Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales)
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26596989
DOI
10.1007/s00412-015-0557-2
PII: 10.1007/s00412-015-0557-2
Knihovny.cz E-zdroje
- Klíčová slova
- 18S rDNA phylogeny, Green algae, TRAP, Telomerase activity, Telomere evolution,
- MeSH
- aminokyselinové motivy genetika MeSH
- fylogeneze MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- Volvocida genetika MeSH
- zkracování telomer genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
- telomerasa MeSH
Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.
Zobrazit více v PubMed
Genome. 2004 Apr;47(2):316-24 PubMed
J Mol Biol. 1978 Mar 25;120(1):33-53 PubMed
Plant J. 2015 May;82(4):644-54 PubMed
Nature. 1984 Jul 12-18;310(5973):154-7 PubMed
Nucleic Acids Res. 1995 Jun 11;23(11):1942-7 PubMed
Plant J. 2003 May;34(3):283-91 PubMed
J Phycol. 2011 Aug;47(4):928-38 PubMed
Genome Biol Evol. 2012;4(3):248-64 PubMed
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52 PubMed
BMC Biol. 2007 Jul 10;5:28 PubMed
Curr Biol. 2009 Jan 27;19(2):R81-8 PubMed
J Eukaryot Microbiol. 2010 Jul-Aug;57(4):379-82 PubMed
Syst Biol. 2012 May;61(3):539-42 PubMed
Nucleic Acids Res. 1991 Oct 25;19(20):5790 PubMed
Yeast. 2001 Mar 15;18(4):355-61 PubMed
Genome Biol Evol. 2013;5(3):468-83 PubMed
Cytogenet Genome Res. 2008;122(3-4):380-7 PubMed
J Exp Bot. 2011 Nov;62(15):5531-45 PubMed
Proc Natl Acad Sci U S A. 1981 May;78(5):3015-9 PubMed
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14422-7 PubMed
Mol Gen Genet. 1995 Jan 6;246(1):29-36 PubMed
Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15386-91 PubMed
Genome Biol. 2012 May 25;13(5):R39 PubMed
Chromosome Res. 2005;13(5):469-79 PubMed
Science. 1995 Dec 8;270(5242):1663-7 PubMed
Mol Phylogenet Evol. 2008 Jul;48(1):281-91 PubMed
J Biol Chem. 2004 Sep 24;279(39):41067-76 PubMed
Proc Biol Sci. 2003 Sep 22;270(1527):1893-904 PubMed
Cytogenet Genome Res. 2004;107(1-2):132-8 PubMed
Genes Dev. 1997 Jan 1;11(1):83-93 PubMed
Cell. 1988 Apr 8;53(1):127-36 PubMed
Gene. 1990 Apr 16;88(2):159-65 PubMed
Genome. 2004 Feb;47(1):163-78 PubMed
Plant Physiol Biochem. 2007 Sep;45(9):716-21 PubMed
Nucleic Acids Res. 2015 May 19;43(9):4733-45 PubMed
Mol Cell. 2002 Dec;10(6):1295-305 PubMed
EMBO J. 2003 Apr 1;22(7):1688-96 PubMed
Cell. 1985 Dec;43(2 Pt 1):405-13 PubMed
Science. 1997 Aug 15;277(5328):911-2 PubMed
Mol Gen Genet. 1998 Dec;260(5):470-4 PubMed
Curr Biol. 2004 Jul 13;14(13):R514-6 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Proc Natl Acad Sci U S A. 1990 Nov;87(21):8222-6 PubMed
Genome Biol. 2010;11(5):209 PubMed
Mol Biol Evol. 2005 Apr;22(4):856-73 PubMed
Nucleic Acids Res. 2011 Apr;39(8):3282-94 PubMed
Syst Biol. 2008 Oct;57(5):758-71 PubMed
Nat Rev Mol Cell Biol. 2004 Apr;5(4):323-9 PubMed
Mol Cell Biol. 1993 Mar;13(3):1424-32 PubMed
Genes Dev. 1992 Feb;6(2):197-210 PubMed
Chromosome Res. 2005;13(5):525-33 PubMed
Proc Natl Acad Sci U S A. 1989 Sep;86(18):7049-53 PubMed
Am J Bot. 2006 Jun;93(6):814-23 PubMed
Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes
Origin, Diversity, and Evolution of Telomere Sequences in Plants
Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants
Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell