Molecular Evolution and Organization of Ribosomal DNA in the Hawkweed Tribe Hieraciinae (Cichorieae, Asteraceae)

. 2021 ; 12 () : 647375. [epub] 20210312

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33777082

Molecular evolution of ribosomal DNA can be highly dynamic. Hundreds to thousands of copies in the genome are subject to concerted evolution, which homogenizes sequence variants to different degrees. If well homogenized, sequences are suitable for phylogeny reconstruction; if not, sequence polymorphism has to be handled appropriately. Here we investigate non-coding rDNA sequences (ITS/ETS, 5S-NTS) along with the chromosomal organization of their respective loci (45S and 5S rDNA) in diploids of the Hieraciinae. The subtribe consists of genera Hieracium, Pilosella, Andryala, and Hispidella and has a complex evolutionary history characterized by ancient intergeneric hybridization, allele sharing among species, and incomplete lineage sorting. Direct or cloned Sanger sequences and phased alleles derived from Illumina genome sequencing were subjected to phylogenetic analyses. Patterns of homogenization and tree topologies based on the three regions were compared. In contrast to most other plant groups, 5S-NTS sequences were generally better homogenized than ITS and ETS sequences. A novel case of ancient intergeneric hybridization between Hispidella and Hieracium was inferred, and some further incongruences between the trees were found, suggesting independent evolution of these regions. In some species, homogenization of ITS/ETS and 5S-NTS sequences proceeded in different directions although the 5S rDNA locus always occurred on the same chromosome with one 45S rDNA locus. The ancestral rDNA organization in the Hieraciinae comprised 4 loci of 45S rDNA in terminal positions and 2 loci of 5S rDNA in interstitial positions per diploid genome. In Hieracium, some deviations from this general pattern were found (3, 6, or 7 loci of 45S rDNA; three loci of 5S rDNA). Some of these deviations concerned intraspecific variation, and most of them occurred at the tips of the tree or independently in different lineages. This indicates that the organization of rDNA loci is more dynamic than the evolution of sequences contained in them and that locus number is therefore largely unsuitable to inform about species relationships in Hieracium. No consistent differences in the degree of sequence homogenization and the number of 45S rDNA loci were found, suggesting interlocus concerted evolution.

Zobrazit více v PubMed

Allam A., Kalnis P., Solovyev V. (2015). Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data. Bioinformatics 31 3421–3428. 10.1093/bioinformatics/btv415 PubMed DOI

Álvarez I., Wendel J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29 417–434. 10.1016/s1055-7903(03)00208-2 PubMed DOI

Appels R., Honeycutt R. L. (1986). “rDNA evolution over a billion years,” in DNA Systematics: Plants II. Plant DNA, ed. Dutta S. K. (Boca Raton, FL: CRC Press; ), 81–125.

Araya-Jaime C., Claudio Palma-Rojas C., Von Brand E., Silva A. (2020). Cytogenetic characterization, rDNA mapping and quantification of the nuclear DNA content in Seriolella violacea Guichenot, 1848 (Perciformes, Centrolophidae). Comp. Cytogenetics 14 319–328. PubMed PMC

Arnheim N. (1983). “Concerted evolution of multigene families,” in Evolution of Genes and Proteins, eds Nei M., Koehn R. K. (Sunderland, MA: Sinauer; ), 38–61.

Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995). The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Miss. Bot. Garden 82 247–277. 10.2307/2399880 DOI

Baldwin G., Markos S. (1998). Phylogenetic utility of the external transcribed spacer (ETS) of 18-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol. Phylogenet. Evol. 10 449–463. 10.1006/mpev.1998.0545 PubMed DOI

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC

Basten C. J., Ohta T. (1992). Simulation study of a multigene family, with special reference to the evolution of compensatory advantageous mutations. Genetics 132 247–252. PubMed PMC

Belyayev A., Paštová L., Fehrer J., Josefiová J., Chrtek J., Mráz P. (2018). Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data. Plant Syst. Evol. 304 387–396. 10.1007/s00606-017-1483-y DOI

Besendorfer V., Krajačić-Sokol I., Jelenić S., Puizina J., Mlinarec J., Sviben T., et al. (2005). Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution. Theor. Appl. Genet. 110 730–741. 10.1007/s00122-004-1899-y PubMed DOI

Blomberg S. P., Garland T., Jr., Ives A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57 717–745. 10.1111/j.0014-3820.2003.tb00285.x PubMed DOI

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Borchsenius F. (2009). FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. Available online at: http://www.aubot.dk/FastGap_home.htm. (accessed December 5, 2020)

Bräutigam S. (1992). “Hieracium L,” in Vergleichende Chorologie der Zentraleuropäischen Flora 3, eds Meusel H., Jäger E. J. (Stuttgart: Gustav Fischer Verlag; ), 325–333.

Bräutigam S., Greuter W. (2007). A new treatment of Pilosella for the Euro-Mediterranean flora [Notulae ad floram euro-mediterraneam pertinentes 24]. Willdenowia 37 123–137. 10.3372/wi.37.37106 DOI

Britton-Davidian J., Cazaux B., Catalan J. (2012). Chromosomal dynamics of nucleolar organizer regions (NORs) in the house mouse: micro-evolutionary insights. J. Heredity 108 68–74. 10.1038/hdy.2011.105 PubMed DOI PMC

Burnham K. P., Anderson D. R. (2002). Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. New York, NY: Springer.

Calonje M., Martin-Bravo S., Dobeš C., Gong W., Jordon-Thaden I., Kiefer C., et al. (2009). Non-coding nuclear DNA markers in phylogenetic reconstruction. Plant Syst. Evol. 282 257–280. 10.1007/s00606-008-0031-1 DOI

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC

Chapman M. A., Leebens-Mack J. H., Burke J. M. (2008). Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol. Biol. Evol. 25 1260–1273. 10.1093/molbev/msn001 PubMed DOI

Chapman M. A., Tang S., Draeger D., Nambeesan S., Shaffer H., Barb J. G., et al. (2012). Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet. 8:e1002628. 10.1371/journal.pgen.1002628 PubMed DOI PMC

Chiavegatto R. B., Chaves A. L. A., Rocha L. C., Benites F. R. G., Peruzzi L., Techio V. H. (2019). Heterochromatin bands and rDNA sites evolution in polyploidization events in Cynodon Rich. (Poaceae). Plant Mol. Biol. Rep. 37 477–487. 10.1007/s11105-019-01173-2 DOI

Chrtek J., Mráz P., Belyayev A., Paštová L., Mrázová V., Caklová P., et al. (2020). Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s.str.: morphological versus genomic features. Amer. J. Bot. 107 66–90. 10.1002/ajb2.1413 PubMed DOI

Chrtek J., Zahradníček J., Krak K., Fehrer J. (2009). Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann. Bot. 104 161–178. 10.1093/aob/mcp107 PubMed DOI PMC

Constantinides B., Robertson D. L. (2017). Kindel: indel-aware consensus for nucleotide sequence alignments. J. Open Source Softw. 2:282. 10.21105/joss.00282 DOI

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for statistical computing.

Cronn R. C., Zhao X., Paterson A. H., Wendel J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42 685–705. 10.1007/BF02338802 PubMed DOI

Denduangboripant J., Cronk Q. C. B., Kokubugata G., Möller M. (2007). Variation and inheritance of nuclear ribosomal DNA clusters in Streptocarpus (Gesneriaceae) and their biological and phylogenetic implications. Int. J. Plant Sci. 168 455–467. 10.1086/512103 DOI

Eriksson J. S., de Sousa F., Bertrand Y. J. K., Antonelli A., Oxelman B., Pfeil B. E. (2018). Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evol. Biol. 18:9. 10.1186/s12862-018-1127-z PubMed DOI PMC

Fehrer J., Gemeinholzer B., Chrtek J., Bräutigam S. (2007a). Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol. Phylogenet. Evol. 42 347–361. 10.1016/j.ympev.2006.07.004 PubMed DOI

Fehrer J., Krahulcová A., Krahulec F., Chrtek J., Jr., Rosenbaumová R., Bräutigam S. (2007b). “Evolutionary aspects in Hieracium subgenus Pilosella,” in Apomixis: Evolution, Mechanisms and Perspectives (Regnum Vegetabile 147), eds Hörandl E., Grossniklaus U., van Dijk P., Sharbel T. (Königstein: Koeltz; ), 359–390.

Fehrer J., Krak K., Chrtek J. (2009). Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol. Biol. 9:239. 10.1186/1471-2148-9-239 PubMed DOI PMC

Fehrer J., Šimek R., Krahulcová A., Krahulec F., Chrtek J., Bräutigam E., et al. (2005). “Evolution, hybridisation, and clonal distribution of apo- and amphimictic species of Hieracium subgen. Pilosella (Asteraceae, Lactuceae) in a Central European mountain range,” in Plant Species-Level Systematics: New Perspectives on Pattern & Process (Regnum Vegetabile 143), eds Bakker F. T., Chatrou L. W., Gravendeel B., Pelser P. B. (Königstein: Koeltz; ), 175–201.

Ferreira M. Z., Zahradníček J., Kadlecová J., Menezes de Sequeira M., Chrtek J., Jr., Fehrer J. (2015). Tracing the evolutionary history of the little-known Mediterranean-Macaronesian genus Andryala (Asteraceae) by multigene sequencing. Taxon 62 535–551. 10.12705/643.10 DOI

Fromont-Racine M., Senger B., Saveanu C., Fasiolo F. (2003). Ribosome assembly in eukaryotes. Gene 313 17–42. 10.1016/s0378-1119(03)00629-2 PubMed DOI

Galián J. A., Rosato M., Rosselló J. A. (2014). Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions. Syst. Biol. 63 219–230. 10.1093/sysbio/syt101 PubMed DOI

Garcia S., Garnatje T., Hidalgo O., McArthur E. D., Siljak-Yakovlev S., Valles J. (2007). Extensive ribosomal DNA (18S-5.8S-26S and 5S) colocalization in the North American endemic sagebrushes (subgenus Tridentatae, Artemisia, Asteraceae) revealed by FISH. Plant Syst. Evol. 267 79–92. 10.1007/s00606-007-0558-6 DOI

Garcia S., Kovarik A., Leitch A. R., Garnatje T. (2017). Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89 1020–1030. 10.1111/tpj.13442 PubMed DOI

Garcia S., Panero J. L., Siroky J., Kovarik A. (2010). Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol. 10:176. 10.1186/1471-2229-10-176 PubMed DOI PMC

García Adá R. (1992). Un híbrido nuevo en el género Andryala (Asteraceae). Acta Bot. Malac. 17 259–260.

Gouja H., Garnatje T., Hidalgo O., Neffati M., Raies A., Garcia S. (2015). Physical mapping of ribosomal DNA and genome size in diploid and polyploid North African Calligonum species (Polygonaceae). Plant Syst. Evol. 301 1569–1579. 10.1007/s00606-014-1183-9 DOI

Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41 95–98.

Harmon L. J., Weir J. T., Brock C. D., Glor R. E., Challenger W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics 24 129–131. 10.1093/bioinformatics/btm538 PubMed DOI

Hemleben V., Grierson D. (1978). Evidence that in higher plants the 25S and 18S genes are not interspersed with genes for 5S rRNA. Chromosoma 65 353–358. 10.1007/BF00286414 DOI

Hillis D. M., Dixon M. T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66 411–453. 10.1086/417338 PubMed DOI

Huang C. H., Zhang C., Liu M., Hu Y., Gao T., Qi J., et al. (2016). Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33 2820–2835. 10.1093/molbev/msw157 PubMed DOI PMC

Huelsenbeck J. P., Nielsen R., Bollback J. P. (2003). Stochastic mapping of morphological characters. Syst. Biol. 52 131–158. 10.1080/10635150390192780 PubMed DOI

Ilnicki T., Hasterok R., Szelkag Z. (2010). Cytogenetic analysis of Hieracium transylvanicum (Asteraceae). Caryologia 63 192–196. 10.1080/00087114.2010.589726 DOI

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Kaplan Z., Fehrer J., Bambasová V., Hellquist C. B. (2018). The endangered Florida pondweed (Potamogeton floridanus) is a hybrid. PLoS One 13:e0195241. 10.1371/journal.pone.0195241 PubMed DOI PMC

Kaplan Z., Jarolímová V., Fehrer J. (2013). Revision of chromosome numbers of Potamogetonaceae: a new basis for taxonomic and evolutionary implications. Preslia 85 421–482.

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kellogg E. A., Appels R. (1995). Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140 325–343. PubMed PMC

Kembel S. W., Cowan P. D., Helmus M. R., Cornwell W. K., Morlon H., Ackerly D. D., et al. (2010). Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26 1463–1464. 10.1093/bioinformatics/btq166 PubMed DOI

Kilian N., Gemeinholzer B., Lack H. W. (2009). “24. Cichorieae,” in Systematics, Evolution, and Biogeography of Compositae. International Association for Plant Taxonomy, eds Funk V. A., Susanna A., Stuessy T. F., Bayer R. J. (Vienna: International Association for Plant Taxonomy; ), 343–383.

Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., et al. (2012). VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22 568–576. 10.1101/gr.129684.111 PubMed DOI PMC

Kolano B., Siwinska D., McCann J., Weiss-Schneeweiss H. (2015). The evolution of genome size and rDNA in diploid species of Chenopodium s.l. (Amaranthaceae). Bot. J. Linn. Soc. 179 218–235. 10.1111/boj.12321 DOI

Kotani Y., Henderson S. T., Suzuki G., Johnson S. D., Okada T., Siddons H., et al. (2014). The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. New Phytol. 201 973–981. 10.1111/nph.12574 PubMed DOI

Krahulcová A., Krahulec F., Chapman H. M. (2000). Variation in Hieracium subgen. Pilosella (Asteraceae): what do we know about its sources? Folia Geobot. 35 319–338.

Krahulec F., Krahulcová A., Fehrer J., Bräutigam S., Plačková I., Chrtek J. (2004). The Sudetic group of Hieracium subgen. Pilosella from the Krkonoše Mts: a synthetic view. Preslia 76 223–243.

Krahulec F., Krahulcová A., Fehrer J., Bräutigam S., Schuhwerk F. (2008). The structure of the agamic complex of Hieracium subgen. Pilosella in the Šumava Mts and its comparison with other regions in Central Europe. Preslia 80 1–26.

Krak K., Álvarez I., Caklová P., Costa A., Chrtek J., Fehrer J. (2012). Development of novel low-copy nuclear markers for Hieraciinae (Asteraceae) and their perspective for other tribes. Amer. J. Bot. 99 e74–e77. 10.3732/ajb.1100416 PubMed DOI

Krak K., Caklová P., Chrtek J., Fehrer J. (2013). Reconstruction of phylogenetic relationships in a highly reticulate group with deep coalescence and recent speciation (Hieracium, Asteraceae). Heredity 110 138–151. 10.1038/hdy.2012.100 PubMed DOI PMC

Krak K., Mráz P. (2008). Trichomes in the tribe Lactuceae (Asteraceae) – taxonomic implications. Biologia 63 616–630.

Lan T., Albert V. A. (2011). Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol. 11:126. 10.1186/1471-2229-11-126 PubMed DOI PMC

Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 357–359. 10.1038/nmeth.1923 PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Long E. O., Dawid I. B. (1980). Repeated genes in eukaryotes. Annu. Rev. Biochem. 49 727–764. 10.1146/annurev.bi.49.070180.003455 PubMed DOI

Macas J., Kejnovský E., Neumann P., Novák P., Koblížková A., Vyskot B. (2011). Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia. PLoS One 6:e27335. 10.1371/journal.pone.0027335 PubMed DOI PMC

Mahelka V., Kopecký D., Baum B. R. (2013). Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol. Biol. Evol. 30 2065–2086. 10.1093/molbev/mst106 PubMed DOI

Maire R. (1937). Contributions à l’etude de la Flore de l’Afrique du Nord. Fascicule 25. Bull. Soc. Hist. Nat. Afrique N. 28 332–420.

Merxmüller H. (1975). Diploide Hieracien. Anal. Inst. Botánico A.J. Cavanilles 32 189–196.

Milne I., Stephen G., Bayer M., Cock P. J. A., Pritchard L., Cardle L., et al. (2013). Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 14 193–202. 10.1093/bib/bbs012 PubMed DOI

Mlinarec J., Šatović Z., Malenica N., Ivančić-Baće I., Besendorfer V. (2012). Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Ann. Bot. 110 703–712. 10.1093/aob/mcs128 PubMed DOI PMC

Mráz P. (2003). Mentor effects in the genus Hieracium s.str. (Compositae, Lactuceae). Folia Geobot. 38 345–350. 10.1007/BF02803204 DOI

Mráz P., Chrtek J., Fehrer J. (2011). Interspecific hybridization in the genus Hieracium (s. str.) – evidence for bidirectional gene flow and spontaneous allopolyploidization. Plant Syst. Evol. 293 237–245. 10.1007/s00606-011-0441-3 DOI

Mráz P., Chrtek J., Fehrer J., Plačková I. (2005). Rare recent natural hybridization in Hieracium s.str. – evidence from morphology, allozymes and chloroplast DNA. Plant Syst. Evol. 255 177–192.

Mráz P., Filipaş L., Bărbos M. I., Kadlecová J., Paštová L., Belyayev A., et al. (2019). An unexpected new diploid Hieracium from Europe: integrative taxonomic approach with a phylogeny of diploid Hieracium taxa. Taxon 68 1258–1277. 10.1002/tax.12149 DOI

Mráz P., Paule J. (2006). Experimental hybridization in the genus Hieracium s.str. (Asteraceae): crosses between selected diploid taxa. Preslia 78 1–26.

Mráz P., Zdvořák P. (2019). Reproductive pathways in Hieracium s.str. (Asteraceae): strict sexuality in diploids and apomixis in polyploids. Ann. Bot. 123 391–403. 10.1093/aob/mcy137 PubMed DOI PMC

Münkemüller T., Lavergne S., Bzeznik B., Dray S., Jombart T., Schiffers K., et al. (2012). How to measure and test phylogenetic signal. Methods Ecol. Evol. 3 743–756. 10.1111/j.2041-210X.2012.00196.x DOI

Myburg A. A., Griffin A. R., Sederoff R. R., Whetten R. W. (2003). Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor. Appl. Genet. 107 1028–1042. 10.1007/s00122-003-1347-4 PubMed DOI

Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Nieto Feliner G., Rosselló J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 44 911–919. 10.1016/j.ympev.2007.01.013 PubMed DOI

Okada T., Ito K., Johnson S. D., Oelkers K., Suzuki G., Houben A., et al. (2011). Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts. Plant Physiol. 157 1327–1341. 10.1104/pp.111.181164 PubMed DOI PMC

Pagel M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 255 37–45. 10.1098/rspb.1994.0006 DOI

Paradis E., Claude J., Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20 289–290. 10.1093/bioinformatics/btg412 PubMed DOI

Pease J. B., Brown J. W., Walker J. F., Hinchliff C. E., Smith S. E. (2018). Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. Amer. J. Bot. 105 385–403. 10.1002/ajb2.1016 PubMed DOI

Posada D., Crandall K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14 817–818. 10.1093/bioinformatics/14.9.817 PubMed DOI

Raskina O., Barber J. C., Nevo E., Belyayev A. (2008). Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet. Genome Res. 120 351–357. 10.1159/000121084 PubMed DOI

Rauscher J. T., Doyle J. J., Brown A. H. D. (2004). Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166 987–998. 10.1534/genetics.166.2.987 PubMed DOI PMC

Revell L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3 217–223. 10.1111/j.2041-210X.2011.00169.x DOI

Robinson D. F., Foulds L. R. (1981). Comparison of phylogenetic trees. Math. Biosci. 53 131–147. 10.1016/0025-5564(81)90043-2 DOI

Rocha L. C., Ferreira M. T. M., Cunha I. M. F., Mittelmann A., Techio V. H. (2018). 45S rDNA sites in meiosis of Lolium multiflorum Lam.: variability, non-homologous associations and lack of fragility. Protoplasma 256 227–235. 10.1007/s00709-018-1292-3 PubMed DOI

Rogers S. O., Bendich A. J. (1987). Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9 509–520. 10.1007/BF00015882 PubMed DOI

Ronquist F., Huelsenbeck J. P. (2003). MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI

Rosato M., Moreno-Saiz J. C., Galián J. A., Rosselló J. A. (2015). Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events. AoB Plants 7:lv135. 10.1093/aobpla/plv135 PubMed DOI PMC

Sanderson M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19 101–109. 10.1093/oxfordjournals.molbev.a003974 PubMed DOI

Sastri D. C., Hilu K., Appels R., Lagudah E. S., Playford J., Baum B. R. (1992). An overview of evolution in plant 5S DNA. Plant Syst. Evol. 183 169–181. 10.1007/BF00940801 DOI

Schlötterer C., Tautz D. (1994). Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr. Biol. 4 777–783. 10.1016/S0960-9822(00)00175-5 PubMed DOI

Simmons M. P., Ochoterena H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49 369–381. 10.1093/sysbio/49.2.369 PubMed DOI

Sleumer H. (1956). Die Hieracien Argentiniens unter Berücksichtigung der Nachbarländer. Bot. Jb. (Stuttgart) 77 85–148.

Smith G. P. (1976). Evolution of repeated DNA sequences by unequal crossover. Science 191 528–535. 10.1126/science.1251186 PubMed DOI

Soltis D. E., Mavrodiev E. V., Doyle J. J., Rauscher J., Soltis P. S. (2008). ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Syst. Bot. 33 7–20. 10.1600/036364408783887401 DOI

Suda J., Krahulcová A., Trávníček P., Rosenbaumová R., Peckert T., Krahulec F. (2007). Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann. Bot. 100 1323–1335. 10.1093/aob/mcm218 PubMed DOI PMC

Sukumaran J., Holder M. T. (2010). DendroPy: a Python library for phylogenetic computing. Bioinformatics 26 1569–1571. 10.1093/bioinformatics/btq228 PubMed DOI

Swofford D. (2002). PAUP∗: Phylogenetic Analysis Using Parsimony (∗and other Methods), Version 4. Sunderland, MA: Sinauer.

Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., et al. (1976). Flora Europaea, Vol. 4. Cambridge: Cambridge University Press.

Volkov R. A., Borisjuk N. V., Panchuk I. I., Schweizer D., Hemleben V. (1999). Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16 311–320. 10.1093/oxfordjournals.molbev.a026112 PubMed DOI

Volkov R. A., Komarova N. Y., Hemleben V. (2007). Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst. Biodivers. 5 261–276. 10.1017/S1477200007002447 DOI

Wendel J. F. (2000). Genome evolution in polyploids. Plant Mol. Biol. 42 225–249. 10.1023/A:1006392424384 PubMed DOI

Wicke S., Costa A., Muñoz J., Quandt D. (2011). Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 61 321–332. 10.1016/j.ympev.2011.06.023 PubMed DOI

Zagorski D., Hartmann M., Bertrand Y. J. K., Paštová L., Slavíková R., Josefiová J., et al. (2020). Characterization and dynamics of repeatomes in closely related species of Hieracium (Asteraceae) and their synthetic and apomictic hybrids. Front. Plant Sci. 11:591053. 10.3389/fpls.2020.591053 PubMed DOI PMC

Zahn K. H. (1921–1923). “Hieracium,” in Das Pflanzenreich, ed. Engler A. (Leipzig: Wilhelm Engelmann; ).

Zahradníček J., Chrtek J. (2015). Cytotype distribution and phylogeography of Hieracium intybaceum (Asteraceae). Bot. J. Linn. Soc. 179 487–498. 10.1111/boj.12335 DOI

Zahradníček J., Chrtek J., Ferreira M. Z., Krahulcová A., Fehrer J. (2018). Genome size variation in the genus Andryala (Hieraciinae, Asteraceae). Folia Geobot. 53 429–447. 10.1007/s12224-018-9330-7 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace