Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry

. 2007 Dec ; 100 (6) : 1323-35. [epub] 20071007

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17921526

BACKGROUND AND AIMS: Hieracium sub-genus Pilosella (hawkweeds) is a taxonomically complicated group of vascular plants, the structure of which is substantially influenced by frequent interspecific hybridization and polyploidization. Two kinds of species, 'basic' and 'intermediate' (i.e. hybridogenous), are usually recognized. In this study, genome size variation was investigated in a representative set of Central European hawkweeds in order to assess the value of such a data set for species delineation and inference of evolutionary relationships. METHODS: Holoploid and monoploid genome sizes (C- and Cx-values) were determined using propidium iodide flow cytometry for 376 homogeneously cultivated individuals of Hieracium sub-genus Pilosella, including 24 species (271 individuals), five recent natural hybrids (seven individuals) and experimental F(1) hybrids from four parental combinations (98 individuals). Chromosome counts were available for more than half of the plant accessions. Base composition (proportion of AT/GC bases) was cytometrically estimated in 73 individuals. KEY RESULTS: Seven different ploidy levels (2x-8x) were detected, with intraspecific ploidy polymorphism (up to four different cytotypes) occurring in 11 wild species. Mean 2C-values varied approx. 4.3-fold from 3.53 pg in diploid H. hoppeanum to 15.30 pg in octoploid H. brachiatum. 1Cx-values ranged from 1.72 pg in H. pilosella to 2.16 pg in H. echioides (1.26-fold). The DNA content of (high) polyploids was usually proportional to the DNA values of their diploid/low polyploid counterparts, indicating lack of processes altering genome size (i.e. genome down-sizing). Most species showed constant nuclear DNA amounts, exceptions being three hybridogenous taxa, in which introgressive hybridization was suggested as a presumable trigger for genome size variation. Monoploid genome sizes of hybridogenous species were always between the corresponding values of their putative parents. In addition, there was a good congruency between actual DNA estimates and theoretical values inferred from putative parental combinations and between DNA values of experimental F(1) hybrids and corresponding established hybridogenous taxa. CONCLUSIONS: Significant differences in genome size between hawkweed species from hybridogenous lineages involving the small-genome H. pilosella document the usefulness of nuclear DNA content as a supportive marker for reliable delineation of several of the most problematic taxa in Hieracium sub-genus Pilosella (including classification of borderline morphotypes). In addition, genome size data were shown to have a good predictive value for inferring evolutionary relationships and genome constitution (i.e. putative parental combinations) in hybridogenous species.

Zobrazit více v PubMed

Barow M, Meister A. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry. 2002;47:1–7. PubMed

Bennett MD, Leitch IJ. Plant DNA C-values Database (release 4·0, October 2005) 2005. [Accessed 19 February 2007]. http://www.kew.org/cval/homepage.html .

Bennett MD, Bhandol P, Leitch IJ. Nuclear DNA amounts in angiosperms and their modern uses – 807 new estimates. Annals of Botany. 2000;86:859–909.

Bennetzen J, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Annals of Botany. 2005;95:127–132. PubMed PMC

Bicknell RA, Lambie SC, Butler RC. Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas. 2003;138:11–20. PubMed

Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L. Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae) Annals of Botany. 2000;86:565–573.

Bräutigam S, Bräutigam E. Determination of the ploidy level in the genus Hieracium subgenus Pilosella (Hill) S.F. Gray by flow cytometric DNA analysis. Folia Geobotanica et Phytotaxonomica. 1996;31:315–321.

Chapman H, Lambie S. Stace CA, editor. [Reports] International Organization of Plant Biosystematics Newsletter. 1999;31:12. IOPB chromosome data 15.

Chapman H, Houliston GJ, Robson B, Illine I. A case of reversal: the evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. International Journal of Plant Sciences. 2003;164:719–728.

Dimitrova D, Ebert I, Greilhuber J, Kozhuharov S. Karyotype constancy and genome size variation in Bulgarian Crepis foetida s.l. (Asteraceae) Plant Systematics and Evolution. 1999;217:245–257.

Fehrer J, Šimek R, Krahulcová A, Krahulec F, Chrtek J, Bräutigam E, Bräutigam S. Evolution, hybridization, and clonal distribution of apo- and amphimictic species of Hieracium L. subgen. Pilosella (Hill) Gray in a Central European mountain range. In: Bakker FT, Chatrou LW, Gravendeel B, Pelser PB, editors. Plant species-level systematics: patterns, processes and new applications. Königstein, Koeltz: Regnum Vegetabile; 2005. pp. 175–201.

Fehrer J, Gemeinholzer B, Chrtek J, Jr, Bräutigam S. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae) Molecular Phylogenetics and Evolution. 2007;a 42:347–361. PubMed

Fehrer J, Krahulcová A, Krahulec F, Chrtek J, Jr, Rosenbaumová R, Bräutigam S. Evolutionary aspects in Hieracium subgenus Pilosella. In: Grossniklaus U, Hörandl E, Sharbel T, van Dijk P, editors. Apomixis: Evolution, Mechanisms and Perspectives. b. Königstein, Koeltz: Regnum Vegetabile; 2007. pp. 359–390.

Gadella TWJ. Sexual tetraploid and apomictic pentaploid populations of Hieracium pilosella (Compositae) Plant Systematics and Evolution. 1987;157:219–246.

Gadella TWJ. Some notes on the origin of polyploidy in Hieracium pilosella aggr. Acta Botanica Neerlandica. 1988;37:515–522.

Gadella TWJ. Variation, hybridization and reproductive biology of Hieracium pilosella L. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. 1991;a 94:455–488.

Gadella TWJ. Reproduction, variation and interspecific hybridization in three species of Hieracium section Pilosellina (Compositae) Polish Botanical Studies. 1991;b 2:85–103.

Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S. Heterochromatin study demonstrating the non-linearity of fluorimetry useful for calculating genomic base composition. Cytometry. 1993;14:618–626. PubMed

Gottschlich G. Hieracium L. In: Hegi G, Wagenitz G, editors. Illustrierte Flora von Mitteleuropa VI/2. Berlin: Verlag P. Parey; 1987. pp. 1437–1452.

Greilhuber J. Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany. 2005;95:91–98. PubMed PMC

Greilhuber J, Doležel J, Lysák MA, Bennett MD. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Annals of Botany. 2005;95:255–260. PubMed PMC

Greilhuber J, Temsch EM, Loureiro JCM. Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH; 2007. pp. 67–101.

Grime JP, Shacklock JML, Band SR. Nuclear DNA contents, shoot phenology and species co-existence in a limestone grassland community. New Phytologist. 1985;100:434–445.

Hegarty MJ, Hiscock SJ. Hybrid speciation in plants: new insights from molecular studies. New Phytologist. 2005;165:411–423. PubMed

Jenkins TA, Jong K. Significance of polyploid variation in New Zealand Pilosella and Hieracium (Asteraceae) Botanical Journal of Scotland. 1997;49:75–87.

Jeschke MR, Tranel PJ, Rayburn AL. DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications for hybrid detection. Weed Science. 2003;51:1–3.

Koltunow AM, Johnson SD, Bicknell RA. Sexual and apomictic development in Hieracium. Sexual Plant Reproduction. 1998;11:213–230.

Krahulcová A, Krahulec F. Chromosome numbers and reproductive systems in selected representatives of Hieracium subgen. Pilosella in the Krkonoše Mts (the Sudeten Mts) Preslia. 1999;71:217–234.

Krahulcová A, Krahulec F. Offspring diversity in Hieracium subgen. Pilosella (Asteraceae): new cytotypes from hybridization experiments and from open pollination. Fragmenta Floristica et Geobotanica. 2000;45:239–255.

Krahulcová A, Krahulec F, Chapman HM. Variation in Hieracium subgen Pilosella (Asteraceae): what do we know about its sources? Folia Geobotanica. 2000;35:319–338.

Krahulcová A, Krahulec F, Chrtek J., Jr Chromosome numbers and reproductive systems in selected representatives of Hieracium subgen. Pilosella in the Krkonoše Mts (the Sudeten Mts) – 2. Preslia. 2001;73:193–211.

Krahulcová A, Papoušková S, Krahulec F. Reproduction mode in the allopolyploid facultatively apomictic hawkweed Hieracium rubrum (Asteraceae, H. subgen. Pilosella) Hereditas. 2004;141:19–30. PubMed

Krahulec F, Krahulcová A. Population based approaches in the study of Pilosella Hill (Asteraceae): a new view of its taxonomy? In: Bailey J, Ellis RG, editors. Current taxonomic research on the British & European flora. London: BSBI; 2006. pp. 15–25.

Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Plačková I, Chrtek J., Jr The Sudetic group of Hieracium subgen. Pilosella from the Krkonoše Mts: a synthetic view. Preslia. 2004;76:223–243.

Krahulec F, Krahulcová A, Papoušková S. Ploidy level selection during germination and early stage of seedling growth in the progeny of allohexaploid facultative apomict, Hieracium rubrum (Asteraceae) Folia Geobotanica. 2006;41:407–416.

Leitch IJ, Bennett MD. Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH; 2007. pp. 153–176.

Lysák MA, Doležel J. Estimation of nuclear DNA content in Sesleria (Poaceae) Caryologia. 1998;51:123–132.

Lysák MA, Doleželová M, Horry JP, Swennen R, Doležel J. Flow cytometric analysis of nuclear DNA content in Musa. Theoretical and Applied Genetics. 1999;98:1344–1350.

MacGillivray CW, Grime JP. Genome size predicts frost-resistance in British herbaceous plants – implications for rates of vegetation response to global warming. Functional Ecology. 1995;9:320–325.

Mahelka V, Suda J, Jarolímová V, Trávníček P, Krahulec F. Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid. Folia Geobotanica. 2005;40:367–384.

Matzk F, Hammer K, Schubert I. Coevolution of apomixis and genome size within the genus Hypericum. Sexual Plant Reproduction. 2003;16:51–58.

Mishiba KI, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E. Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae) Annals of Botany. 2000;85:665–673.

Morgan-Richards M, Trewick SA, Chapman HM, Krahulcová A. Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity. 2004;93:34–42. PubMed

Nägeli C, Peter A. Die Hieracien Mittel-Europas. Monographische Bearbeitung der Piloselloiden mit besonderer Berücksichtigung der mitteleuropäischen Sippen. Munich: R. Olderburg; 1885.

Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods in Cell Biology. 1990;33:105–110. PubMed

Peckert T, Chrtek J. Mating interactions between coexisting diploid, triploid and tetraploid cytotypes of Hieracium echioides (Asteraceae) Folia Geobotanica. 2006;41:323–334.

Peckert T, Chrtek J, Plačková I. Genetic variation in agamospermous populations of Hieracium echioides in southern Slovakia and northern Hungary (Danube Basin) Preslia. 2005;77:307–315.

Rotreklová O. Hieracium bauhinii group in Central Europe: chromosome numbers and breeding systems. Preslia. 2004;76:313–330.

Rotreklová O, Krahulcová A, Vaňková D, Peckert T, Mráz P. Chromosome numbers and breeding systems in some species of Hieracium subgen. Pilosella from Central Europe. Preslia. 2002;74:27–44.

Rotreklová O, Krahulcová A, Mráz P, Mrázová V, Mártonfiová L, Peckert T, Šingliarová B. Chromosome numbers and breeding systems in some species of Hieracium subgen Pilosella from Europe. Preslia. 2005;77:177–195.

Schuhwerk F. Published chromosome counts in Hieracium. 1996. [(Accessed 19 February 2007]. http://www.botanik.biologie.uni-muenchen.de/botsamml/projects/chrzlit.html .

Schuhwerk F, Fischer MA. Bestimmungsschlüssel der Untergattung Hieracium subg. Pilosella in Österreich und Südtirol. Neilreichia. 2003;2–3:13–58.

Schuhwerk F, Lippert W. Chromosomenzahlen von Hieracium (Compositae, Lactuceae) Teil 1. Sendtnera. 1997;4:181–206.

Schuhwerk F, Lippert W. Chromosomenzahlen von Hieracium (Compositae, Lactuceae) Teil 4. Sendtnera. 2002;8:167–194.

Suda J, Kron P, Husband BC, Trávníček P. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH; 2007. pp. 103–130.

Vladimirov V, Szeląg Z. Chromosome numbers in selected species of Hieracium subgenus Pilosella (Asteraceae) from Bulgaria. Polish Botanical Journal. 2001;46:269–273.

Zahn KH. In: Synopsis der mitteleuropäischen Flora 12 (1). Ascherson P, Graebner P, editors. Leipzig: Gebrüder Borntraeger; Hieracium. 1922–1930.

Záveský L, Jarolímová V, Štěpánek J. Nuclear DNA content variation within the genus Taraxacum (Asteraceae) Folia Geobotanica. 2005;40:91–104.

Zonneveld BJM. Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Systematics and Evolution. 2001;229:125–130.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Morphological, ecological and geographic differences between diploids and tetraploids of Symphytum officinale (Boraginaceae) justify both cytotypes as separate species

. 2022 Aug ; 14 (4) : plac028. [epub] 20220621

Molecular Evolution and Organization of Ribosomal DNA in the Hawkweed Tribe Hieraciinae (Cichorieae, Asteraceae)

. 2021 ; 12 () : 647375. [epub] 20210312

Crop-to-wild hybridization in cherries-Empirical evidence from Prunus fruticosa

. 2018 Oct ; 11 (9) : 1748-1759. [epub] 20180726

New chromosome counts and genome size estimates for 28 species of Taraxacum sect. Taraxacum

. 2018 ; 12 (3) : 403-420. [epub] 20180918

Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae)

. 2014 ; 9 (9) : e105997. [epub] 20140911

Continuous morphological variation correlated with genome size indicates frequent introgressive hybridization among Diphasiastrum species (Lycopodiaceae) in Central Europe

. 2014 ; 9 (6) : e99552. [epub] 20140616

Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale

. 2013 Mar ; 111 (3) : 419-31. [epub] 20130124

The intriguing complexity of parthenogenesis inheritance in Pilosella rubra (Asteraceae, Lactuceae)

. 2012 Sep ; 25 (3) : 185-96. [epub] 20120619

Expressivity of apomixis in 2n + n hybrids from an apomictic and a sexual parent: insights into variation detected in Pilosella (Asteraceae: Lactuceae)

. 2011 Mar ; 24 (1) : 63-74. [epub] 20101027

Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in central Europe

. 2011 Mar ; 107 (3) : 443-54. [epub] 20110104

Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups

. 2009 Jul ; 104 (1) : 161-78. [epub] 20090511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...