of telomeres and telomerase. Carcinogenesis. 2005;26:867–874. doi: 10.1093/carcin/bgh296. PubMed DOI

Fajkus J., Kovařík A., Královics R. Telomerase activity in plant cells. FEBS Lett. 1996;391:307–309. doi: 10.1016/0014-5793(96)00757-0. PubMed DOI

Jurečková J.F., Sýkorová E., Hafidh S., Honys D., Fajkus J., Fojtová M. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum. Planta. 2017;245:549–561. doi: 10.1007/s00425-016-2624-1. PubMed DOI

Ogrocká A., Sýkorová E., Fajkus J., Fojtová M. Developmental silencing of the AtTERT gene is associated with increased H3K27me3 loading and maintenance of its euchromatic environment. J. Exp. Bot. 2012;63:4233–4241. doi: 10.1093/jxb/ers107. PubMed DOI PMC

Riha K., Fajkus J., Siroky J., Vyskot B. Developmental Control of Telomere Lengths and Telomerase Activity in Plants. Plant Cell. 1998;10:1691–1698. doi: 10.1105/tpc.10.10.1691. PubMed DOI PMC

Zachová D., Fojtová M., Dvořáčková M., Mozgová I., Lermontova I., Peška V., Schubert I., Fajkus J., Sýkorová E. Structure-function relationships during transgenic telomerase expression in Arabidopsis. Physiol. Plant. 2013;149:114–126. doi: 10.1111/ppl.12021. PubMed DOI

Shay J.W., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI

Cong Y.-S., Wright W.E., Shay J.W. Human Telomerase and Its Regulation. Microbiol. Mol. Biol. Rev. 2002;66:407–425. doi: 10.1128/MMBR.66.3.407-425.2002. PubMed DOI PMC

Avilion A.A., Piatyszek M.A., Gupta J., Shay J.W., Bacchetti S., Greider C.W. Human Telomerase RNA and Telomerase Activity in Immortal Cell Lines and Tumor Tissues. Cancer Res. 1996;1996:645–650. PubMed

Liu K., Hodes R.J., Weng N. Cutting Edge: Telomerase Activation in Human T Lymphocytes Does Not Require Increase in Telomerase Reverse Transcriptase (hTERT) Protein but Is Associated with hTERT Phosphorylation and Nuclear Translocation. J. Immunol. 2001;166:4826–4830. doi: 10.4049/jimmunol.166.8.4826. PubMed DOI

Weng N., Levine B.L., June C.H., Hodes R.J. Regulation of telomerase RNA template expression in human T lymphocyte development and activation. J. Immunol. 1997;158:3215–3220. PubMed

Fajkus P., Peška V., Závodník M., Fojtová M., Fulnečková J., Dobias Š., Kilar A., Dvořáčková M., Zachová D., Nečasová I., et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019;47:9842–9856. doi: 10.1093/nar/gkz695. PubMed DOI PMC

Wu J., Okada T., Fukushima T., Tsudzuki T., Sugiura M., Yukawa Y. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol. 2012;9:302–313. doi: 10.4161/rna.19101. PubMed DOI

Greider C.W., Blackburn E.H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987;51:887–898. doi: 10.1016/0092-8674(87)90576-9. PubMed DOI

Procházková Schrumpfová P., Schořová Š., Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00851. PubMed DOI PMC

Kim S., Parrinello S., Kim J., Campisi J. Mus musculus and Mus spretus homologues of the human telomere-associated protein TIN2. Genomics. 2003;81:422–432. doi: 10.1016/S0888-7543(02)00033-2. PubMed DOI

Burki F., Roger A.J., Brown M.W., Simpson A.G.B. The New Tree of Eukaryotes. Trends Ecol. Evol. 2020;35:43–55. doi: 10.1016/j.tree.2019.08.008. PubMed DOI

Aksenova A.Y., Mirkin S.M. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes. 2019;10:118. doi: 10.3390/genes10020118. PubMed DOI PMC

Sepsiova R., Necasova I., Willcox S., Prochazkova K., Gorilak P., Nosek J., Hofr C., Griffith J.D., Tomaska L. Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins. PLoS ONE. 2016;11:e0154225. doi: 10.1371/journal.pone.0154225. PubMed DOI PMC

Kuznetsova V., Grozeva S., Gokhman V. Telomere structure in insects: A review. J. Zool. Syst. Evol. Res. 2020;58:127–158. doi: 10.1111/jzs.12332. DOI

Vítková M., Král J., Traut W., Zrzavý J., Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG) N. Chromosome Res. 2005;13:145–156. doi: 10.1007/s10577-005-7721-0. PubMed DOI

Wicky C., Villeneuve A.M., Lauper N., Codourey L., Tobler H., Muller F. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 1996;93:8983–8988. doi: 10.1073/pnas.93.17.8983. PubMed DOI PMC

Červenák F., Juríková K., Sepšiová R., Neboháčová M., Nosek J., Tomáška L. Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle. 2017;16:1568–1577. doi: 10.1080/15384101.2017.1356511. PubMed DOI PMC

Fujiwara H., Osanai M., Matsumoto T., Kojima K.K. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res. 2005;13:455–467. doi: 10.1007/s10577-005-0990-9. PubMed DOI

Casacuberta E. Drosophila: Retrotransposons Making up Telomeres. Viruses. 2017;9:192. doi: 10.3390/v9070192. PubMed DOI PMC

Servant G., Deininger P.L. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front. Genet. 2016;6 doi: 10.3389/fgene.2015.00358. PubMed DOI PMC

Sasaki T., Fujiwara H. Detection and distribution patterns of telomerase activity in insects: Telomerase activity in insects. Eur. J. Biochem. 2000;267:3025–3031. doi: 10.1046/j.1432-1033.2000.01323.x. PubMed DOI

Takahashi H., Okazaki S., Fujiwara H. A New Family of Site-Specific Retrotransposons, SART1, Is Inserted into Telomeric Repeats of the Silkworm, Bombyx Mori. Nucleic Acids Res. 1997;25:1578–1584. doi: 10.1093/nar/25.8.1578. PubMed DOI PMC

Mason J.M., Randall T.A., Capkova Frydrychova R. Telomerase lost? Chromosoma. 2016;125:65–73. doi: 10.1007/s00412-015-0528-7. PubMed DOI PMC

Koonin E.V. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol. Direct. 2006;1:22. doi: 10.1186/1745-6150-1-22. PubMed DOI PMC

Fulnečková J., Ševčíková T., Fajkus J., Lukešová A., Lukeš M., Vlček Č., Lang B.F., Kim E., Eliáš M., Sýkorová E. A Broad Phylogenetic Survey Unveils the Diversity and Evolution of Telomeres in Eukaryotes. Genome Biol. Evol. 2013;5:468–483. doi: 10.1093/gbe/evt019. PubMed DOI PMC

Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., et al. The Revised Classification of Eukaryotes. J. Eukaryot. Microbiol. 2012;59:429–514. doi: 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC

Richards E.J., Ausubel F.M. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988;53:127–136. doi: 10.1016/0092-8674(88)90494-1. PubMed DOI

Sýkorová E., Lim K.Y., Kunická Z., Chase M.W., Bennett M.D., Fajkus J., Leitch A.R. Telomere variability in the monocotyledonous plant order Asparagales. Proc. R. Soc. Lond. B. 2003;270:1893–1904. doi: 10.1098/rspb.2003.2446. PubMed DOI PMC

Sýkorová E., Leitch A.R., Fajkus J. Asparagales Telomerases which Synthesize the Human Type of Telomeres. Plant Mol. Biol. 2006;60:633–646. doi: 10.1007/s11103-005-5091-9. PubMed DOI

Fajkus P., Peška V., Sitová Z., Fulnečková J., Dvořáčková M., Gogela R., Sýkorová E., Hapala J., Fajkus J. Allium telomeres unmasked: The unusual telomeric sequence (CTCGGTTATGGG) n is synthesized by telomerase. Plant J. 2016;85:337–347. doi: 10.1111/tpj.13115. PubMed DOI

Peška V., Fajkus P., Fojtová M., Dvořáčková M., Hapala J., Dvořáček V., Polanská P., Leitch A.R., Sýkorová E., Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG) n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015;82:644–654. doi: 10.1111/tpj.12839. PubMed DOI

Tran T.D., Cao H.X., Jovtchev G., Neumann P., Novák P., Fojtová M., Vu G.T.H., Macas J., Fajkus J., Schubert I., et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015;84:1087–1099. doi: 10.1111/tpj.13058. PubMed DOI

Fulnečková J., Ševčíková T., Lukešová A., Sýkorová E. Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales) Chromosoma. 2016;125:437–451. doi: 10.1007/s00412-015-0557-2. PubMed DOI

Peska V., Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. Front. Plant Sci. 2020;11:117. doi: 10.3389/fpls.2020.00117. PubMed DOI PMC

De Lange T. A loopy view of telomere evolution. Front. Genet. 2015;6:321. doi: 10.3389/fgene.2015.00321. PubMed DOI PMC

Lambowitz A.M., Zimmerly S. Group II Introns: Mobile Ribozymes that Invade DNA. Cold Spring Harbor Perspect. Biol. 2011;3:a003616. doi: 10.1101/cshperspect.a003616. PubMed DOI PMC

Nakamura T.M. Telomerase Catalytic Subunit Homologs from Fission Yeast and Human. Science. 1997;277:955–959. doi: 10.1126/science.277.5328.955. PubMed DOI

Lingner J. Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase. Science. 1997;276:561–567. doi: 10.1126/science.276.5312.561. PubMed DOI

Boeke J.D. The Unusual Phylogenetic Distribution of Retrotransposons: A Hypothesis. Genome Res. 2003;13:1975–1983. doi: 10.1101/gr.1392003. PubMed DOI

Dreesen O. Telomere structure and shortening in telomerase-deficient Trypanosoma brucei. Nucleic Acids Res. 2005;33:4536–4543. doi: 10.1093/nar/gki769. PubMed DOI PMC

Giardini M.A., Lira C.B.B., Conte F.F., Camillo L.R., de Siqueira Neto J.L., Ramos C.H.I., Cano M.I.N. The putative telomerase reverse transcriptase component of Leishmania amazonensis: Gene cloning and characterization. Parasitol. Res. 2006;98:447–454. doi: 10.1007/s00436-005-0036-4. PubMed DOI

Podlevsky J.D., Chen J.J.-L. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016;13:720–732. doi: 10.1080/15476286.2016.1205768. PubMed DOI PMC

Dey A., Chakrabarti K. Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int. J. Mol. Sci. 2018;19:333. doi: 10.3390/ijms19020333. PubMed DOI PMC

Fragnet L., Blasco M.A., Klapper W., Rasschaert D. The RNA Subunit of Telomerase Is Encoded by Marek’s Disease Virus. JVI. 2003;77:5985–5996. doi: 10.1128/JVI.77.10.5985-5996.2003. PubMed DOI PMC

Trapp-Fragnet L., Marie-Egyptienne D., Fakhoury J., Rasschaert D., Autexier C. The human telomerase catalytic subunit and viral telomerase RNA reconstitute a functional telomerase complex in a cell-free system, but not in human cells. Cell. Mol. Biol. Lett. 2012;17 doi: 10.2478/s11658-012-0031-6. PubMed DOI PMC

Bryan T.M., Englezou A., Gupta J., Bacchetti S., Reddel R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14:4240–4248. doi: 10.1002/j.1460-2075.1995.tb00098.x. PubMed DOI PMC

Dunham M.A., Neumann A.A., Fasching C.L., Reddel R.R. Telomere maintenance by recombination in human cells. Nat. Genet. 2000;26:447–450. doi: 10.1038/82586. PubMed DOI

Lundblad V., Blackburn E.H. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell. 1993;73:347–360. doi: 10.1016/0092-8674(93)90234-H. PubMed DOI

Růčková E., Friml J., Procházková Schrumpfová P., Fajkus J. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol. Biol. 2008;66:637–646. doi: 10.1007/s11103-008-9295-7. PubMed DOI

Kachouri-Lafond R., Dujon B., Gilson E., Westhof E., Fairhead C., Teixeira M.T. Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata. FEBS Lett. 2009;583:3605–3610. doi: 10.1016/j.febslet.2009.10.034. PubMed DOI

Egan E.D., Collins K. Biogenesis of telomerase ribonucleoproteins. RNA. 2012;18:1747–1759. doi: 10.1261/rna.034629.112. PubMed DOI PMC

Collins K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 2006;7:484–494. doi: 10.1038/nrm1961. PubMed DOI PMC

Feng J., Funk W., Wang S., Weinrich S., Avilion A., Chiu C., Adams R., Chang E., Allsopp R., Yu J., et al. The RNA component of human telomerase. Science. 1995;269:1236–1241. doi: 10.1126/science.7544491. PubMed DOI

Dew-Budd K., Cheung J., Palos K., Forsythe E.S., Beilstein M.A. Evolutionary and biochemical analyses reveal conservation of the Brassicaceae telomerase ribonucleoprotein complex. PLoS ONE. 2020;15:e0222687. doi: 10.1371/journal.pone.0222687. PubMed DOI PMC

Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D.E. Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. USA. 2011;108:73–78. doi: 10.1073/pnas.1013021107. PubMed DOI PMC

Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D.E. Retraction for Cifuentes-Rojas et al., Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. USA. 2019;116:24908. doi: 10.1073/pnas.1918863116. PubMed DOI PMC

Wu R.A., Upton H.E., Vogan J.M., Collins K. Telomerase Mechanism of Telomere Synthesis. Annu. Rev. Biochem. 2017;86:439–460. doi: 10.1146/annurev-biochem-061516-045019. PubMed DOI PMC

Song J., Logeswaran D., Castillo-González C., Li Y., Bose S., Aklilu B.B., Ma Z., Polkhovskiy A., Chen J.J.-L., Shippen D.E. The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans. Proc. Natl. Acad. Sci. USA. 2019;116:24542–24550. doi: 10.1073/pnas.1915312116. PubMed DOI PMC

Jiang J., Chan H., Cash D.D., Miracco E.J., Ogorzalek Loo R.R., Upton H.E., Cascio D., O’Brien Johnson R., Collins K., Loo J.A., et al. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science. 2015;350:aab4070. doi: 10.1126/science.aab4070. PubMed DOI PMC

Xie M., Podlevsky J.D., Qi X., Bley C.J., Chen J.J.-L. A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res. 2010;38:1982–1996. doi: 10.1093/nar/gkp1198. PubMed DOI PMC

Chan H., Wang Y., Feigon J. Progress in Human and Tetrahymena Telomerase Structure Determination. Annu. Rev. Biophys. 2017;46:199–225. doi: 10.1146/annurev-biophys-062215-011140. PubMed DOI PMC

Sýkorová E., Fajkus J. Structure-function relationships in telomerase genes. Biol. Cell. 2009;101:375–406. doi: 10.1042/BC20080205. PubMed DOI

Lukowiak A.A., Narayanan A., Li Z.H., Terns R.M., Terns M.P. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA. 2001;7:1833–1844. PubMed PMC

Zhu Y., Tomlinson R.L., Lukowiak A.A., Terns R.M., Terns M.P. Telomerase RNA Accumulates in Cajal Bodies in Human Cancer Cells. Mol. Biol. Cell. 2004;15:81–90. doi: 10.1091/mbc.e03-07-0525. PubMed DOI PMC

Blasco M., Funk W., Villeponteau B., Greider C. Functional characterization and developmental regulation of mouse telomerase RNA. Science. 1995;269:1267–1270. doi: 10.1126/science.7544492. PubMed DOI

Kiss T., Filipowicz W. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 1995;9:1411–1424. doi: 10.1101/gad.9.11.1411. PubMed DOI

Kiss T., Fayet-Lebaron E., Jády B.E. Box H/ACA Small Ribonucleoproteins. Mol. Cell. 2010;37:597–606. doi: 10.1016/j.molcel.2010.01.032. PubMed DOI

Galloway A., Cowling V.H. mRNA cap regulation in mammalian cell function and fate. Biochim. Biophys. Acta -Gene Regul. Mech. 2019;1862:270–279. doi: 10.1016/j.bbagrm.2018.09.011. PubMed DOI PMC

Chen L., Roake C.M., Galati A., Bavasso F., Micheli E., Saggio I., Schoeftner S., Cacchione S., Gatti M., Artandi S.E., et al. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep. 2020;30:1358–1372. doi: 10.1016/j.celrep.2020.01.004. PubMed DOI PMC

Jády B.E., Bertrand E., Kiss T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body–specific localization signal. J. Cell Biol. 2004;164:647–652. doi: 10.1083/jcb.200310138. PubMed DOI PMC

MacNeil D., Bensoussan H., Autexier C. Telomerase Regulation from Beginning to the End. Genes. 2016;7:64. doi: 10.3390/genes7090064. PubMed DOI PMC

Rubtsova M., Dontsova O. Human Telomerase RNA: Telomerase Component or More? Biomolecules. 2020;10:873. doi: 10.3390/biom10060873. PubMed DOI PMC

Robart A.R., Collins K. Investigation of Human Telomerase Holoenzyme Assembly, Activity, and Processivity Using Disease-linked Subunit Variants. J. Biol. Chem. 2010;285:4375–4386. doi: 10.1074/jbc.M109.088575. PubMed DOI PMC

Huang J., Brown A.F., Wu J., Xue J., Bley C.J., Rand D.P., Wu L., Zhang R., Chen J.J.-L., Lei M. Structural basis for protein-RNA recognition in telomerase. Nat. Struct. Mol. Biol. 2014;21:507–512. doi: 10.1038/nsmb.2819. PubMed DOI PMC

Chen Y., Podlevsky J.D., Logeswaran D., Chen J.J. A single nucleotide incorporation step limits human telomerase repeat addition activity. EMBO J. 2018;37:e97953. doi: 10.15252/embj.201797953. PubMed DOI PMC

Collins K., Greider C.W. Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. Genes Dev. 1993;7:1364–1376. doi: 10.1101/gad.7.7b.1364. PubMed DOI

Lue N.F. A Physical and Functional Constituent of Telomerase Anchor Site. J. Biol. Chem. 2005;280:26586–26591. doi: 10.1074/jbc.M503028200. PubMed DOI PMC

Akiyama B.M., Parks J.W., Stone M.D. The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA-DNA hybrids. Nucleic Acids Res. 2015;43:5537–5549. doi: 10.1093/nar/gkv406. PubMed DOI PMC

Patrick E.M., Slivka J.D., Payne B., Comstock M.J., Schmidt J.C. Observation of processive telomerase catalysis using high-resolution optical tweezers. Nat. Chem. Biol. 2020;16:801–809. doi: 10.1038/s41589-020-0478-0. PubMed DOI PMC

Moriarty T.J., Marie-Egyptienne D.T., Autexier C. Functional Organization of Repeat Addition Processivity and DNA Synthesis Determinants in the Human Telomerase Multimer. Mol. Cell. Biol. 2004;24:3720–3733. doi: 10.1128/MCB.24.9.3720-3733.2004. PubMed DOI PMC

Sauerwald A., Sandin S., Cristofari G., Scheres S.H.W., Lingner J., Rhodes D. Structure of active dimeric human telomerase. Nat. Struct. Mol. Biol. 2013;20:454–460. doi: 10.1038/nsmb.2530. PubMed DOI PMC

Sandin S., Rhodes D. Telomerase structure. Curr. Opin. Struct. Biol. 2014;25:104–110. doi: 10.1016/j.sbi.2014.02.003. PubMed DOI PMC

Nguyen T.H.D., Tam J., Wu R.A., Greber B.J., Toso D., Nogales E., Collins K. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature. 2018;557:190–195. doi: 10.1038/s41586-018-0062-x. PubMed DOI PMC

Jiang J., Miracco E.J., Hong K., Eckert B., Chan H., Cash D.D., Min B., Zhou Z.H., Collins K., Feigon J. The architecture of Tetrahymena telomerase holoenzyme. Nature. 2013;496:187–192. doi: 10.1038/nature12062. PubMed DOI PMC

Majerská J., Procházková Schrumpfová P., Dokládal L., Schořová Š., Stejskal K., Obořil M., Honys D., Kozáková L., Polanská P.S., Sýkorová E. Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. Protoplasma. 2017;254:1547–1562. doi: 10.1007/s00709-016-1042-3. PubMed DOI

Dergai O., Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes. Trends Genet. 2019;35:457–469. doi: 10.1016/j.tig.2019.04.001. PubMed DOI

Cunningham D.D., Collins K. Biological and Biochemical Functions of RNA in the Tetrahymena Telomerase Holoenzyme. Mol. Cell. Biol. 2005;25:4442–4454. doi: 10.1128/MCB.25.11.4442-4454.2005. PubMed DOI PMC

Roake C.M., Artandi S.E. Regulation of human telomerase in homeostasis and disease. Nat. Rev. Mol. Cell Biol. 2020;21:384–397. doi: 10.1038/s41580-020-0234-z. PubMed DOI PMC

Malik H.S., Burke W.D., Eickbush T.H. Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene. 2000;251:101–108. doi: 10.1016/S0378-1119(00)00207-9. PubMed DOI

Lai A.G., Pouchkina-Stantcheva N., Di Donfrancesco A., Kildisiute G., Sahu S., Aboobaker A.A. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evol. Biol. 2017;17:107. doi: 10.1186/s12862-017-0949-4. PubMed DOI PMC

Chung J., Khadka P., Chung I.K. Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation. J. Cell Sci. 2012;125:2684–2697. doi: 10.1242/jcs.099267. PubMed DOI

Hoffman H., Rice C., Skordalakes E. Structural Analysis Reveals the Deleterious Effects of Telomerase Mutations in Bone Marrow Failure Syndromes. J. Biol. Chem. 2017;292:4593–4601. doi: 10.1074/jbc.M116.771204. PubMed DOI PMC

Autexier C., Lue N.F. The Structure and Function of Telomerase Reverse Transcriptase. Annu. Rev. Biochem. 2006;75:493–517. doi: 10.1146/annurev.biochem.75.103004.142412. PubMed DOI

Kilian A., Bowtell D.D.L., Abud H.E., Hime G.R., Venter D.J., Keese P.K., Duncan E.L., Reddel R.R., Jefferson R.A. Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types. Hum. Mol. Genet. 1997;6:2011–2019. doi: 10.1093/hmg/6.12.2011. PubMed DOI

Harrington L., Zhou W., McPhail T., Oulton R., Yeung D.S.K., Mar V., Bass M.B., Robinson M.O. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 1997;11:3109–3115. doi: 10.1101/gad.11.23.3109. PubMed DOI PMC

Meyerson M., Counter C.M., Eaton E.N., Ellisen L.W., Steiner P., Caddle S.D., Ziaugra L., Beijersbergen R.L., Davidoff M.J., Liu Q., et al. hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization. Cell. 1997;90:785–795. doi: 10.1016/S0092-8674(00)80538-3. PubMed DOI

Sýkorová E., Fulnečková J., Mokroš P., Fajkus J., Fojtová M., Peška V. Three TERT genes in Nicotiana tabacum. Chromosome Res. 2012;20:381–394. doi: 10.1007/s10577-012-9282-3. PubMed DOI

Khattar E., Tergaonkar V. Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC. Front. Cell Dev. Biol. 2017;5 doi: 10.3389/fcell.2017.00001. PubMed DOI PMC

Jie M.-M., Chang X., Zeng S., Liu C., Liao G.-B., Wu Y.-R., Liu C.-H., Hu C.-J., Yang S.-M., Li X.-Z. Diverse regulatory manners of human telomerase reverse transcriptase. Cell Commun. Signal. 2019;17:63. doi: 10.1186/s12964-019-0372-0. PubMed DOI PMC

Ramlee M., Wang J., Toh W., Li S. Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes. 2016;7:50. doi: 10.3390/genes7080050. PubMed DOI PMC

Flavin P., Redmond A., McBryan J., Cocchiglia S., Tibbitts P., Fahy-Browne P., Kay E., Treumann A., Perrem K., McIlroy M., et al. RuvBl2 cooperates with Ets2 to transcriptionally regulate hTERT in colon cancer. FEBS Lett. 2011;585:2537–2544. doi: 10.1016/j.febslet.2011.07.005. PubMed DOI

Takakura M., Kyo S., Kanaya T., Hirano H., Takeda J., Yutsudo M., Inoue M. Cloning of Human Telomerase Catalytic Subunit (hTERT) Gene Promoter and Identification of Proximal Core Promoter Sequences Essential for Transcriptional Activation in Immortalized and Cancer Cells. Cancer Research. 1999;59:551–557. PubMed

Horikawa I., Cable P.L., Afshari C., Barrett J.C. Cloning and Characterization of the Promoter Region of Human Telomerase Reverse Transcriptase Gene. Cancer Res. 1999;59:826–830. PubMed

Crhák T., Zachová D., Fojtová M., Sýkorová E. The region upstream of the telomerase reverse transcriptase gene is essential for in planta telomerase complementation. Plant Sci. 2019;281:41–51. doi: 10.1016/j.plantsci.2019.01.001. PubMed DOI

Stern J.L., Theodorescu D., Vogelstein B., Papadopoulos N., Cech T.R. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev. 2015;29:2219–2224. doi: 10.1101/gad.269498.115. PubMed DOI PMC

Akıncılar S.C., Khattar E., Boon P.L.S., Unal B., Fullwood M.J., Tergaonkar V. Long-Range Chromatin Interactions Drive Mutant TERT Promoter Activation. Cancer Discov. 2016;6:1276–1291. doi: 10.1158/2159-8290.CD-16-0177. PubMed DOI

Fajkus J., Fulnečková J., Hulánová M., Berková K., Říha K., Matyášek R. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol. Gen. Genet. 1998;260:470–474. doi: 10.1007/s004380050918. PubMed DOI

Cong Y., Wen J., Bacchetti S. The human telomerase catalytic subunit hTERT: Organization of the gene and characterization of the promoter. Hum. Mol. Genet. 1999;8:137–142. doi: 10.1093/hmg/8.1.137. PubMed DOI

Antosz W., Pfab A., Ehrnsberger H.F., Holzinger P., Köllen K., Mortensen S.A., Bruckmann A., Schubert T., Längst G., Griesenbeck J., et al. The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors. Plant Cell. 2017;29:854–870. doi: 10.1105/tpc.16.00735. PubMed DOI PMC

Stern J.L., Paucek R.D., Huang F.W., Ghandi M., Nwumeh R., Costello J.C., Cech T.R. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes. Cell Rep. 2017;21:3700–3707. doi: 10.1016/j.celrep.2017.12.001. PubMed DOI PMC

Bodnar A.G. Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science. 1998;279:349–352. doi: 10.1126/science.279.5349.349. PubMed DOI

Hrdlickova R., Nehyba J., Bose H.R. Alternatively Spliced Telomerase Reverse Transcriptase Variants Lacking Telomerase Activity Stimulate Cell Proliferation. Mol. Cell. Biol. 2012;32:4283–4296. doi: 10.1128/MCB.00550-12. PubMed DOI PMC

Kang S.S., Kwon T., Kwon D.Y., Do S.I. Akt Protein Kinase Enhances Human Telomerase Activity through Phosphorylation of Telomerase Reverse Transcriptase Subunit. J. Biol. Chem. 1999;274:13085–13090. doi: 10.1074/jbc.274.19.13085. PubMed DOI

Kim J.H. Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev. 2005;19:776–781. doi: 10.1101/gad.1289405. PubMed DOI PMC

Oguchi K., Tamura K., Takahashi H. Characterization of Oryza sativa telomerase reverse transcriptase and possible role of its phosphorylation in the control of telomerase activity. Gene. 2004;342:57–66. doi: 10.1016/j.gene.2004.07.011. PubMed DOI

Yang S.W., Jin E., Chung I.K., Kim W.T. Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. Plant J. 2002;29:617–626. doi: 10.1046/j.0960-7412.2001.01244.x. PubMed DOI

Jeong S.A., Kim K., Lee J.H., Cha J.S., Khadka P., Cho H.-S., Chung I.K. Akt-mediated phosphorylation increases the binding affinity of hTERT for importin to promote nuclear translocation. J. Cell Sci. 2015;128:2287–2301. doi: 10.1242/jcs.166132. PubMed DOI

Fitzgerald M.S., Riha K., Gao F., Ren S., McKnight T.D., Shippen D.E. Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc. Natl. Acad. Sci. USA. 1999;96:14813–14818. doi: 10.1073/pnas.96.26.14813. PubMed DOI PMC

Atkinson S.P., Hoare S.F., Glasspool R.M., Keith W.N. Lack of Telomerase Gene Expression in Alternative Lengthening of Telomere Cells Is Associated with Chromatin Remodeling of the hTR and hTERT Gene Promoters. Cancer Res. 2005;65:7585–7590. doi: 10.1158/0008-5472.CAN-05-1715. PubMed DOI

Cairney C.J., Hoare S.F., Daidone M.-G., Zaffaroni N., Keith W.N. High level of telomerase RNA gene expression is associated with chromatin modification, the ALT phenotype and poor prognosis in liposarcoma. Br. J. Cancer. 2008;98:1467–1474. doi: 10.1038/sj.bjc.6604328. PubMed DOI PMC

Schořová Š., Fajkus J., Záveská Drábková L., Honys D., Procházková Schrumpfová P. The plant Pontin and Reptin homologues, Ruv BL 1 and Ruv BL 2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. Plant J. 2019;98:195–212. doi: 10.1111/tpj.14306. PubMed DOI

Pendle A.F., Clark G.P., Boon R., Lewandowska D., Lam Y.W., Andersen J., Mann M., Lamond A.I., Brown J.W.S., Shaw P.J. Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar Functions. Mol. Biol. Cell. 2005;16:260–269. doi: 10.1091/mbc.e04-09-0791. PubMed DOI PMC

Lermontova I., Schubert V., Börnke F., Macas J., Schubert I. Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Mol. Biol. 2007;65:615–626. doi: 10.1007/s11103-007-9226-z. PubMed DOI

Khurts S., Masutomi K., Delgermaa L., Arai K., Oishi N., Mizuno H., Hayashi N., Hahn W.C., Murakami S. Nucleolin Interacts with Telomerase. J. Biol. Chem. 2004;279:51508–51515. doi: 10.1074/jbc.M407643200. PubMed DOI

Pontvianne F., Carpentier M.-C., Durut N., Pavlištová V., Jaške K., Schořová Š., Parrinello H., Rohmer M., Pikaard C.S., Fojtová M., et al. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome. Cell Rep. 2016;16:1574–1587. doi: 10.1016/j.celrep.2016.07.016. PubMed DOI PMC

Pontvianne F., Abou-Ellail M., Douet J., Comella P., Matia I., Chandrasekhara C., DeBures A., Blevins T., Cooke R., Medina F.J., et al. Nucleolin Is Required for DNA Methylation State and the Expression of rRNA Gene Variants in Arabidopsis thaliana. PLoS Genet. 2010;6:e1001225. doi: 10.1371/journal.pgen.1001225. PubMed DOI PMC

Venteicher A.S., Meng Z., Mason P.J., Veenstra T.D., Artandi S.E. Identification of ATPases Pontin and Reptin as Telomerase Components Essential for Holoenzyme Assembly. Cell. 2008;132:945–957. doi: 10.1016/j.cell.2008.01.019. PubMed DOI PMC

Poole A.R., Hebert M.D. SMN and coilin negatively regulate dyskerin association with telomerase RNA. Biol. Open. 2016;5:726–735. doi: 10.1242/bio.018804. PubMed DOI PMC

Hebert M.D., Shpargel K.B., Ospina J.K., Tucker K.E., Matera A.G. Coilin Methylation Regulates Nuclear Body Formation. Dev. Cell. 2002;3:329–337. doi: 10.1016/S1534-5807(02)00222-8. PubMed DOI

Dvorackova M. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: 2010. Analysis of Arabidopsis Telomere-Associated Proteins in Vivo.

Zhong F.L., Batista L.F.Z., Freund A., Pech M.F., Venteicher A.S., Artandi S.E. TPP1 OB-Fold Domain Controls Telomere Maintenance by Recruiting Telomerase to Chromosome Ends. Cell. 2012;150:481–494. doi: 10.1016/j.cell.2012.07.012. PubMed DOI PMC

Procházková Schrumpfová P., Vychodilová I., Dvořáčková M., Majerská J., Dokládal L., Schořová Š., Fajkus J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 2014;77:770–781. doi: 10.1111/tpj.12428. PubMed DOI PMC

Ulaner G.A., Hu J.F., Vu T.H., Giudice L.C., Hoffman A.R. Telomerase Activity in Human Development Is Regulated by Human Telomerase Reverse Transcriptase (hTERT) Transcription and by Alternate Splicing of hTERT Transcripts. Cancer Res. 1998;58:4168–4172. PubMed

Nehyba J., Hrdlickova R., Bose H.R. The Regulation of Telomerase by Alternative Splicing of TERT. In: Li B., editor. Reviews on Selected Topics of Telomere Biology. InTech; London, UK: 2012.

Ulaner G.A., Hu J.F., Vu T.H., Giudice L.C., Hoffman A.R. Tissue-specific alternate splicing of human telomerase reverse transcriptase (hTERT) influences telomere lengths during human development. Int. J. Cancer. 2001;91:644–649. doi: 10.1002/1097-0215(200002)9999:9999<::AID-IJC1103>3.0.CO;2-V. PubMed DOI

Brenner C.A., Wolny Y.M., Adler R.R., Cohen J. Alternative splicing of the telomerase catalytic subunit in human oocytes and embryos. MHR Basic Sci. Reprod. Med. 1999;5:845–850. doi: 10.1093/molehr/5.9.845. PubMed DOI

Kaneko R., Esumi S., Yagi T., Hirabayashi T. Predominant Expression of rTERTb, an Inactive TERT Variant, in the Adult Rat Brain. Protein Pept. Lett. 2006;13:59–65. doi: 10.2174/092986606774502108. PubMed DOI

Ludlow A.T., Slusher A.L., Sayed M.E. Insights into Telomerase/hTERT Alternative Splicing Regulation Using Bioinformatics and Network Analysis in Cancer. Cancers. 2019;11:666. doi: 10.3390/cancers11050666. PubMed DOI PMC

Wong M.S., Wright W.E., Shay J.W. Alternative splicing regulation of telomerase: A new paradigm? Trends Genet. 2014;30:430–438. doi: 10.1016/j.tig.2014.07.006. PubMed DOI PMC

Colgin L.M., Wilkinso C., Englezou A., Kilian A., Robinson M.O., Reddel R.R. The hTERTα Splice Variant is a Dominant Negative Inhibitor of Telomerase Activity. Neoplasia. 2000;2:426–432. doi: 10.1038/sj.neo.7900112. PubMed DOI PMC

Kunická Z., Mucha I., Fajkus J. Telomerase activity in head and neck cancer. Anticancer Res. 2008;28:3125–3129. PubMed

Listerman I., Sun J., Gazzaniga F.S., Lukas J.L., Blackburn E.H. The Major Reverse Transcriptase-Incompetent Splice Variant of the Human Telomerase Protein Inhibits Telomerase Activity but Protects from Apoptosis. Cancer Res. 2013;73:2817–2828. doi: 10.1158/0008-5472.CAN-12-3082. PubMed DOI PMC

Rossignol P., Collier S., Bush M., Shaw P., Doonan J.H. Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J. Cell Sci. 2007;120:3678–3687. doi: 10.1242/jcs.004119. PubMed DOI

Rotková G., Sýkorová E., Fajkus J. Protect and regulate: Recent findings on plant POT1-like proteins. Biol. Plant. 2009;53:1–4. doi: 10.1007/s10535-009-0001-7. DOI

Tamura K., Liu H., Takahashi H. Auxin Induction of Cell Cycle Regulated Activity of Tobacco Telomerase. J. Biol. Chem. 1999;274:20997–21002. doi: 10.1074/jbc.274.30.20997. PubMed DOI

Ren S., Johnston J.S., Shippen D.E., McKnight T.D. TELOMERASE ACTIVATOR1 Induces Telomerase Activity and Potentiates Responses to Auxin in Arabidopsis. Plant Cell. 2004;16:2910–2922. doi: 10.1105/tpc.104.025072. PubMed DOI PMC

Ren S., Mandadi K.K., Boedeker A.L., Rathore K.S., McKnight T.D. Regulation of Telomerase in Arabidopsis by BT2, an Apparent Target of TELOMERASE ACTIVATOR1. Plant Cell. 2007;19:23–31. doi: 10.1105/tpc.106.044321. PubMed DOI PMC

Nguyen D., Grenier St-Sauveur V., Bergeron D., Dupuis-Sandoval F., Scott M.S., Bachand F. A Polyadenylation-Dependent 3′ End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep. 2015;13:2244–2257. doi: 10.1016/j.celrep.2015.11.003. PubMed DOI

Tseng C.-K., Wang H.-F., Burns A.M., Schroeder M.R., Gaspari M., Baumann P. Human Telomerase RNA Processing and Quality Control. Cell Rep. 2015;13:2232–2243. doi: 10.1016/j.celrep.2015.10.075. PubMed DOI

Majerská J., Sýkorová E., Fajkus J. Non-telomeric activities of telomerase. Mol. BioSyst. 2011;7:1013. doi: 10.1039/c0mb00268b. PubMed DOI

Blasco M.A., Rizen M., Greider C.W., Hanahan D. Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nat. Genet. 1996;12:200–204. doi: 10.1038/ng0296-200. PubMed DOI

Kedde M., le Sage C., Duursma A., Zlotorynski E., van Leeuwen B., Nijkamp W., Beijersbergen R., Agami R. Telomerase-independent Regulation of ATR by Human Telomerase RNA. J. Biol. Chem. 2006;281:40503–40514. doi: 10.1074/jbc.M607676200. PubMed DOI

Ségal-Bendirdjian E., Geli V. Non-canonical Roles of Telomerase: Unraveling the Imbroglio. Front. Cell Dev. Biol. 2019;7:332. doi: 10.3389/fcell.2019.00332. PubMed DOI PMC

Dokládal L., Benková E., Honys D., Dupľáková N., Lee L.-Y., Gelvin S.B., Sýkorová E. An armadillo-domain protein participates in a telomerase interaction network. Plant Mol. Biol. 2018;97:407–420. doi: 10.1007/s11103-018-0747-4. PubMed DOI

Park J.-I., Venteicher A.S., Hong J.Y., Choi J., Jun S., Shkreli M., Chang W., Meng Z., Cheung P., Ji H., et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460:66–72. doi: 10.1038/nature08137. PubMed DOI PMC

Yu Y.-T., Meier U.T. RNA-guided isomerization of uridine to pseudouridine—Pseudouridylation. RNA Biol. 2014;11:1483–1494. doi: 10.4161/15476286.2014.972855. PubMed DOI PMC

Lee J.H., Lee Y.S., Jeong S.A., Khadka P., Roth J., Chung I.K. Catalytically active telomerase holoenzyme is assembled in the dense fibrillar component of the nucleolus during S phase. Histochem. Cell Biol. 2014;141:137–152. doi: 10.1007/s00418-013-1166-x. PubMed DOI

Cheung D.H.-C., Ho S.-T., Lau K.-F., Jin R., Wang Y.-N., Kung H.-F., Huang J.-J., Shaw P.-C. Nucleophosmin Interacts with PIN2/TERF1-interacting Telomerase Inhibitor 1 (PinX1) and Attenuates the PinX1 Inhibition on Telomerase Activity. Sci. Rep. 2017;7:43650. doi: 10.1038/srep43650. PubMed DOI PMC

Nguyen K.T.T.T., Wong J.M.Y. Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners. Cancers. 2020;12:1679. doi: 10.3390/cancers12061679. PubMed DOI PMC

Broome H.J., Carrero Z.I., Douglas H.E., Hebert M.D. Phosphorylation regulates coilin activity and RNA association. Biol. Open. 2013;2:407–415. doi: 10.1242/bio.20133863. PubMed DOI PMC

Broome H.J., Hebert M.D. Coilin Displays Differential Affinity for Specific RNAs In Vivo and Is Linked to Telomerase RNA Biogenesis. J. Mol. Biol. 2013;425:713–724. doi: 10.1016/j.jmb.2012.12.014. PubMed DOI PMC

Mahmoudi S., Henriksson S., Weibrecht I., Smith S., Söderberg O., Strömblad S., Wiman K.G., Farnebo M. WRAP53 Is Essential for Cajal Body Formation and for Targeting the Survival of Motor Neuron Complex to Cajal Bodies. PLoS Biol. 2010;8:e1000521. doi: 10.1371/journal.pbio.1000521. PubMed DOI PMC

Venteicher A.S., Abreu E.B., Meng Z., McCann K.E., Terns R.M., Veenstra T.D., Terns M.P., Artandi S.E. A Human Telomerase Holoenzyme Protein Required for Cajal Body Localization and Telomere Synthesis. Science. 2009;323:644–648. doi: 10.1126/science.1165357. PubMed DOI PMC

Sweetlove L., Gutierrez C. The journey to the end of the chromosome: Delivering active telomerase to telomeres in plants. Plant J. 2019;98:193–194. doi: 10.1111/tpj.14328. PubMed DOI

Love A.J., Yu C., Petukhova N.V., Kalinina N.O., Chen J., Taliansky M.E. Cajal bodies and their role in plant stress and disease responses. RNA Biol. 2017;14:779–790. doi: 10.1080/15476286.2016.1243650. PubMed DOI PMC

Schrumpfová P., Kuchař M., Miková G., Skříovská L., Kubičárová T., Fajkus J. Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence. Genome. 2004;47:316–324. doi: 10.1139/g03-136. PubMed DOI

Mozgová I., Procházková Schrumpfová P., Hofr C., Fajkus J. Functional characterization of domains in AtTRB1, a putative telomere-binding protein in Arabidopsis thaliana. Phytochemistry. 2008;69:1814–1819. doi: 10.1016/j.phytochem.2008.04.001. PubMed DOI

Peska V., Procházková Schrumpfová P., Fajkus J. Using the Telobox to Search for Plant Telomere Binding Proteins. Curr. Protein Pept. Sci. 2011;12:75–83. doi: 10.2174/138920311795684968. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...