Telomeres and Their Neighbors

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36140830

Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel's anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel's early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.

Zobrazit více v PubMed

Kreplak J., Madoui M.A., Capal P., Novak P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI

The Honeybee Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006;443:931–949. doi: 10.1038/nature05260. PubMed DOI PMC

McClintock B. The fusion of broken chromosome ends of sister half-chromatids following chromatid breakage at meiotic anaphases. MO Agric. Exp. Stn. Res. Bull. 1938;290:1–48.

Muller H. The remaking of chromosomes. Collect. Net. 1938;13:182–198.

Biscotti M.A., Olmo E., Heslop-Harrison J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI

Thakur J., Packiaraj J., Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int. J. Mol. Sci. 2021;22:4309. doi: 10.3390/ijms22094309. PubMed DOI PMC

Peska V., Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. Front. Plant Sci. 2020;11:117. doi: 10.3389/fpls.2020.00117. PubMed DOI PMC

Mikhail F.M. Chromosomal Basis of Inheritance. In: Pyeritz R.E., Korf B.R., Grody W.W., editors. Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics. 7th ed. Academic Press; Cambridge, MA, USA: 2019. pp. 237–265.

Tomaska L., Cesare A.J., AlTurki T.M., Griffith J.D. Twenty years of t-loops: A case study for the importance of collaboration in molecular biology. DNA Repair. 2020;94:102901. doi: 10.1016/j.dnarep.2020.102901. PubMed DOI PMC

Bryan T.M. G-Quadruplexes at Telomeres: Friend or Foe? Molecules. 2020;25:3686. doi: 10.3390/molecules25163686. PubMed DOI PMC

Mason J.M., Randall T.A., Capkova Frydrychova R. Telomerase lost? Chromosoma. 2016;125:65–73. doi: 10.1007/s00412-015-0528-7. PubMed DOI PMC

Muyle A., Marais G.A.B., Bacovsky V., Hobza R., Lenormand T. Dosage compensation evolution in plants: Theories, controversies and mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022;377:20210222. doi: 10.1098/rstb.2021.0222. PubMed DOI PMC

Houben A., Banaei-Moghaddam A.M., Klemme S., Timmis J.N. Evolution and biology of supernumerary B chromosomes. Cell Mol. Life Sci. 2014;71:467–478. doi: 10.1007/s00018-013-1437-7. PubMed DOI PMC

Barnes S.R., James A.M., Jamieson G. The organisation, nucleotide sequence, and chromosomal distribution of a satellite DNA from Allium cepa. Chromosoma. 1985;92:185–192. doi: 10.1007/BF00348692. DOI

Laird C.D. DNA of Drosophila chromosomes. Annu. Rev. Genet. 1973;7:177–204. doi: 10.1146/annurev.ge.07.120173.001141. PubMed DOI

Manuelidis L. A simplified method for preparation of mouse satellite DNA. Anal. Biochem. 1977;78:561–568. doi: 10.1016/0003-2697(77)90118-X. PubMed DOI

Sueoka N. Variation and heterogeneity of base composition of deoxyribonucleic acids: A compilation of old and new data. J. Mol. Biol. 1961;3:31–40. doi: 10.1016/S0022-2836(61)80005-3. DOI

Kit S. Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. J. Mol. Biol. 1961;3:711–716. doi: 10.1016/S0022-2836(61)80075-2. PubMed DOI

Gall J.G., Cohen E.H., Polan M.L. Reptitive DNA sequences in drosophila. Chromosoma. 1971;33:319–344. doi: 10.1007/BF00284948. PubMed DOI

Lin M.S., Davidson R.L. Centric fusion, satellite DNA, and DNA polarity in mouse chromosomes. Science. 1974;185:1179–1181. doi: 10.1126/science.185.4157.1179. PubMed DOI

Miklos G.L., Gill A.C. Nucleotide sequences of highly repeated DNAs; compilation and comments. Genet. Res. 1982;39:1–30. doi: 10.1017/S0016672300020711. PubMed DOI

Pardue M.L., Gall J.G. Chromosomal localization of mouse satellite DNA. Science. 1970;168:1356–1358. doi: 10.1126/science.168.3937.1356. PubMed DOI

Tyler-Smith C., Brown W.R. Structure of the major block of alphoid satellite DNA on the human Y chromosome. J. Mol. Biol. 1987;195:457–470. doi: 10.1016/0022-2836(87)90175-6. PubMed DOI

Jones K.W. Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature. 1970;225:912–915. doi: 10.1038/225912a0. PubMed DOI

Kishii M., Nagaki K., Tsujimoto H. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosome Res. 2001;9:417–428. doi: 10.1023/A:1016739719421. PubMed DOI

Kishii M., Nagaki K., Tsujimoto H., Sasakuma T. Exclusive localization of tandem repetitive sequences in subtelomeric heterochromatin regions of Leymus racemosus (Poaceae, Triticeae) Chromosome Res. 1999;7:519–529. doi: 10.1023/A:1009285311247. PubMed DOI

Puterova J., Razumova O., Martinek T., Alexandrov O., Divashuk M., Kubat Z., Hobza R., Karlov G., Kejnovsky E. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes. Genome Biol. Evol. 2017;9:197–212. doi: 10.1093/gbe/evw303. PubMed DOI PMC

Bennett M.D., Leitch I.J. Genome size evolution in plants. In: Gregory T.R., editor. The Evolution of the Genome. Elsevier Academic Press; London, UK: 2005. pp. 90–162.

Brown T.A. Genome 3. Garland Science Publishing; New York, NY, USA: London, UK: 2007.

Fulneckova J., Sevcikova T., Fajkus J., Lukesova A., Lukes M., Vlcek C., Lang B.F., Kim E., Elias M., Sykorova E. A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol. Evol. 2013;5:468–483. doi: 10.1093/gbe/evt019. PubMed DOI PMC

Louzada S., Lopes M., Ferreira D., Adega F., Escudeiro A., Gama-Carvalho M., Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes. 2020;11:72. doi: 10.3390/genes11010072. PubMed DOI PMC

Garcia S., Garnatje T., Kovarik A. Plant rDNA database: Ribosomal DNA loci information goes online. Chromosoma. 2012;121:389–394. doi: 10.1007/s00412-012-0368-7. PubMed DOI

Sochorova J., Garcia S., Galvez F., Symonova R., Kovarik A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC

Garrido-Ramos M.A. Satellite DNA in Plants: More than Just Rubbish. Cytogenet. Genome Res. 2015;146:153–170. doi: 10.1159/000437008. PubMed DOI

Palomeque T., Lorite P. Satellite DNA in insects: A review. Heredity. 2008;100:564–573. doi: 10.1038/hdy.2008.24. PubMed DOI

Plohl M. Those mysterious sequences of satellite DNAs. Period. Biol. 2010;112:403–410.

Shatskikh A.S., Kotov A.A., Adashev V.E., Bazylev S.S., Olenina L.V. Functional Significance of Satellite DNAs: Insights From Drosophila. Front. Cell Dev. Biol. 2020;8:312. doi: 10.3389/fcell.2020.00312. PubMed DOI PMC

Ugarković Đ., Sermek A., Ljubić S., Feliciello I. Satellite DNAs in Health and Disease. Genes. 2022;13:1154. doi: 10.3390/genes13071154. PubMed DOI PMC

Novak P., Neumann P., Macas J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 2020;15:3745–3776. doi: 10.1038/s41596-020-0400-y. PubMed DOI

Kirov I., Kolganova E., Dudnikov M., Yurkevich O.Y., Amosova A.V., Muravenko O.V. A Pipeline NanoTRF as a New Tool for De Novo Satellite DNA Identification in the Raw Nanopore Sequencing Reads of Plant Genomes. Plants. 2022;11:2103. doi: 10.3390/plants11162103. PubMed DOI PMC

Buzek J., Koutnikova H., Houben A., Riha K., Janousek B., Siroky J., Grant S., Vyskot B. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res. 1997;5:57–65. doi: 10.1023/a:1011693603279. PubMed DOI

Jesionek W., Bodlakova M., Kubat Z., Cegan R., Vyskot B., Vrana J., Safar J., Puterova J., Hobza R. Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa. Ann. Bot. 2021;127:33–47. doi: 10.1093/aob/mcaa160. PubMed DOI PMC

Arnold C., Hodgson I.J. Vectorette PCR: A novel approach to genomic walking. PCR Methods Appl. 1991;1:39–42. doi: 10.1101/gr.1.1.39. PubMed DOI

Horakova M., Fajkus J. TAS49—A dispersed repetitive sequence isolated from subtelomeric regions of Nicotiana tomentosiformis chromosomes. Genome. 2000;43:273–284. doi: 10.1139/g99-126. PubMed DOI

Copenhaver G.P., Pikaard C.S. RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J. 1996;9:259–272. doi: 10.1046/j.1365-313X.1996.09020259.x. PubMed DOI

Fajkus J., Kralovics R., Kovarik A., Fajkusova L. The telomeric sequence is directly attached to the HRS60 subtelomeric tandem repeat in tobacco chromosomes. FEBS Lett. 1995;364:33–35. doi: 10.1016/0014-5793(95)00347-C. PubMed DOI

Sykorova E., Cartagena J., Horakova M., Fukui K., Fajkus J. Characterization of telomere-subtelomere junctions in Silene latifolia. Mol. Genet. Genom. 2003;269:13–20. doi: 10.1007/s00438-003-0811-9. PubMed DOI

Sykorova E., Fajkus J., Ito M., Fukui K. Transition between two forms of heterochromatin at plant subtelomeres. Chromosome Res. 2001;9:309–323. doi: 10.1023/A:1016698713959. PubMed DOI

Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 1988;85:6622–6626. doi: 10.1073/pnas.85.18.6622. PubMed DOI PMC

Neumann P., Nouzova M., Macas J. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.) Genome. 2001;44:716–728. doi: 10.1139/g01-056. PubMed DOI

Pich U., Fritsch R., Schubert I. Closely related Allium species (Alliaceae) share a very similar satellite sequence. Plant Syst. Evol. 1996;202:255–264. doi: 10.1007/BF00983386. DOI

Macas J., Kejnovsky E., Neumann P., Novak P., Koblizkova A., Vyskot B. Next generation sequencing-based analysis of repetitive DNA in the model dioecious [corrected] plant Silene latifolia. PLoS ONE. 2011;6:e27335. doi: 10.1371/annotation/4ccaacb2-92d7-445a-87da-313cedf18feb. PubMed DOI PMC

Peska V., Mandakova T., Ihradska V., Fajkus J. Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum. Int. J. Mol. Sci. 2019;20:733. doi: 10.3390/ijms20030733. PubMed DOI PMC

Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI

Vinces M.D., Legendre M., Caldara M., Hagihara M., Verstrepen K.J. Unstable tandem repeats in promoters confer transcriptional evolvability. Science. 2009;324:1213–1216. doi: 10.1126/science.1170097. PubMed DOI PMC

Wong L.H., Brettingham-Moore K.H., Chan L., Quach J.M., Anderson M.A., Northrop E.L., Hannan R., Saffery R., Shaw M.L., Williams E., et al. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res. 2007;17:1146–1160. doi: 10.1101/gr.6022807. PubMed DOI PMC

Carchilan M., Kumke K., Mikolajewski S., Houben A. Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma. 2009;118:607–616. doi: 10.1007/s00412-009-0222-8. PubMed DOI

Dobrovolná M., Bohálová N., Peška V., Wang J., Luo Y., Bartas M., Volná A., Mergny J.-L., Brázda V. The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences—Implications for Evolution and Biological Regulation. Int. J. Mol. Sci. 2022;23:8482. doi: 10.3390/ijms23158482. PubMed DOI PMC

Fulka H., Langerova A. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition. Development. 2014;141:1694–1704. doi: 10.1242/dev.105940. PubMed DOI

Natale F., Scholl A., Rapp A., Yu W., Rausch C., Cardoso M.C. DNA replication and repair kinetics of Alu, LINE-1 and satellite III genomic repetitive elements. Epigenet. Chromatin. 2018;11:61. doi: 10.1186/s13072-018-0226-9. PubMed DOI PMC

Valgardsdottir R., Chiodi I., Giordano M., Cobianchi F., Riva S., Biamonti G. Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol. Biol. Cell. 2005;16:2597–2604. doi: 10.1091/mbc.e04-12-1078. PubMed DOI PMC

Garrido-Ramos M.A. Satellite DNA: An Evolving Topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC

Pellicer J., Leitch I.J. The Plant DNA C-values database (release 7.1): An updated online repository of plant genome size data for comparative studies. New Phytol. 2020;226:301–305. doi: 10.1111/nph.16261. PubMed DOI

Camacho J.P., Sharbel T.F., Beukeboom L.W. B-chromosome evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:163–178. doi: 10.1098/rstb.2000.0556. PubMed DOI PMC

Eickbush D.G., Eickbush T.H., Werren J.H. Molecular characterization of repetitive DNA sequences from a B chromosome. Chromosoma. 1992;101:575–583. doi: 10.1007/BF00660317. PubMed DOI

Nagaki K., Tsujimoto H., Sasakuma T. A novel repetitive sequence, termed the JNK repeat family, located on an extra heterochromatic region of chromosome 2R of Japanese rye. Chromosome Res. 1999;7:95–101. doi: 10.1023/A:1009226612818. PubMed DOI

Zimmer E.A., Martin S.L., Beverley S.M., Kan Y.W., Wilson A.C. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proc. Natl. Acad. Sci. USA. 1980;77:2158–2162. doi: 10.1073/pnas.77.4.2158. PubMed DOI PMC

Strachan T., Webb D., Dover G.A. Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J. 1985;4:1701–1708. doi: 10.1002/j.1460-2075.1985.tb03839.x. PubMed DOI PMC

Lower S.S., McGurk M.P., Clark A.G., Barbash D.A. Satellite DNA evolution: Old ideas, new approaches. Curr. Opin. Genet. Dev. 2018;49:70–78. doi: 10.1016/j.gde.2018.03.003. PubMed DOI PMC

Feliciello I., Picariello O., Chinali G. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: Molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Gene. 2006;383:81–92. doi: 10.1016/j.gene.2006.07.016. PubMed DOI

Mestrovic N., Plohl M., Mravinac B., Ugarkovic D. Evolution of satellite DNAs from the genus Palorus—Experimental evidence for the "library" hypothesis. Mol. Biol. Evol. 1998;15:1062–1068. doi: 10.1093/oxfordjournals.molbev.a026005. PubMed DOI

Salser W., Bowen S., Browne D., El-Adli F., Fedoroff N., Fry K., Heindell H., Paddock G., Poon R., Wallace B., et al. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed. Proc. 1976;35:23–35. PubMed

Southern E.M. Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature. 1970;227:794–798. doi: 10.1038/227794a0. PubMed DOI

Meyne J., Ratliff R.L., Moyzis R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA. 1989;86:7049–7053. doi: 10.1073/pnas.86.18.7049. PubMed DOI PMC

Fajkus J., Sykorova E., Leitch A.R. Telomeres in evolution and evolution of telomeres. Chromosome Res. 2005;13:469–479. doi: 10.1007/s10577-005-0997-2. PubMed DOI

Blackburn E.H., Gall J.G. Tandemly Repeated Sequence at Termini of Extrachromosomal Ribosomal-Rna Genes in Tetrahymena. J. Mol. Biol. 1978;120:33–53. doi: 10.1016/0022-2836(78)90294-2. PubMed DOI

Greider C.W., Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–413. doi: 10.1016/0092-8674(85)90170-9. PubMed DOI

Greider C.W., Blackburn E.H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987;51:887–898. doi: 10.1016/0092-8674(87)90576-9. PubMed DOI

Shay J.W., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI

Lopez C.C., Nielsen L., Edstrom J.E. Terminal long tandem repeats in chromosomes form Chironomus pallidivittatus. Mol. Cell. Biol. 1996;16:3285–3290. doi: 10.1128/MCB.16.7.3285. PubMed DOI PMC

Nielsen L., Edstrom J.E. Complex telomere-associated repeat units in members of the genus Chironomus evolve from sequences similar to simple telomeric repeats. Mol. Cell. Biol. 1993;13:1583–1589. doi: 10.1128/mcb.13.3.1583-1589.1993. PubMed DOI PMC

Roth C.W., Kobeski F., Walter M.F., Biessmann H. Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol. Cell. Biol. 1997;17:5176–5183. doi: 10.1128/MCB.17.9.5176. PubMed DOI PMC

Madalena C.R., Fernandes T., Villasante A., Gorab E. Curiously composite structures of a retrotransposon and a complex repeat associated with chromosome ends of Rhynchosciara americana (Diptera: Sciaridae) Chromosome Res. 2010;18:587–598. doi: 10.1007/s10577-010-9143-x. PubMed DOI

Rossato R.M., Madalena C.R., Gorab E. Unusually short tandem repeats in the chromosome end structure of Rhynchosciara (Diptera: Sciaridae) Genetica. 2007;131:109–116. doi: 10.1007/s10709-006-9120-7. PubMed DOI

Bryan T.M., Englezou A., Gupta J., Bacchetti S., Reddel R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14:4240–4248. doi: 10.1002/j.1460-2075.1995.tb00098.x. PubMed DOI PMC

Ruckova E., Friml J., Prochazkova Schrumpfova P., Fajkus J. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol. Biol. 2008;66:637–646. doi: 10.1007/s11103-008-9295-7. PubMed DOI

Chen Q., Ijpma A., Greider C.W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol. 2001;21:1819–1827. doi: 10.1128/MCB.21.5.1819-1827.2001. PubMed DOI PMC

Teng S.C., Zakian V.A. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999;19:8083–8093. doi: 10.1128/MCB.19.12.8083. PubMed DOI PMC

Biessmann H., Mason J.M., Ferry K., d’Hulst M., Valgeirsdottir K., Traverse K.L., Pardue M.L. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell. 1990;61:663–673. doi: 10.1016/0092-8674(90)90478-W. PubMed DOI

Abad J.P., De Pablos B., Osoegawa K., De Jong P.J., Martin-Gallardo A., Villasante A. TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol. Biol. Evol. 2004;21:1620–1624. doi: 10.1093/molbev/msh180. PubMed DOI

Levis R.W., Ganesan R., Houtchens K., Tolar L.A., Sheen F.M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993;75:1083–1093. doi: 10.1016/0092-8674(93)90318-K. PubMed DOI

Rubin G.M. Isolation of a telomeric DNA sequence from Drosophila melanogaster. Pt 2Cold Spring Harb. Symp. Quant. Biol. 1978;42:1041–1046. doi: 10.1101/SQB.1978.042.01.104. PubMed DOI

Traverse K.L., Pardue M.L. A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc. Natl. Acad. Sci. USA. 1988;85:8116–8120. doi: 10.1073/pnas.85.21.8116. PubMed DOI PMC

Young B.S., Pession A., Traverse K.L., French C., Pardue M.L. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell. 1983;34:85–94. doi: 10.1016/0092-8674(83)90138-1. PubMed DOI

Cacchione S., Cenci G., Raffa G.D. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J. Mol. Biol. 2020;432:4305–4321. doi: 10.1016/j.jmb.2020.06.004. PubMed DOI

Casacuberta E. Drosophila: Retrotransposons Making up Telomeres. Viruses. 2017;9:192. doi: 10.3390/v9070192. PubMed DOI PMC

Llorens-Giralt P., Camilleri-Robles C., Corominas M., Climent-Canto P. Chromatin Organization and Function in Drosophila. Cells. 2021;10:2362. doi: 10.3390/cells10092362. PubMed DOI PMC

Belfort M., Curcio M.J., Lue N.F. Telomerase and retrotransposons: Reverse transcriptases that shaped genomes. Proc. Natl. Acad. Sci. USA. 2011;108:20304–20310. doi: 10.1073/pnas.1100269109. PubMed DOI PMC

Markova D.N., Christensen S.M., Betran E. Telomere-Specialized Retroelements in Drosophila: Adaptive Symbionts of the Genome, Neutral, or in Conflict? Bioessays. 2020;42:e1900154. doi: 10.1002/bies.201900154. PubMed DOI

Sima N., McLaughlin E.J., Hutchinson S., Glover L. Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biol. 2019;9:190182. doi: 10.1098/rsob.190182. PubMed DOI PMC

Koukalova B., Reich J., Matyasek R., Kuhrova V., Bezdek M. A BamHI Family of Highly Repeated DNA-Sequences of Nicotiana tabacum. Appl. Genet. 1989;78:77–80. doi: 10.1007/BF00299757. PubMed DOI

Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Knapp S., McCarthy E., Clarkson J.J., Leitch A.R. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J. 2006;48:907–919. doi: 10.1111/j.1365-313X.2006.02930.x. PubMed DOI

Murad L., Lim K.Y., Christopodulou V., Matyasek R., Lichtenstein C.P., Kovarik A., Leitch A.R. The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae) Am. J. Bot. 2002;89:921–928. doi: 10.3732/ajb.89.6.921. PubMed DOI

Macas J., Neumann P., Navratilova A. Repetitive DNA in the pea (Pisum sativum L.) genome: Comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genom. 2007;8:427. doi: 10.1186/1471-2164-8-427. PubMed DOI PMC

Pich U., Fuchs J., Schubert I. How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res. 1996;4:207–213. doi: 10.1007/BF02254961. PubMed DOI

Hof J.v.t. Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exp. Cell Res. 1965;39:48–58. doi: 10.1016/0014-4827(65)90006-6. PubMed DOI

Maluszynska J., Heslop-Harrison J.S. Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J. 1991;1:159–166. doi: 10.1111/j.1365-313X.1991.00159.x. DOI

Mozgova I., Mokros P., Fajkus J. Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell. 2010;22:2768–2780. doi: 10.1105/tpc.110.076182. PubMed DOI PMC

Dvorackova M., Fojtova M., Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. Plant J. 2015;83:18–37. doi: 10.1111/tpj.12822. PubMed DOI

Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Clarkson J.J., Grandbastien M.A., Leitch A.R. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 2007;175:756–763. doi: 10.1111/j.1469-8137.2007.02121.x. PubMed DOI

Vicari M.R., Nogaroto V., Noleto R.B., Cestari M.M., Cioffi M.B., Almeida M.C., Moreira-Filho O., Bertollo L.A., Artoni R.F. Satellite DNA and chromosomes in Neotropical fishes: Methods, applications and perspectives. J. Fish Biol. 2010;76:1094–1116. doi: 10.1111/j.1095-8649.2010.02564.x. PubMed DOI

Dodsworth S., Chase M.W., Kelly L.J., Leitch I.J., Macas J., Novak P., Piednoel M., Weiss-Schneeweiss H., Leitch A.R. Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 2015;64:112–126. doi: 10.1093/sysbio/syu080. PubMed DOI PMC

Novak P., Guignard M.S., Neumann P., Kelly L.J., Mlinarec J., Koblizkova A., Dodsworth S., Kovarik A., Pellicer J., Wang W., et al. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat. Plants. 2020;6:1325–1329. doi: 10.1038/s41477-020-00785-x. PubMed DOI

Fuchs J., Brandes A., Schubert I. Telomere sequence localization and karyotype evolution in higher plants. Plant Syst. Evol. 1995;196:227–241. doi: 10.1007/BF00982962. DOI

Okazaki S., Tsuchida K., Maekawa H., Ishikawa H., Fujiwara H. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol. Cell. Biol. 1993;13:1424–1432. doi: 10.1128/mcb.13.3.1424-1432.1993. PubMed DOI PMC

Richards E.J., Ausubel F.M. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988;53:127–136. doi: 10.1016/0092-8674(88)90494-1. PubMed DOI

Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI

Hemleben V., Grierson D., Borisjuk N., Volkov R.A., Kovarik A. Personal Perspectives on Plant Ribosomal RNA Genes Research: From Precursor-rRNA to Molecular Evolution. Front. Plant Sci. 2021;12:797348. doi: 10.3389/fpls.2021.797348. PubMed DOI PMC

Aguilar M., Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. Front. Plant Sci. 2021;12:672489. doi: 10.3389/fpls.2021.672489. PubMed DOI PMC

Bolzan A.D. Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis. 2012;27:1–15. doi: 10.1093/mutage/ger052. PubMed DOI

Carlton P.M., Cande W.Z. Telomeres act autonomously in maize to organize the meiotic bouquet from a semipolarized chromosome orientation. J. Cell Biol. 2002;157:231–242. doi: 10.1083/jcb.200110126. PubMed DOI PMC

Cowan C.R., Carlton P.M., Cande W.Z. The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol. 2001;125:532–538. doi: 10.1104/pp.125.2.532. PubMed DOI PMC

Krejci K., Stentoft J., Koch J. Molecular cytogenetics investigation of the telomeres in a case of Philadelphia positive B-ALL with a single telomere expansion. Neoplasia. 1999;1:492–497. doi: 10.1038/sj.neo.7900065. PubMed DOI PMC

Samassekou O., Li H., Hebert J., Ntwari A., Wang H., Cliche C.G., Bouchard E., Huang S., Yan J. Chromosome arm-specific long telomeres: A new clonal event in primary chronic myelogenous leukemia cells. Neoplasia. 2011;13:550–560. doi: 10.1593/neo.11358. PubMed DOI PMC

Schober H., Kalck V., Vega-Palas M.A., Van Houwe G., Sage D., Unser M., Gartenberg M.R., Gasser S.M. Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Res. 2008;18:261–271. doi: 10.1101/gr.6687808. PubMed DOI PMC

Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI

Shampay J., Szostak J.W., Blackburn E.H. DNA sequences of telomeres maintained in yeast. Nature. 1984;310:154–157. doi: 10.1038/310154a0. PubMed DOI

Greider C.W. Telomere length regulation. Annu. Rev. Biochem. 1996;65:337–365. doi: 10.1146/annurev.bi.65.070196.002005. PubMed DOI

Matsumoto T., Fukui K., Niwa O., Sugawara N., Szostak J.W., Yanagida M. Identification of healed terminal DNA fragments in linear minichromosomes of Schizosaccharomyces pombe. Mol. Cell. Biol. 1987;7:4424–4430. doi: 10.1128/mcb.7.12.4424-4430.1987. PubMed DOI PMC

McEachern M.J., Hicks J.B. Unusually large telomeric repeats in the yeast Candida albicans. Mol. Cell. Biol. 1993;13:551–560. doi: 10.1128/mcb.13.1.551-560.1993. PubMed DOI PMC

McEachern M.J., Blackburn E.H. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc. Natl. Acad. Sci. USA. 1994;91:3453–3457. doi: 10.1073/pnas.91.8.3453. PubMed DOI PMC

Peska V., Fajkus P., Bubenik M., Brazda V., Bohalova N., Dvoracek V., Fajkus J., Garcia S. Extraordinary diversity of telomeres, telomerase RNAs and their template regions in Saccharomycetaceae. Sci. Rep. 2021;11:12784. doi: 10.1038/s41598-021-92126-x. PubMed DOI PMC

Cervenak F., Jurikova K., Devillers H., Kaffe B., Khatib A., Bonnell E., Sopkovicova M., Wellinger R.J., Nosek J., Tzfati Y., et al. Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Sci. Rep. 2019;9:13365. doi: 10.1038/s41598-019-49628-6. PubMed DOI PMC

Cervenak F., Sepsiova R., Nosek J., Tomaska L. Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol. Evol. 2021;13:evaa268. doi: 10.1093/gbe/evaa268. PubMed DOI PMC

Sykorova E., Lim K.Y., Chase M.W., Knapp S., Leitch I.J., Leitch A.R., Fajkus J. The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): First evidence from eudicots. Plant J. 2003;34:283–291. doi: 10.1046/j.1365-313X.2003.01731.x. PubMed DOI

Adams S.P., Hartman T.P., Lim K.Y., Chase M.W., Bennett M.D., Leitch I.J., Leitch A.R. Loss and recovery of Arabidopsis-type telomere repeat sequences 5′-(TTTAGGG)(n)-3′ in the evolution of a major radiation of flowering plants. Proc. Biol. Sci. 2001;268:1541–1546. doi: 10.1098/rspb.2001.1726. PubMed DOI PMC

Adams S.P., Leitch I.J., Bennett M.D., Leitch A.R. Aloe L.—A second plant family without (TTTAGGG)n telomeres. Chromosoma. 2000;109:201–205. doi: 10.1007/s004120050429. PubMed DOI

Frydrychova R., Marec F. Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera) Genetica. 2002;115:179–187. doi: 10.1023/A:1020175912128. PubMed DOI

Sykorova E., Lim K.Y., Kunicka Z., Chase M.W., Bennett M.D., Fajkus J., Leitch A.R. Telomere variability in the monocotyledonous plant order Asparagales. Proc. R. Soc. Lond. B Biol. Sci. 2003;270:1893–1904. doi: 10.1098/rspb.2003.2446. PubMed DOI PMC

Sykorova E., Fajkus J., Meznikova M., Lim K.Y., Neplechova K., Blattner F.R., Chase M.W., Leitch A.R. Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am. J. Bot. 2006;93:814–823. doi: 10.3732/ajb.93.6.814. PubMed DOI

Bombarova M., Vitkova M., Spakulova M., Koubkova B. Telomere analysis of platyhelminths and acanthocephalans by FISH and Southern hybridization. Genome. 2009;52:897–903. doi: 10.1139/G09-063. PubMed DOI

Fulneckova J., Hasikova T., Fajkus J., Lukesova A., Elias M., Sykorova E. Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biol. Evol. 2012;4:248–264. doi: 10.1093/gbe/evs007. PubMed DOI PMC

Mravinac B., Mestrovic N., Cavrak V.V., Plohl M. TCAGG, an alternative telomeric sequence in insects. Chromosoma. 2011;120:367–376. doi: 10.1007/s00412-011-0317-x. PubMed DOI

Vitkova M., Kral J., Traut W., Zrzavy J., Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res. 2005;13:145–156. doi: 10.1007/s10577-005-7721-0. PubMed DOI

Weiss H., Scherthan H. Aloe spp.—Plants with vertebrate-like telomeric sequences. Chromosome Res. 2002;10:155–164. doi: 10.1023/A:1014905319557. PubMed DOI

Fajkus P., Peska V., Sitova Z., Fulneckova J., Dvorackova M., Gogela R., Sykorova E., Hapala J., Fajkus J. Allium telomeres unmasked: The unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. Plant J. 2016;85:337–347. doi: 10.1111/tpj.13115. PubMed DOI

Friesen N., Fritsch R.M., Blattner F.R. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear rDNA ITS sequences. Aliso. 2006;22:372–395. doi: 10.5642/aliso.20062201.31. DOI

Fulneckova J., Sevcikova T., Lukesova A., Sykorova E. Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales) Chromosoma. 2016;125:437–451. doi: 10.1007/s00412-015-0557-2. PubMed DOI

Derelle R., Torruella G., Klimes V., Brinkmann H., Kim E., Vlcek C., Lang B.F., Elias M. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl. Acad. Sci. USA. 2015;112:E693–E699. doi: 10.1073/pnas.1420657112. PubMed DOI PMC

Elias M. Protist diversity: Novel groups enrich the algal tree of life. Curr. Biol. 2021;31:R733–R735. doi: 10.1016/j.cub.2021.04.025. PubMed DOI

Prusakova D., Peska V., Pekar S., Bubenik M., Cizek L., Bezdek A., Capkova Frydrychova R. Telomeric DNA sequences in beetle taxa vary with species richness. Sci. Rep. 2021;11:13319. doi: 10.1038/s41598-021-92705-y. PubMed DOI PMC

Kuznetsova V., Maryańska-Nadachowska A., Anokhin B., Shapoval N., Shapoval A. Chromosomal analysis of eight species of dragonflies (Anisoptera) and damselflies (Zygoptera) using conventional cytogenetics and fluorescence in situ hybridization: Insights into the karyotype evolution of the ancient insect order Odonata. J. Zool. Syst. Evol. Res. 2021;59:387–399. doi: 10.1111/jzs.12429. DOI

Gorab E. Chromosome End Diversification in Sciarid Flies. Cells. 2020;9:2425. doi: 10.3390/cells9112425. PubMed DOI PMC

Zhou Y., Wang Y., Xiong X., Appel A.G., Zhang C., Wang X. Profiles of telomeric repeats in Insecta reveal diverse forms of telomeric motifs in Hymenopterans. Life Sci. Alliance. 2022;5 doi: 10.26508/lsa.202101163. PubMed DOI PMC

Aksenova A.Y., Mirkin S.M. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes. 2019;10:118. doi: 10.3390/genes10020118. PubMed DOI PMC

Flint J., Bates G.P., Clark K., Dorman A., Willingham D., Roe B.A., Micklem G., Higgs D.R., Louis E.J. Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum. Mol. Genet. 1997;6:1305–1313. doi: 10.1093/hmg/6.8.1305. PubMed DOI

Sykorova E., Lim K.Y., Fajkus J., Leitch A.R. The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG)n telomeres. Chromosoma. 2003;112:164–172. doi: 10.1007/s00412-003-0256-2. PubMed DOI

Majerova E., Mandakova T., Vu G.T., Fajkus J., Lysak M.A., Fojtova M. Chromatin features of plant telomeric sequences at terminal vs. internal positions. Front. Plant Sci. 2014;5:593. doi: 10.3389/fpls.2014.00593. PubMed DOI PMC

Mandakova T., Zozomova-Lihova J., Kudoh H., Zhao Y., Lysak M.A., Marhold K. The story of promiscuous crucifers: Origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Ann. Bot. 2019;124:209–220. doi: 10.1093/aob/mcz019. PubMed DOI PMC

Naish M., Alonge M., Wlodzimierz P., Tock A.J., Abramson B.W., Schmucker A., Mandakova T., Jamge B., Lambing C., Kuo P., et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science. 2021;374:eabi7489. doi: 10.1126/science.abi7489. PubMed DOI PMC

Pich U., Schubert I. Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res. 1998;6:315–321. doi: 10.1023/A:1009227009121. PubMed DOI

Sykorova E., Fojtova M., Peska V. A polymerase chain reaction-based approach for evaluation of telomere-associated sequences and interstitial telomeric sequences. Anal. Biochem. 2013;439:8–10. doi: 10.1016/j.ab.2013.03.034. PubMed DOI

Pfaffl M.W. Quantification strategies in real-time PCR. In: Bustin S.A., editor. A–Z of Quantitative PCR. International University Line; La Jolla, CA, USA: 2004. pp. 87–112.

Meyne J., Baker R.J., Hobart H.H., Hsu T.C., Ryder O.A., Ward O.G., Wiley J.E., Wurster-Hill D.H., Yates T.L., Moyzis R.K. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990;99:3–10. doi: 10.1007/BF01737283. PubMed DOI

Maravilla A.J., Rosato M., Alvarez I., Nieto Feliner G., Rossello J.A. Interstitial Arabidopsis-Type Telomeric Repeats in Asteraceae. Plants. 2021;10:2794. doi: 10.3390/plants10122794. PubMed DOI PMC

Richards E.J., Goodman H.M., Ausubel F.M. The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res. 1991;19:3351–3357. doi: 10.1093/nar/19.12.3351. PubMed DOI PMC

Luo X., He Z., Liu J., Wu H., Gong X. FISH Mapping of Telomeric and Non-Telomeric (AG3T3)3 Reveal the Chromosome Numbers and Chromosome Rearrangements of 41 Woody Plants. Genes. 2022;13:1239. doi: 10.3390/genes13071239. PubMed DOI PMC

Rovatsos M., Kratochvil L., Altmanova M., Johnson Pokorna M. Interstitial Telomeric Motifs in Squamate Reptiles: When the Exceptions Outnumber the Rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC

Rego A., Marec F. Telomeric and interstitial telomeric sequences in holokinetic chromosomes of Lepidoptera: Telomeric DNA mediates association between postpachytene bivalents in achiasmatic meiosis of females. Chromosome Res. 2003;11:681–694. doi: 10.1023/A:1025937808382. PubMed DOI

Azzalin C.M., Nergadze S.G., Giulotto E. Human intrachromosomal telomeric-like repeats: Sequence organization and mechanisms of origin. Chromosoma. 2001;110:75–82. doi: 10.1007/s004120100135. PubMed DOI

Chirino M.G., Dalikova M., Marec F.R., Bressa M.J. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma) Ecol. Evol. 2017;7:5227–5235. doi: 10.1002/ece3.3098. PubMed DOI PMC

Gaspin C., Rami J.F., Lescure B. Distribution of short interstitial telomere motifs in two plant genomes: Putative origin and function. BMC Plant Biol. 2010;10:283. doi: 10.1186/1471-2229-10-283. PubMed DOI PMC

Aksenova A.Y., Han G., Shishkin A.A., Volkov K.V., Mirkin S.M. Expansion of Interstitial Telomeric Sequences in Yeast. Cell Rep. 2015;13:1545–1551. doi: 10.1016/j.celrep.2015.10.023. PubMed DOI PMC

Nergadze S.G., Rocchi M., Azzalin C.M., Mondello C., Giulotto E. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res. 2004;14:1704–1710. doi: 10.1101/gr.2778904. PubMed DOI PMC

Ijdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC

McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics. 1940;26:234–282. doi: 10.1093/genetics/26.2.234. PubMed DOI PMC

Bailey S.M., Murnane J.P. Telomeres, chromosome instability and cancer. Nucleic Acids Res. 2006;34:2408–2417. doi: 10.1093/nar/gkl303. PubMed DOI PMC

Lowden M.R., Flibotte S., Moerman D.G., Ahmed S. DNA synthesis generates terminal duplications that seal end-to-end chromosome fusions. Science. 2011;332:468–471. doi: 10.1126/science.1199022. PubMed DOI PMC

Bosco G., Haber J.E. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics. 1998;150:1037–1047. doi: 10.1093/genetics/150.3.1037. PubMed DOI PMC

Kramara J., Osia B., Malkova A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet. 2018;34:518–531. doi: 10.1016/j.tig.2018.04.002. PubMed DOI PMC

Hackett J.A., Feldser D.M., Greider C.W. Telomere dysfunction increases mutation rate and genomic instability. Cell. 2001;106:275–286. doi: 10.1016/S0092-8674(01)00457-3. PubMed DOI

Fojtova M., Fulneckova J., Fajkus J., Kovarik A. Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity. J. Exp. Bot. 2002;53:2151–2158. doi: 10.1093/jxb/erf080. PubMed DOI

Jankowska M., Fuchs J., Klocke E., Fojtova M., Polanska P., Fajkus J., Schubert V., Houben A. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma. 2015;124:519–528. doi: 10.1007/s00412-015-0524-y. PubMed DOI

Tsujimoto H., Yamada T., Sasakuma T. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proc. Natl. Acad. Sci. USA. 1997;94:3140–3144. doi: 10.1073/pnas.94.7.3140. PubMed DOI PMC

Farr C., Fantes J., Goodfellow P., Cooke H. Functional reintroduction of human telomeres into mammalian cells. Proc. Natl. Acad. Sci. USA. 1991;88:7006–7010. doi: 10.1073/pnas.88.16.7006. PubMed DOI PMC

Wilkie A.O., Lamb J., Harris P.C., Finney R.D., Higgs D.R. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature. 1990;346:868–871. doi: 10.1038/346868a0. PubMed DOI

Yu W., Lamb J.C., Han F., Birchler J.A. Telomere-mediated chromosomal truncation in maize. Proc. Natl. Acad. Sci. USA. 2006;103:17331–17336. doi: 10.1073/pnas.0605750103. PubMed DOI PMC

Kapusi E., Ma L., Teo C.H., Hensel G., Himmelbach A., Schubert I., Mette M.F., Kumlehn J., Houben A. Telomere-mediated truncation of barley chromosomes. Chromosoma. 2012;121:181–190. doi: 10.1007/s00412-011-0351-8. PubMed DOI

Tamar S., Papadopoulou B. A telomere-mediated chromosome fragmentation approach to assess mitotic stability and ploidy alterations of Leishmania chromosomes. J. Biol. Chem. 2001;276:11662–11673. doi: 10.1074/jbc.M009006200. PubMed DOI

Teo C.H., Ma L., Kapusi E., Hensel G., Kumlehn J., Schubert I., Houben A., Mette M.F. Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J. 2011;68:28–39. doi: 10.1111/j.1365-313X.2011.04662.x. PubMed DOI

Tada S., Ohkuchi H., Matsushita-Morita M., Furukawa I., Hattori R., Suzuki S., Kashiwagi Y., Kusumoto K. Telomere-mediated chromosomal truncation in Aspergillus oryzae. J. Biosci. Bioeng. 2015;119:43–46. doi: 10.1016/j.jbiosc.2014.06.011. PubMed DOI

Henderson E.R., Blackburn E.H. An overhanging 3′ terminus is a conserved feature of telomeres. Mol. Cell. Biol. 1989;9:345–348. doi: 10.1128/mcb.9.1.345-348.1989. PubMed DOI PMC

Klobutcher L.A., Swanton M.T., Donini P., Prescott D.M. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3’ terminus. Proc. Natl. Acad. Sci. USA. 1981;78:3015–3019. doi: 10.1073/pnas.78.5.3015. PubMed DOI PMC

Makarov V.L., Hirose Y., Langmore J.P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell. 1997;88:657–666. doi: 10.1016/S0092-8674(00)81908-X. PubMed DOI

Riha K., McKnight T.D., Fajkus J., Vyskot B., Shippen D.E. Analysis of the G-overhang structures on plant telomeres: Evidence for two distinct telomere architectures. Plant J. 2000;23:633–641. doi: 10.1046/j.1365-313x.2000.00831.x. PubMed DOI

Raices M., Verdun R.E., Compton S.A., Haggblom C.I., Griffith J.D., Dillin A., Karlseder J.C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell. 2008;132:745–757. doi: 10.1016/j.cell.2007.12.039. PubMed DOI

Fajkus J., Sykorova E., Leitch A.R. Techniques in plant telomere biology. Biotechniques. 2005;38:233–243. doi: 10.2144/05382RV01. PubMed DOI

Fojtova M., Fajkus P., Polanska P., Fajkus J. Terminal Restriction Fragments (TRF) Method to Analyze Telomere Lengths. Bio-Protocols. 2015;5:e1671. doi: 10.21769/BioProtoc.1671. DOI

Mender I., Shay J.W. Telomere Restriction Fragment (TRF) Analysis. Bio-Protocols. 2015;5:e1658. doi: 10.21769/BioProtoc.1658. PubMed DOI PMC

Starling J.A., Maule J., Hastie N.D., Allshire R.C. Extensive telomere repeat arrays in mouse are hypervariable. Nucleic Acids Res. 1990;18:6881–6888. doi: 10.1093/nar/18.23.6881. PubMed DOI PMC

Kirk K.E., Blackburn E.H. An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila. Genes Dev. 1995;9:59–71. doi: 10.1101/gad.9.1.59. PubMed DOI

Petracek M.E., Lefebvre P.A., Silflow C.D., Berman J. Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs. Proc. Natl. Acad. Sci. USA. 1990;87:8222–8226. doi: 10.1073/pnas.87.21.8222. PubMed DOI PMC

Fojtova M., Wong J.T., Dvorackova M., Yan K.T., Sykorova E., Fajkus J. Telomere maintenance in liquid crystalline chromosomes of dinoflagellates. Chromosoma. 2010;119:485–493. doi: 10.1007/s00412-010-0272-y. PubMed DOI

Fajkus P., Peska V., Zavodnik M., Fojtova M., Fulneckova J., Dobias S., Kilar A., Dvorackova M., Zachova D., Necasova I., et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019;47:9842–9856. doi: 10.1093/nar/gkz695. PubMed DOI PMC

Peska V., Fajkus P., Fojtova M., Dvorackova M., Hapala J., Dvoracek V., Polanska P., Leitch A.R., Sykorova E., Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015;82:644–654. doi: 10.1111/tpj.12839. PubMed DOI

Peska V., Sitova Z., Fajkus P., Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods. 2017;114:16–27. doi: 10.1016/j.ymeth.2016.08.017. PubMed DOI

Blackburn E.H., Greider C.W., Szostak J.W. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 2006;12:1133–1138. doi: 10.1038/nm1006-1133. PubMed DOI

Szostak J.W., Blackburn E.H. Cloning yeast telomeres on linear plasmid vectors. Cell. 1982;29:245–255. doi: 10.1016/0092-8674(82)90109-X. PubMed DOI

Perrot M., Barreau C., Begueret J. Nonintegrative transformation in the filamentous fungus Podospora anserina: Stabilization of a linear vector by the chromosomal ends of Tetrahymena thermophila. Mol. Cell. Biol. 1987;7:1725–1730. doi: 10.1128/mcb.7.5.1725-1730.1987. PubMed DOI PMC

Burke D.T., Carle G.F., Olson M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987;236:806–812. doi: 10.1126/science.3033825. PubMed DOI

Javerzat J.P., Bhattacherjee V., Barreau C. Isolation of telomeric DNA from the filamentous fungus Podospora anserina and construction of a self-replicating linear plasmid showing high transformation frequency. Nucleic Acids Res. 1993;21:497–504. doi: 10.1093/nar/21.3.497. PubMed DOI PMC

Leisen T., Bietz F., Werner J., Wegner A., Schaffrath U., Scheuring D., Willmund F., Mosbach A., Scalliet G., Hahn M. CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea. PLoS Pathog. 2020;16:e1008326. doi: 10.1371/journal.ppat.1008326. PubMed DOI PMC

Britten R.J., Kohne D.E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968;161:529–540. doi: 10.1126/science.161.3841.529. PubMed DOI

Nisson P.E., Watkins P.C., Menninger J.C., Ward D.C. Improved suppression hybridization with human DNA (Cot-1 DNA) enriched for repetitive DNA sequences. Focus. 1991;13:42–45.

Jiang J., Gill B.S., Wang G.L., Ronald P.C., Ward D.C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci. USA. 1995;92:4487–4491. doi: 10.1073/pnas.92.10.4487. PubMed DOI PMC

Chang S.B., Yang T.J., Datema E., van Vugt J., Vosman B., Kuipers A., Meznikova M., Szinay D., Lankhorst R.K., Jacobsen E., et al. FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res. 2008;16:919–933. doi: 10.1007/s10577-008-1249-z. PubMed DOI

Szinay D., Bai Y., Visser R., de Jong H. FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet. Genome Res. 2010;129:199–210. doi: 10.1159/000313502. PubMed DOI

Terencio M.L., Schneider C.H., Gross M.C., do Carmo E.J., Nogaroto V., de Almeida M.C., Artoni R.F., Vicari M.R., Feldberg E. Repetitive sequences: The hidden diversity of heterochromatin in prochilodontid fish. Comp. Cytogenet. 2015;9:465–481. doi: 10.3897/CompCytogen.v9i4.5299. PubMed DOI PMC

Zou F., Li N. Isolation and characterization of sixty sequences of cot-1 DNA from the Asiatic black bear, Ursus thibetanus. Afr. J. Biotechnol. 2012;11:15493–15500. doi: 10.5897/AJB11.057. DOI

Kusumoto K.I., Suzuki S., Kashiwagi Y. Telomeric repeat sequence of Aspergillus oryzae consists of dodeca-nucleotides. Appl. Microbiol. Biotechnol. 2003;61:247–251. doi: 10.1007/s00253-002-1193-3. PubMed DOI

Schrumpfova P.P., Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules. 2020;10:1425. doi: 10.3390/biom10101425. PubMed DOI PMC

Fajkus J., Kovarik A., Kralovics R. Telomerase activity in plant cells. FEBS Lett. 1996;391:307–309. doi: 10.1016/0014-5793(96)00757-0. PubMed DOI

Morin G.B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989;59:521–529. doi: 10.1016/0092-8674(89)90035-4. PubMed DOI

Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015. doi: 10.1126/science.7605428. PubMed DOI

Cranert S., Heyse S., Linger B.R., Lescasse R., Price C. Tetrahymena Pot2 is a developmentally regulated paralog of Pot1 that localizes to chromosome breakage sites but not to telomeres. Eukaryot. Cell. 2014;13:1519–1529. doi: 10.1128/EC.00204-14. PubMed DOI PMC

Premkumar V.L., Cranert S., Linger B.R., Morin G.B., Minium S., Price C. The 3′ overhangs at Tetrahymena thermophila telomeres are packaged by four proteins, Pot1a, Tpt1, Pat1, and Pat2. Eukaryot. Cell. 2014;13:240–245. doi: 10.1128/EC.00275-13. PubMed DOI PMC

Mender I., Shay J.W. Telomerase Repeated Amplification Protocol (TRAP) Bio-Protocols. 2015;5:e1657. doi: 10.21769/BioProtoc.1657. PubMed DOI PMC

Piatyszek M.A., Kim N.W., Weinrich S.L., Hiyama K., Hiyama E., Wright W.E., Shay J.W. Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP) Methods Cell Sci. 1995;17:1–15. doi: 10.1007/BF00981880. DOI

Schumpert C., Nelson J., Kim E., Dudycha J.L., Patel R.C. Telomerase activity and telomere length in Daphnia. PLoS ONE. 2015;10:e0127196. doi: 10.1371/journal.pone.0127196. PubMed DOI PMC

Uzlikova M., Fulneckova J., Weisz F., Sykorova E., Nohynkova E., Tumova P. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Mol. Biochem. Parasitol. 2017;211:31–38. doi: 10.1016/j.molbiopara.2016.09.003. PubMed DOI

Chaux-Jukic F., O’Donnell S., Craig R.J., Eberhard S., Vallon O., Xu Z. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Res. 2021;49:7571–7587. doi: 10.1093/nar/gkab534. PubMed DOI PMC

Matsuzaki M., Misumi O., Shin I.T., Maruyama S., Takahara M., Miyagishima S.Y., Mori T., Nishida K., Yagisawa F., Yoshida Y., et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653–657. doi: 10.1038/nature02398. PubMed DOI

Tran T.D., Cao H.X., Jovtchev G., Neumann P., Novak P., Fojtova M., Vu G.T., Macas J., Fajkus J., Schubert I., et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015;84:1087–1099. doi: 10.1111/tpj.13058. PubMed DOI

Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC

Novak P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Henderson E., Hardin C.C., Walk S.K., Tinoco I., Jr., Blackburn E.H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell. 1987;51:899–908. doi: 10.1016/0092-8674(87)90577-0. PubMed DOI

Lipps H.J., Gruissem W., Prescott D.M. Higher order DNA structure in macronuclear chromatin of the hypotrichous ciliate Oxytricha nova. Proc. Natl. Acad. Sci. USA. 1982;79:2495–2499. doi: 10.1073/pnas.79.8.2495. PubMed DOI PMC

Tran P.L., Mergny J.L., Alberti P. Stability of telomeric G-quadruplexes. Nucleic Acids Res. 2011;39:3282–3294. doi: 10.1093/nar/gkq1292. PubMed DOI PMC

Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC

Maizels N., Gray L.T. The G4 genome. PLoS Genet. 2013;9:e1003468. doi: 10.1371/journal.pgen.1003468. PubMed DOI PMC

Vlasenok M., Levchenko O., Basmanov D., Klinov D., Varizhuk A., Pozmogova G. Data set on G4 DNA interactions with human proteins. Data Brief. 2018;18:348–359. doi: 10.1016/j.dib.2018.02.081. PubMed DOI PMC

Brazda V., Kolomaznik J., Lysek J., Bartas M., Fojta M., Stastny J., Mergny J.L. G4Hunter web application: A web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC

Kikin O., D’Antonio L., Bagga P.S. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34:W676–W682. doi: 10.1093/nar/gkl253. PubMed DOI PMC

Muller F., Wicky C., Spicher A., Tobler H. New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell. 1991;67:815–822. doi: 10.1016/0092-8674(91)90076-b. PubMed DOI

Osanai M., Kojima K.K., Futahashi R., Yaguchi S., Fujiwara H. Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle) Gene. 2006;376:281–289. doi: 10.1016/j.gene.2006.04.022. PubMed DOI

Gilson P., McFadden G.I. The chlorarachniophyte: A cell with two different nuclei and two different telomeres. Chromosoma. 1995;103:635–641. doi: 10.1007/BF00357690. PubMed DOI

Cesare A.J., Quinney N., Willcox S., Subramanian D., Griffith J.D. Telomere looping in P. sativum (common garden pea) Plant J. 2003;36:271–279. doi: 10.1046/j.1365-313X.2003.01882.x. PubMed DOI

Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503–514. doi: 10.1016/S0092-8674(00)80760-6. PubMed DOI

Cesare A.J., Groff-Vindman C., Compton S.A., McEachern M.J., Griffith J.D. Telomere loops and homologous recombination-dependent telomeric circles in a Kluyveromyces lactis telomere mutant strain. Mol. Cell. Biol. 2008;28:20–29. doi: 10.1128/MCB.01122-07. PubMed DOI PMC

Peska V., Matl M., Mandakova T., Vitales D., Fajkus P., Fajkus J., Garcia S. Human-like telomeres in Zostera marina reveal a mode of transition from the plant to the human telomeric sequences. J. Exp. Bot. 2020;71:5786–5793. doi: 10.1093/jxb/eraa293. PubMed DOI

Fajkus P., Kilar A., Nelson A.D.L., Hola M., Peska V., Goffova I., Fojtova M., Zachova D., Fulneckova J., Fajkus J. Evolution of plant telomerase RNAs: Farther to the past, deeper to the roots. Nucleic Acids Res. 2021;49:7680–7694. doi: 10.1093/nar/gkab545. PubMed DOI PMC

Logeswaran D., Li Y., Podlevsky J.D., Chen J.J. Monophyletic Origin and Divergent Evolution of Animal Telomerase RNA. Mol. Biol. Evol. 2021;38:215–228. doi: 10.1093/molbev/msaa203. PubMed DOI PMC

Waldl M., Thiel B.C., Ochsenreiter R., Holzenleiter A., de Araujo Oliveira J.V., Walter M., Wolfinger M.T., Stadler P.F. TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes. Genes. 2018;9:372. doi: 10.3390/genes9080372. PubMed DOI PMC

Tomaska L., McEachern M.J., Nosek J. Alternatives to telomerase: Keeping linear chromosomes via telomeric circles. FEBS Lett. 2004;567:142–146. doi: 10.1016/j.febslet.2004.04.058. PubMed DOI

Tomaska L., Nosek J., Kramara J., Griffith J.D. Telomeric circles: Universal players in telomere maintenance? Nat. Struct. Mol. Biol. 2009;16:1010–1015. doi: 10.1038/nsmb.1660. PubMed DOI PMC

Cesare A.J., Griffith J.D. Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol. Cell. Biol. 2004;24:9948–9957. doi: 10.1128/MCB.24.22.9948-9957.2004. PubMed DOI PMC

Cesare A.J., Reddel R.R. Telomere uncapping and alternative lengthening of telomeres. Mech. Ageing Dev. 2008;129:99–108. doi: 10.1016/j.mad.2007.11.006. PubMed DOI

Pickett H.A., Cesare A.J., Johnston R.L., Neumann A.A., Reddel R.R. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J. 2009;28:799–809. doi: 10.1038/emboj.2009.42. PubMed DOI PMC

Samassekou O., Malina A., Hebert J., Yan J. Presence of alternative lengthening of telomeres associated circular extrachromosome telomere repeats in primary leukemia cells of chronic myeloid leukemia. J. Hematol. Oncol. 2013;6:26. doi: 10.1186/1756-8722-6-26. PubMed DOI PMC

Tomaska L., Nosek J., Makhov A.M., Pastorakova A., Griffith J.D. Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: Potential involvement in telomere maintenance. Nucleic Acids Res. 2000;28:4479–4487. doi: 10.1093/nar/28.22.4479. PubMed DOI PMC

Nosek J., Rycovska A., Makhov A.M., Griffith J.D., Tomaska L. Amplification of telomeric arrays via rolling-circle mechanism. J. Biol. Chem. 2005;280:10840–10845. doi: 10.1074/jbc.M409295200. PubMed DOI

Henson J.D., Cao Y., Huschtscha L.I., Chang A.C., Au A.Y., Pickett H.A., Reddel R.R. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat. Biotechnol. 2009;27:1181–1185. doi: 10.1038/nbt.1587. PubMed DOI

Chen J.L., Greider C.W. An emerging consensus for telomerase RNA structure. Proc. Natl. Acad. Sci. USA. 2004;101:14683–14684. doi: 10.1073/pnas.0406204101. PubMed DOI PMC

Dandjinou A.T., Levesque N., Larose S., Lucier J.F., Abou Elela S., Wellinger R.J. A phylogenetically based secondary structure for the yeast telomerase RNA. Curr. Biol. 2004;14:1148–1158. doi: 10.1016/j.cub.2004.05.054. PubMed DOI

Kuprys P.V., Davis S.M., Hauer T.M., Meltser M., Tzfati Y., Kirk K.E. Identification of telomerase RNAs from filamentous fungi reveals conservation with vertebrates and yeasts. PLoS ONE. 2013;8:e58661. doi: 10.1371/journal.pone.0058661. PubMed DOI PMC

Greilhuber J., Volleth M., Loidl J. Genome size of man and animals relative to the plant Allium cepa. Can J. Genet. Cytol. 1983;25:554–560. doi: 10.1139/g83-084. PubMed DOI

Gregory T.R. Animal Genome Size Database. 2022. [(accessed on 1 August 2022)]. Available online: https://www.genomesize.com.

Kornberg R.D. Structure of chromatin. Annu. Rev. Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. PubMed DOI

Fajkus J., Trifonov E.N. Columnar packing of telomeric nucleosomes. Biochem. Biophys. Res. Commun. 2001;280:961–963. doi: 10.1006/bbrc.2000.4208. PubMed DOI

Soman A., Wong S.Y., Korolev N., Surya W., Lattman S., Vogirala V.K., Chen Q., Berezhnoy N.V., van Noort J., Rhodes D., et al. The columnar structure of human telomeric chromatin suggests mechanisms for telomere maintenance. bioRxiv. 2022 doi: 10.1101/2022.06.15.496090. PubMed DOI

De Lange T. Shelterin-Mediated Telomere Protection. Annu. Rev. Genet. 2018;52:223–247. doi: 10.1146/annurev-genet-032918-021921. PubMed DOI

Eberhard S., Valuchova S., Ravat J., Fulnecek J., Jolivet P., Bujaldon S., Lemaire S.D., Wollman F.A., Teixeira M.T., Riha K., et al. Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants. Life Sci. Alliance. 2019;2:e201900315. doi: 10.26508/lsa.201900315. PubMed DOI PMC

Kazda A., Zellinger B., Rossler M., Derboven E., Kusenda B., Riha K. Chromosome end protection by blunt-ended telomeres. Genes Dev. 2012;26:1703–1713. doi: 10.1101/gad.194944.112. PubMed DOI PMC

Miyake Y., Nakamura M., Nabetani A., Shimamura S., Tamura M., Yonehara S., Saito M., Ishikawa F. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell. 2009;36:193–206. doi: 10.1016/j.molcel.2009.08.009. PubMed DOI

Wellinger R.J. The CST complex and telomere maintenance: The exception becomes the rule. Mol. Cell. 2009;36:168–169. doi: 10.1016/j.molcel.2009.10.001. PubMed DOI

He Y., Song H., Chan H., Liu B., Wang Y., Susac L., Zhou Z.H., Feigon J. Structure of Tetrahymena telomerase-bound CST with polymerase alpha-primase. Nature. 2022;608:813–818. doi: 10.1038/s41586-022-04931-7. PubMed DOI PMC

Zaug A.J., Goodrich K.J., Song J.J., Sullivan A.E., Cech T.R. Reconstitution of a telomeric replicon organized by CST. Nature. 2022;608:819–825. doi: 10.1038/s41586-022-04930-8. PubMed DOI PMC

Rice C., Skordalakes E. Structure and function of the telomeric CST complex. Comput. Struct. Biotechnol. J. 2016;14:161–167. doi: 10.1016/j.csbj.2016.04.002. PubMed DOI PMC

Linger B.R., Price C.M. Conservation of telomere protein complexes: Shuffling through evolution. Crit. Rev. Biochem. Mol. Biol. 2009;44:434–446. doi: 10.3109/10409230903307329. PubMed DOI PMC

Chandra A., Hughes T.R., Nugent C.I., Lundblad V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 2001;15:404–414. doi: 10.1101/gad.861001. PubMed DOI PMC

Pennock E., Buckley K., Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001;104:387–396. doi: 10.1016/S0092-8674(01)00226-4. PubMed DOI

Wan B., Tang T., Upton H., Shuai J., Zhou Y., Li S., Chen J., Brunzelle J.S., Zeng Z., Collins K., et al. The Tetrahymena telomerase p75-p45-p19 subcomplex is a unique CST complex. Nat. Struct. Mol. Biol. 2015;22:1023–1026. doi: 10.1038/nsmb.3126. PubMed DOI PMC

Fell V.L., Schild-Poulter C. The Ku heterodimer: Function in DNA repair and beyond. Mutat. Res. Rev. Mutat. Res. 2015;763:15–29. doi: 10.1016/j.mrrev.2014.06.002. PubMed DOI

Sui J., Zhang S., Chen B.P.C. DNA-dependent protein kinase in telomere maintenance and protection. Cell Mol. Biol. Lett. 2020;25:2. doi: 10.1186/s11658-020-0199-0. PubMed DOI PMC

Chen Y. The structural biology of the shelterin complex. Biol. Chem. 2019;400:457–466. doi: 10.1515/hsz-2018-0368. PubMed DOI

Shi T., Bunker R.D., Mattarocci S., Ribeyre C., Faty M., Gut H., Scrima A., Rass U., Rubin S.M., Shore D., et al. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell. 2013;153:1340–1353. doi: 10.1016/j.cell.2013.05.007. PubMed DOI

De Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100–2110. doi: 10.1101/gad.1346005. PubMed DOI

Bilaud T., Koering C.E., Binet-Brasselet E., Ancelin K., Pollice A., Gasser S.M., Gilson E. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res. 1996;24:1294–1303. doi: 10.1093/nar/24.7.1294. PubMed DOI PMC

Stansel R.M., de Lange T., Griffith J.D. T-loop assembly in vitro involves binding of TRF2 near the 3’ telomeric overhang. EMBO J. 2001;20:5532–5540. doi: 10.1093/emboj/20.19.5532. PubMed DOI PMC

Erdel F., Kratz K., Willcox S., Griffith J.D., Greene E.C., de Lange T. Telomere Recognition and Assembly Mechanism of Mammalian Shelterin. Cell Rep. 2017;18:41–53. doi: 10.1016/j.celrep.2016.12.005. PubMed DOI PMC

Zaug A.J., Podell E.R., Nandakumar J., Cech T.R. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev. 2010;24:613–622. doi: 10.1101/gad.1881810. PubMed DOI PMC

Raffa G.D., Raimondo D., Sorino C., Cugusi S., Cenci G., Cacchione S., Gatti M., Ciapponi L. Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes Dev. 2010;24:1596–1601. doi: 10.1101/gad.574810. PubMed DOI PMC

Miyoshi T., Kanoh J., Saito M., Ishikawa F. Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science. 2008;320:1341–1344. doi: 10.1126/science.1154819. PubMed DOI

Xue J., Chen H., Wu J., Takeuchi M., Inoue H., Liu Y., Sun H., Chen Y., Kanoh J., Lei M. Structure of the fission yeast S. pombe telomeric Tpz1-Poz1-Rap1 complex. Cell Res. 2017;27:1503–1520. doi: 10.1038/cr.2017.145. PubMed DOI PMC

Shi K., Huang W.M., Aihara H. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation. PLoS Biol. 2013;11:e1001472. doi: 10.1371/journal.pbio.1001472. PubMed DOI PMC

Wellinger R.J., Zakian V.A. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: Beginning to end. Genetics. 2012;191:1073–1105. doi: 10.1534/genetics.111.137851. PubMed DOI PMC

Prochazkova Schrumpfova P., Fojtova M., Fajkus J. Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells. 2019;8:58. doi: 10.3390/cells8010058. PubMed DOI PMC

Peska V., Schrumpfova P.P., Fajkus J. Using the telobox to search for plant telomere binding proteins. Curr. Protein Pept. Sci. 2011;12:75–83. doi: 10.2174/138920311795684968. PubMed DOI

Prochazkova Schrumpfova P., Schorova S., Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. Front. Plant Sci. 2016;7:851. doi: 10.3389/fpls.2016.00851. PubMed DOI PMC

Fulcher N., Riha K. Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana. Front. Genet. 2015;6:349. doi: 10.3389/fgene.2015.00349. PubMed DOI PMC

Schrumpfova P., Kuchar M., Mikova G., Skrisovska L., Kubicarova T., Fajkus J. Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence. Genome. 2004;47:316–324. doi: 10.1139/g03-136. PubMed DOI

Mozgova I., Schrumpfova P.P., Hofr C., Fajkus J. Functional characterization of domains in AtTRB1, a putative telomere-binding protein in Arabidopsis thaliana. Phytochemistry. 2008;69:1814–1819. doi: 10.1016/j.phytochem.2008.04.001. PubMed DOI

Schrumpfova P.P., Vychodilova I., Dvorackova M., Majerska J., Dokladal L., Schorova S., Fajkus J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 2014;77:770–781. doi: 10.1111/tpj.12428. PubMed DOI PMC

Dvorackova M., Rossignol P., Shaw P.J., Koroleva O.A., Doonan J.H., Fajkus J. AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin. Plant J. 2010;61:637–649. doi: 10.1111/j.1365-313X.2009.04094.x. PubMed DOI

Dreissig S., Schiml S., Schindele P., Weiss O., Rutten T., Schubert V., Gladilin E., Mette M.F., Puchta H., Houben A. Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J. 2017;91:565–573. doi: 10.1111/tpj.13601. PubMed DOI PMC

Khosravi S., Dreissig S., Schindele P., Wolter F., Rutten T., Puchta H., Houben A. Live-Cell CRISPR Imaging in Plant Cells with a Telomere-Specific Guide RNA. Methods Mol. Biol. 2020;2166:343–356. doi: 10.1007/978-1-0716-0712-1_20. PubMed DOI

Schrumpfova P.P., Vychodilova I., Hapala J., Schorova S., Dvoracek V., Fajkus J. Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo. Plant Mol. Biol. 2016;90:189–206. doi: 10.1007/s11103-015-0409-8. PubMed DOI

Zhou Y., Hartwig B., James G.V., Schneeberger K., Turck F. Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes. Plant Cell. 2016;28:87–101. doi: 10.1105/tpc.15.00787. PubMed DOI PMC

Zhou Y., Wang Y., Krause K., Yang T., Dongus J.A., Zhang Y., Turck F. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat. Genet. 2018;50:638–644. doi: 10.1038/s41588-018-0109-9. PubMed DOI

Valuchova S., Fulnecek J., Prokop Z., Stolt-Bergner P., Janouskova E., Hofr C., Riha K. Protection of Arabidopsis Blunt-Ended Telomeres Is Mediated by a Physical Association with the Ku Heterodimer. Plant Cell. 2017;29:1533–1545. doi: 10.1105/tpc.17.00064. PubMed DOI PMC

Hass E.P., Zappulla D.C. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife. 2015;4:e07750. doi: 10.7554/eLife.07750. PubMed DOI PMC

Hsu H.L., Gilley D., Blackburn E.H., Chen D.J. Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA. 1999;96:12454–12458. doi: 10.1073/pnas.96.22.12454. PubMed DOI PMC

Hsu H.L., Gilley D., Galande S.A., Hande M.P., Allen B., Kim S.H., Li G.C., Campisi J., Kohwi-Shigematsu T., Chen D.J. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 2000;14:2807–2812. doi: 10.1101/gad.844000. PubMed DOI PMC

D’Adda di Fagagna F., Hande M.P., Tong W.M., Roth D., Lansdorp P.M., Wang Z.Q., Jackson S.P. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 2001;11:1192–1196. doi: 10.1016/S0960-9822(01)00328-1. PubMed DOI

Samper E., Goytisolo F.A., Slijepcevic P., van Buul P.P., Blasco M.A. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 2000;1:244–252. doi: 10.1093/embo-reports/kvd051. PubMed DOI PMC

Fisher T.S., Taggart A.K., Zakian V.A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 2004;11:1198–1205. doi: 10.1038/nsmb854. PubMed DOI

Larcher M.V., Pasquier E., MacDonald R.S., Wellinger R.J. Ku Binding on Telomeres Occurs at Sites Distal from the Physical Chromosome Ends. PLoS Genet. 2016;12:e1006479. doi: 10.1371/journal.pgen.1006479. PubMed DOI PMC

Nelson A.D., Shippen D.E. Blunt-ended telomeres: An alternative ending to the replication and end protection stories. Genes Dev. 2012;26:1648–1652. doi: 10.1101/gad.199059.112. PubMed DOI PMC

Koch J.E., Kolvraa S., Petersen K.B., Gregersen N., Bolund L. Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma. 1989;98:259–265. doi: 10.1007/BF00327311. PubMed DOI

Therkelsen A.J., Nielsen A., Koch J., Hindkjaer J., Kolvraa S. Staining of human telomeres with primed in situ labeling (PRINS) Cytogenet. Cell Genet. 1995;68:115–118. doi: 10.1159/000133903. PubMed DOI

Neplechova K., Sykorova E., Fajkus J. Comparison of different kinds of probes used for analysis of variant telomeric sequences. Biophys. Chem. 2005;117:225–231. doi: 10.1016/j.bpc.2005.05.008. PubMed DOI

Alverca E., Cuadrado A., Jouve N., Franca S., Moreno Diaz de la Espina S. Telomeric DNA localization on dinoflagellate chromosomes: Structural and evolutionary implications. Cytogenet. Genome Res. 2007;116:224–231. doi: 10.1159/000098191. PubMed DOI

Schwarzacher T., Leitch A.R., Bennett M.D., Heslop-Harrison J.S. In situ localization of parental genomes in a wide hybrid. Ann. Bot. 1989;64:315–324. doi: 10.1093/oxfordjournals.aob.a087847. DOI

Markova M., Vyskot B. New horizons of genomic in situ hybridization. Cytogenet. Genome Res. 2009;126:368–375. doi: 10.1159/000275796. PubMed DOI

Markova M., Michu E., Vyskot B., Janousek B., Zluvova J. An interspecific hybrid as a tool to study phylogenetic relationships in plants using the GISH technique. Chromosome Res. 2007;15:1051–1059. doi: 10.1007/s10577-007-1180-8. PubMed DOI

Puizina J., Weiss-Schneeweiss H., Pedrosa-Harand A., Kamenjarin J., Trinajstic I., Riha K., Schweizer D. Karyotype analysis in Hyacinthella dalmatica (Hyacinthaceae) reveals vertebrate-type telomere repeats at the chromosome ends. Genome. 2003;46:1070–1076. doi: 10.1139/g03-078. PubMed DOI

Weiss-Schneeweiss H., Riha K., Jang C.G., Puizina J., Scherthan H., Schweizer D. Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesises vertebrate-type telomere sequences. Plant J. 2004;37:484–493. doi: 10.1046/j.1365-313X.2003.01974.x. PubMed DOI

Allshire R.C., Dempster M., Hastie N.D. Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res. 1989;17:4611–4627. doi: 10.1093/nar/17.12.4611. PubMed DOI PMC

Broun P., Ganal M.W., Tanksley S.D. Telomeric arrays display high levels of heritable polymorphism among closely related plant varieties. Proc. Natl. Acad. Sci. USA. 1992;89:1354–1357. doi: 10.1073/pnas.89.4.1354. PubMed DOI PMC

Ganal M.W., Lapitan N.L., Tanksley S.D. Macrostructure of the tomato telomeres. Plant Cell. 1991;3:87–94. doi: 10.1105/tpc.3.1.87. PubMed DOI PMC

Lycka M., Peska V., Demko M., Spyroglou I., Kilar A., Fajkus J., Fojtova M. WALTER: An easy way to online evaluate telomere lengths from terminal restriction fragment analysis. BMC Bioinform. 2021;22:145. doi: 10.1186/s12859-021-04064-0. PubMed DOI PMC

Hijri M., Niculita H., Sanders I.R. Molecular characterization of chromosome termini of the arbuscular mycorrhizal fungus Glomus intraradices (Glomeromycota) Fungal Genet. Biol. 2007;44:1380–1386. doi: 10.1016/j.fgb.2007.03.004. PubMed DOI

Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC

Fitzgerald M.S., McKnight T.D., Shippen D.E. Characterization and developmental patterns of telomerase expression in plants. Proc. Natl. Acad. Sci. USA. 1996;93:14422–14427. doi: 10.1073/pnas.93.25.14422. PubMed DOI PMC

Sonnhammer E.L., Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–GC10. doi: 10.1016/0378-1119(95)00714-8. PubMed DOI

Farmery J.H.R., Smith M.L., Lynch A.G. Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci. Rep. 2018;8:1300. doi: 10.1038/s41598-017-14403-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace