Next generation sequencing-based analysis of repetitive DNA in the model dioecious [corrected] plant Silene latifolia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22096552
PubMed Central
PMC3212565
DOI
10.1371/journal.pone.0027335
PII: PONE-D-11-18373
Knihovny.cz E-zdroje
- MeSH
- DNA rostlinná genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Silene genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: Silene latifolia is a dioecious [corrected] plant with well distinguished X and Y chromosomes that is used as a model to study sex determination and sex chromosome evolution in plants. However, efficient utilization of this species has been hampered by the lack of large-scale sequencing resources and detailed analysis of its genome composition, especially with respect to repetitive DNA, which makes up the majority of the genome. METHODOLOGY/PRINCIPAL FINDINGS: We performed low-pass 454 sequencing followed by similarity-based clustering of 454 reads in order to identify and characterize sequences of all major groups of S. latifolia repeats. Illumina sequencing data from male and female genomes were also generated and employed to quantify the genomic proportions of individual repeat families. The majority of identified repeats belonged to LTR-retrotransposons, constituting about 50% of genomic DNA, with Ty3/gypsy elements being more frequent than Ty1/copia. While there were differences between the male and female genome in the abundance of several repeat families, their overall repeat composition was highly similar. Specific localization patterns on sex chromosomes were found for several satellite repeats using in situ hybridization with probes based on k-mer frequency analysis of Illumina sequencing data. CONCLUSIONS/SIGNIFICANCE: This study provides comprehensive information about the sequence composition and abundance of repeats representing over 60% of the S. latifolia genome. The results revealed generally low divergence in repeat composition between the sex chromosomes, which is consistent with their relatively recent origin. In addition, the study generated various data resources that are available for future exploration of the S. latifolia genome.
PLoS One. 2011;6(12). doi: 10.1371/annotation/4ccaacb2-92d7-445a-87da-313cedf18feb PubMed
Zobrazit více v PubMed
Kejnovsky E, Vyskot B. Silene latifolia: the classical model to study heteromorphic sex chromosomes. Cytogenet Genome Res. 2010;129:250–262. PubMed
Ciupercescu DD, Veuskens J, Mouras A, Ye D, Briquet M, et al. Karyotyping Melandrium album, a dioecious plant with heteromorphic sex chromosomes. Genome. 1990;33:556–562.
Vagera J, Paulikova D, Dolezel J. The development of male and female regenerants by in vitro androgenesis in dioecious plant Melandrium album. Ann Bot. 1994;73:455–459.
Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. PubMed
Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, et al. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma. 2006;115:376–382. PubMed
Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. PubMed
Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, et al. Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica. 2006;128:167–175. PubMed
Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, et al. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res. 2008;16:961–976. PubMed
Kircher M, Kelso J. High-throughput DNA sequencing – concepts and limitations. BioEssays. 2010;32:524–536. PubMed
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427. PubMed PMC
Swaminathan K, Varala K, Hudson ME. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics. 2007;8:132. PubMed PMC
Wicker T, Narechania A, Sabot F, Stein J, Vu GTH, et al. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics. 2008;9:518. PubMed PMC
Song J, Dong F, Lilly JW, Stupar RM, Jiang J. Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome. 2001;44:463–469. PubMed
Hribová E, Neumann P, Matsumoto T, Roux N, Macas J, et al. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol. 2010;10:204. PubMed PMC
Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. PubMed PMC
Renny-Byfield S, Chester M, Kovarík A, Le Comber SC, Grandbastien M-A, et al. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol. 2011;28:2843–2854. PubMed
Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR, et al. Organization and evolution of subtelomeric satellite repeats in the potato genome. G3: Genes, Genomes, Genetics. 2011;1:85–92. PubMed PMC
Wicker T, Keller B. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 2007;17:1072–1081. PubMed PMC
Ishii K, Sugiyama R, Onuki M, Kazama Y, Matsunaga S, et al. The Y chromosome-specific STS marker MS2 and its peripheral regions on the Y chromosome of the dioecious plant Silene latifolia. Genome. 2008;51:251–260. PubMed
Hobza R, Kejnovsky E, Vyskot B, Widmer A. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Genet Genomics. 2007;278:633–638. PubMed
Siroký J, Lysák MA, Dolezel J, Kejnovský E, Vyskot B. Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res. 2001;9:387–393. PubMed
Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 2011;39:e90. PubMed PMC
Macas J, Neumann P, Novák P, Jiang J. Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics. 2010;26:2101–2108. PubMed
Bůzek J, Koutníková H, Houben A, Ríha K, Janousek B, et al. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res. 1997;5:57–65. PubMed
Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, et al. Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet. 2004;108:1193–1199. PubMed
Macas J, Navrátilová A, Mészáros T. Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma. 2003;112:152–158. PubMed
Sýkorová E, Cartagena J, Horáková M, Fukui K, Fajkus J. Characterization of telomere–subtelomere junctions in Silene latifolia. Mol Genet Genomics. 2003;269:13–20. PubMed
Sýkorová E, Fajkus J, Ito M, Fukui K. Transition between two forms of heterochromatin at plant subtelomeres. Chromosome Res. 2001;9:309–323. PubMed
Kazama Y, Sugiyama R, Suto Y, Uchida W, Kawano S. The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. Genome. 2006;49:520–530. PubMed
Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16:1252–1261. PubMed PMC
Neumann P, Koblízková A, Navrátilová A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–1056. PubMed PMC
Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, et al. Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol. 2007;7:152. PubMed PMC
Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol. 2011;3:219–229. PubMed PMC
Macas J, Neumann P. Ogre elements – a distinct group of plant Ty3/gypsy-like retrotransposons. Gene. 2007;390:108–116. PubMed
Filatov DA, Howell EC, Groutides C, Armstrong SJ. Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics. 2009;181:811–817. PubMed PMC
Dong H, Chen Y, Shen Y, Wang S, Zhao G, et al. Artificial duplicate reads in sequencing data of 454 Genome Sequencer FLX System. Acta Bioch Bioph Sin. 2011;43:496–500. PubMed
Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12:R18. PubMed PMC
Mariotti B, Manzano S, Kejnovský E, Vyskot B, Jamilena M. Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics. 2009;281:249–259. PubMed
Uchida W, Matsunaga S, Sugiyama R, Shibata F, Kazama Y, et al. Distribution of interstitial telomere-like repeats and their adjacent sequences in a dioecious plant, Silene latifolia. Chromosoma. 2002;111:313–320. PubMed
Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: Version II. Plant Mol Biol Rep. 1983;1:19–21.
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19:651–652. PubMed
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC
Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–10. PubMed
Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39:D70–74. PubMed PMC
Pearson WR, Wood T, Zhang Z, Miller W. Comparison of DNA sequences with protein sequences. Genomics. 1997;46:24–36. PubMed
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. PubMed
Prüfer K, Stenzel U, Dannemann M, Green RE, Lachmann M, et al. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics. 2008;24:1530–1531. PubMed PMC
Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)
Evolution of Tandem Repeats Is Mirroring Post-polyploid Cladogenesis in Heliophila (Brassicaceae)
Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia
Genome-wide analysis of repeat diversity across the family Musaceae
Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.)
A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons