Crop-to-wild hybridization in cherries-Empirical evidence from Prunus fruticosa

. 2018 Oct ; 11 (9) : 1748-1759. [epub] 20180726

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30344640

Crop cultivation can lead to genetic swamping of indigenous species and thus pose a serious threat for biodiversity. The rare Eurasian tetraploid shrub Prunus fruticosa (ground cherry) is suspected of hybridizing with cultivated allochthonous tetraploid P. cerasus and autochthonous diploid P. avium. Three Prunus taxa (447 individuals of P. fruticosa, 43 of P. cerasus and 73 of P. avium) and their hybrids (198 individuals) were evaluated using analysis of absolute genome size/ploidy level and multivariate morphometrics. Flow cytometry revealed considerable differentiation in absolute genome size at the tetraploid level (average 2C of P. fruticosa = 1.30 pg, average 2C of P. cerasus = 1.42 pg, i.e., a 9.2% difference). The combination of methods used allowed us to ascertain the frequency of hybrids occurring under natural conditions in Central Europe. The morphological evaluation of leaves was based upon distance-based morphometrics supplemented by elliptic Fourier analysis. The results provided substantial evidence for ongoing hybridization (hybrids occurred in 39.5% of P. fruticosa populations). We detected homoploid introgressive hybridization with alien P. cerasus at the tetraploid level. We also found previously overlooked but frequent triploid hybrids resulting from heteroploid hybridization with indigenous P. avium, which, however, probably represent only the F1 generation. Although both hybrids differ in ploidy, they cannot be distinguished using morphometrics. Hybrids are frequent and may endanger wild populations of genuine P. fruticosa via direct niche competition or, alternatively or in addition, via introgression at the homoploid level (i.e., genetic swamping). The cultivation of cherries thus substantially threatens the existence of genuine P. fruticosa.

Zobrazit více v PubMed

Aerts, R. , Berecha, G. , Gijbels, P. , Hundera, K. , Glabeke, S. , Vandepitte, K. , … Honnay, O. (2013). Genetic variation and risks of introgression in the wild Coffea arabica gene pool in south‐western Ethiopian montane rainforests. Evolutionary Applications, 6, 243–252. 10.1111/j.1752-4571.2012.00285.x PubMed DOI PMC

Anderson, E. C. , & Thompson, E. A. (2002). A model‐based method for identifying species hybrids using multilocus genetic data. Genetics, 160, 1217–1229. PubMed PMC

Arrigo, N. , Guadagnuolo, R. , Lappe, S. , Pasche, S. , Parisod, C. , & Felber, F. (2011). Gene flow between wheat and wild relatives: Empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis . Evolutionary Applications, 4, 685–695. 10.1111/j.1752-4571.2011.00191.x PubMed DOI PMC

Baird, W. V. , Estager, A. S. , & Wells, J. K. (1994). Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. Journal of the American Society for Horticultural Science, 119, 1312–1316.

Barać, G. , Ognjanov, V. , Vidaković, D. O. , Dorić, D. , Ljubojević, M. , Dulić, J. , … Gašić, K. (2017). Genetic diversity and population structure of European ground cherry (Prunus fruticosa Pall.) using SSR markers. Scientia Horticulturae, 224, 374–383.

Beghe, D. , Piotti, A. , Satovic, Z. , de la Rosa, R. , & Belaj, A. (2017). Pollen‐mediated gene flow and fine‐scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris . Annals of Botany, 119, 671–679. PubMed PMC

Bennett, M. D. , & Leitch, I. J. (1995). Nuclear DNA amounts in angiosperms. Annals of Botany, 76, 113–176. 10.1006/anbo.1995.1085 DOI

Bennetzen, J. L. , Ma, J. , & Devos, K. M. (2005). Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95, 127–132. 10.1093/aob/mci008 PubMed DOI PMC

Boratyński, A. , Lewandowska, A. , & Ratyńska, H. (2003). Cerasus fruticosa Pall. (Rosaceae) in the region of Kujavia and South Pomerania (N Poland). Dendrobiology, 49, 3–13.

Burgess, K. S. , Morgan, M. , Deverno, L. , & Husband, B. C. (2005). Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Molecular Ecology, 14, 3471–3483. 10.1111/j.1365-294X.2005.02670.x PubMed DOI

Čertner, M. , Kolář, F. , Schönswetter, P. , & Frajman, B. (2015). Does hybridization with a widespread congener threaten the long‐term persistence of the Eastern Alpine rare local endemic Knautia carinthiaca? Ecology and Evolution, 5, 4263–4276. 10.1002/ece3.1686 PubMed DOI PMC

Chrtek, J. (1992). Cerasus Mill In Hejný S., & Slavík B. (Eds.), Květena České republiky, Vol. 3 (pp. 442–448). Praha: Academia.

Chudíková, R. , Ďurišová, Ľ. , Baranec, T. , & Eliáš, P. (2012). The reproductive biology of selected taxa of the genus Cerasus Duham. Acta Biologica Cracoviensia Series Botanica, 54, 11–20.

Coart, E. , van Glabeke, S. , de Loose, M. , Larsen, A. S. , & Roldán‐Ruiz, I. (2006). Chloroplast diversity in the genus Malus: New insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Molecular Ecology, 15, 2171–2182. 10.1111/j.1365-294X.2006.02924.x PubMed DOI

Coart, E. , Vekemans, X. , Smulders, M. J. M. , Wagner, I. , van Huylenbroeck, J. , van Bockstaele, E. , & Roldán‐Ruiz, I. (2003). Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Molecular Ecology, 12, 845–857. 10.1046/j.1365-294X.2003.01778.x PubMed DOI

Corlett, R. T. (2016). Plant diversity in a changing world: Status, trends, and conservation needs. Plant Diversity, 38, 10–16. 10.1016/j.pld.2016.01.001 PubMed DOI PMC

De Andrés, M. T. , Benito, A. , Pérez‐Rivera, G. , Ocete, R. , Lopez, M. A. , Gaforio, L. , … Arroyo‐García, R. (2012). Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Molecular Ecology, 21, 800–816. 10.1111/j.1365-294X.2011.05395.x PubMed DOI

Delplancke, M. , Alvarez, N. , Espíndola, A. , Joly, H. , Benoit, L. , Brouck, E. , & Arrigo, N. (2012). Gene flow among wild and domesticated almond species: Insights from chloroplast and nuclear markers. Evolutionary Applications, 5, 317–329. 10.1111/j.1752-4571.2011.00223.x PubMed DOI PMC

Dickson, E. E. , Arumuganathan, K. , Kresovich, S. , & Doyle, J. J. (1992). Nuclear DNA content variation within the Rosaceae. American Journal of Botany, 79, 1081–1086. 10.1002/j.1537-2197.1992.tb13697.x DOI

Doležel, J. , Greilhuber, J. , & Suda, J. (2007). Flow cytometry with plants: Analysis of genes, chromosomes and genomes. Weinheim: Wiley‐VCH; 10.1002/9783527610921 DOI

Dufresne, F. , Stift, M. , Vergilino, R. , & Mable, B. K. (2014). Recent progress and challenges in population genetics of polyploid organisms: An overview of current state‐of‐the‐art molecular and statistical tools. Molecular Ecology, 23, 40–69. 10.1111/mec.12581 PubMed DOI

Dzhangaliev, A. D. , Salova, T. N. , & Turekhanova, P. M. (2003). The wild fruit and nut plants of Kazakhstan. Horticultural Reviews, 29, 305–371.

Ellstrand, N. C. , & Elam, D. R. (1993). Population genetic consequences of small population size: Implications for plant conservation. Annual Review of Ecology and Systematics, 24, 217–242. 10.1146/annurev.es.24.110193.001245 DOI

Ellstrand, N. C. , Meirmans, P. , Rong, J. , Bartsch, D. , Ghosh, A. , de Jong, T. J. , … Hooftman, D. (2013). Introgression of crop alleles into wild or weedy populations. Annual Review of Ecology, Evolution, and Systematics, 44, 325–345. 10.1146/annurev-ecolsys-110512-135840 DOI

Ellstrand, N. C. , Prentice, H. C. , & Hancock, J. F. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539–563. 10.1146/annurev.ecolsys.30.1.539 DOI

Frankham, R. , Ballou, J. D. , & Briscoe, D. A. (2010). Introduction to conservation genetics, 2nd ed Cambridge: Cambridge University Press; 10.1017/CBO9780511809002 DOI

Ganopoulos, I. V. , Aravanopoulos, F. A. , & Tsaftaris, A. (2013). Genetic differentiation and gene flow between wild and cultivated Prunus avium: An analysis of molecular genetic evidence at a regional scale. Plant Biosystems‐An International Journal Dealing with All Aspects of Plant Biology, 147, 678–685. 10.1080/11263504.2012.751065 DOI

García‐Verdugo, C. , Calleja, J. A. , Vargas, P. , Silva, L. , Moreira, O. , & Pulido, F. (2013). Polyploidy and microsatellite variation in the relict tree Prunus lusitanica L.: How effective are refugia in preserving genotypic diversity of clonal taxa? Molecular Ecology, 22, 1546–1557. 10.1111/mec.12194 PubMed DOI

Gross, B. L. , Henk, A. D. , Forsline, P. L. , Richards, C. M. , & Volk, G. M. (2012). Identification of interspecific hybrids among domesticated apple and its wild relatives. Tree Genetics & Genomes, 8, 1223–1235. 10.1007/s11295-012-0509-4 DOI

Hammer, Ø. , Harper, D. A. T. , & Ryan, P. D. (2001). Paleontological statistics software: Package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

Hanušová, K. , Ekrt, L. , Vít, P. , Kolář, F. , & Urfus, T. (2014). Continuous morphological variation correlated with genome size indicates frequent introgressive hybridization among Diphasiastrum species (Lycopodiaceae) in Central Europe. PLoS ONE, 9, e99552. PubMed PMC

Hejda, M. , Pyšek, P. , & Jarošík, V. (2009). Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 97, 393–403. 10.1111/j.1365-2745.2009.01480.x DOI

Horvath, A. , Zanetto, A. , Christmann, H. , Laigret, F. , & Tavaud, M. (2008). Origin of sour cherry (Prunus cerasus L.) genomes. Acta Horticulturae, 795, 131–136. https://doi.org/10.17660/ActaHortic.2008.795.15 DOI

Iezzoni, A. F. (2008). Cherries In Hancock J. F. (Ed.), Temperate fruit crop breeding: Germplasm to genomics (pp. 151–173). Dordrecht: Springer, Netherlands; 10.1007/978-1-4020-6907-9 DOI

Iezzoni, A. F. , & Mulinix, C. A. (1992). Variation in bloom time in a sour cherry germplasm collection. HortScience, 27, 1113–1114.

Iwata, H. , & Ukai, Y. (2002). SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93, 384–385. 10.1093/jhered/93.5.384 PubMed DOI

Jäger, E. J. , & Seidel, D. (1995). Unterfamilie Prunoideae In Conert H. J., Jäger E. J., Kadereit J. W., Schultze‐Motel W., Wagenitz G., & Weber H. E. (Eds.), Gustav Hegi: Illustrierte Flora von Mitteleuropa, Vol. 4 (pp. 446–510)., No. 2B Berlin‐Wien: Blackwell Wissenschafts‐Verlag GmbH.

Kabátová, K. , Vít, P. , & Suda, J. (2014). Species boundaries and hybridization in central‐European Nymphaea species inferred from genome size and morphometric data. Preslia, 86, 131–154.

Kolář, F. , Čertner, M. , Suda, J. , Schönswetter, P. , & Husband, B. C. (2017). Mixed‐ploidy species: Progress and opportunities in polyploid research. Trends in Plant Science, 22, 1041–1055. PubMed

Kuhl, F. P. , & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18, 236–258. 10.1016/0146-664X(82)90034-X DOI

Lepší, P. , Lepší, M. , Boublík, K. , & Kolář, F. (2011). Reliktní a izolovaný výskyt Prunus fruticosa u Českého Krumlova [Relict and isolated occurrence of Prunus fruticosa by the town of Český Krumlov (South Bohemia, Czech Republic)]. Zprávy České Botanické Společnosti, 46, 39–44.

Lepší, M. , Vít, P. , Lepší, P. , Boublík, K. , & Kolář, F. (2009). Sorbus portae‐bohemicae and Sorbus albensis, two new endemic apomictic species recognized based on a revision of Sorbus bohemica . Preslia, 81, 63–89.

Lepší, M. , Vít, P. , Lepší, P. , Boublík, K. , & Suda, J. (2008). Sorbus milensis, a new hybridogenous species from northwestern Bohemia. Preslia, 80, 229–244.

Levin, D. A. , Francisco‐Ortega, J. , & Jansen, R. K. (1996). Hybridization and the extinction of rare plant species. Conservation Biology, 10, 10–16. 10.1046/j.1523-1739.1996.10010010.x DOI

Loureiro, J. , Trávníček, P. , Rauchová, J. , Urfus, T. , Vít, P. , Štech, M. , … Suda, J. (2010). The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia, 82, 3–21.

Macková, L. , Vít, P. , Ďurišová, Ľ. , Eliáš, P. , & Urfus, T. (2017). Hybridization success is largely limited to homoploid Prunus hybrids: A multidisciplinary approach. Plant Systematics and Evolution, 303, 481–495. 10.1007/s00606-016-1385-4 DOI

Maghuly, F. , Schmoellerl, B. , Temsch, E. M. , & Laimer, M. (2010). Genome size, karyotyping and FISH physical mapping of 45S and 5S genes in two cherry rootstocks: Prunus subhirtella and Prunus incisa × serrula . Journal of Biotechnology, 149, 88–94. 10.1016/j.jbiotec.2010.06.022 PubMed DOI

Marhold, K. , & Wójcicki, J. J. (1992). Cerasus Miller In Bertová L. (Ed.), Flóra Slovenska. Vol. 4, No. 3 (pp. 509–533). Bratislava: Veda.

McVay, J. D. , Hipp, A. L. , & Manos, P. S. (2017). A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proceedings of the Royal Society B, 284, 20170300 10.1098/rspb.2017.0300 PubMed DOI PMC

Meusel, H. , Jäger, E. J. , & Weinert, E. (1965). Vergleichende Chorologie der zentraleuropaischen Flora, Vol. 1 Jena: VEB Gustav Fischer Verlag.

Michael, T. P. (2014). Plant genome size variation: Bloating and purging DNA. Briefings in Functional Genomics, 13, 308–317. 10.1093/bfgp/elu005 PubMed DOI

Oldén, E. J. , & Nybom, N. (1968). On the origin of Prunus cerasus L. Hereditas, 59, 327–345.

Petrov, D. A. (2001). Evolution of genome size: New approaches to an old problem. Trends in Genetics, 17, 23–28. 10.1016/S0168-9525(00)02157-0 PubMed DOI

Pruski, K. (2007). Tissue culture propagation of Mongolian cherry (Prunus fruticosa L.) and Nanking cherry (Prunus tomentosa L.) In Jain S. M. & Häggman H. (Eds.), Protocols for Micropropagation of Woody Trees and Fruits (pp. 391–407). Amsterdam: Springer Netherlands; 10.1007/978-1-4020-6352-7 DOI

R Core Team (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; Retrieved from https://www.r-project.org/

Raudnitschka, D. , Hensen, I. , & Oberprieler, C. (2007). Introgressive hybridization of Senecio hercynicus and S. ovatus (Compositae, Senecioneae) along an altitudinal gradient in Harz National Park (Germany). Systematics and Biodiversity, 5, 333–344. 10.1017/S1477200007002435 DOI

Rhodes, L. , & Maxted, N. (2016). Prunus fruticosa. In The IUCN Red List of Threatened Species 2016 (p. e.T172146A48415323). Retrieved from 10.2305/iucn.uk.2016-2.rlts.t172146a48415323.en DOI

Rhymer, J. M. , & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83–109. 10.1146/annurev.ecolsys.27.1.83 DOI

Ruhsam, M. , Jacobs, T. , Watson, K. , & Hollingsworth, P. M. (2015). Is hybridisation a threat to Rumex aquaticus in Britain? Plant Ecology & Diversity, 8, 465–474. 10.1080/17550874.2014.941956 DOI

Scholz, H. , & Scholz, I. (1995). Unterfamilie Prunoideae In Conert H. J., Jäger E. J., Kadereit J. W., Schultze‐Motel W., Wagenitz G., & Weber H. E. (Eds.), Gustav Hegi: Illustrierte Flora von Mitteleuropa, Vol. 4 (pp. 446–510)., No. 2B Berlin‐Wien: Blackwell Wissenschafts‐Verlag GmbH.

Schönswetter, P. , Suda, J. , Popp, M. , Weiss‐Schneeweiss, H. , & Brochmann, C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution, 42, 92–103. 10.1016/j.ympev.2006.06.016 PubMed DOI

Schuster, M. , & Schreibner, H. (2000). Genome investigation in sour cherry, P. cerasus L.. Acta Horticulturae, 538, 375–379. https://doi.org/10.17660/ActaHortic.2000.538.66 DOI

Šmarda, P. , & Bureš, P. (2006). Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Annals of Botany, 98, 665–678. PubMed PMC

Šmarda, P. , & Bureš, P. (2010). Understanding intraspecific variation in genome size in plants. Preslia, 82, 41–61.

Soltis, P. S. , & Soltis, D. E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561–588. 10.1146/annurev.arplant.043008.092039 PubMed DOI

Suda, J. , Krahulcová, A. , Trávníček, P. , Rosenbaumová, R. , Peckert, T. , & Krahulec, F. (2007). Genome size variation and species relationships in Hieracium sub‐genus Pilosella (Asteraceae) as inferred by flow cytometry. Annals of Botany, 100, 1323–1335. 10.1093/aob/mcm218 PubMed DOI PMC

Tavaud, M. , Zanetto, A. , David, J. L. , Laigret, F. , & Dirlewanger, E. (2004). Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus × gondouinii and Prunus cerasus). Heredity, 93, 631–638. 10.1038/sj.hdy.6800589 PubMed DOI

Ter Braak, C. J. F. , & Šmilauer, P. (2012). CANOCO reference manual and user's guide: software for ordination (version 5.0). Ithaca: Microcomputer power.

Thórsson, Æ. T. , Pálsson, S. , Sigurgeirsson, A. , & Anamthawat‐Jónsson, K. (2007). Morphological variation among Betula nana (diploid), B. pubescens (tetraploid) and their triploid hybrids in Iceland. Annals of Botany, 99, 1183–1193. 10.1093/aob/mcm060 PubMed DOI PMC

Todesco, M. , Pascual, M. A. , Owens, G. L. , Ostevik, K. L. , Moyers, B. T. , Hübner, S. , … Rieseberg, L. H. (2016). Hybridization and extinction. Evolutionary Applications, 9, 892–908. 10.1111/eva.12367 PubMed DOI PMC

Van den Wollenberg, A. L. (1977). Redundancy analysis an alternative for canonical correlation analysis. Psychometrika, 42, 207–219. 10.1007/BF02294050 DOI

Vít, P. , Wolfová, K. , Urfus, T. , Tájek, P. , & Suda, J. (2014). Interspecific hybridization between rare and common plant congeners inferred from genome size data: Assessing the threat to the Czech serpentine endemic Cerastium alsinifolium . Preslia, 86, 95–117.

Vítová, J. , Vít, P. , & Suda, J. (2015). Rare occurrence of reciprocal hybridization in a sympatric population of the Czech stenoendemic Dianthus arenarius subsp. bohemicus and widespread D. carthusianorum . Preslia, 87, 329–345.

Webb, D. A. (1968). Prunus L In Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., & Webb D. A. (Eds.), Flora Europaea, Vol. 2 (pp. 77–80). Cambridge: Cambridge University Press.

Wójcicki, J. J. (1988). Zmienność Prunus fruticosa Pallas w Polsce na tle zmienności gatunku [Variability of Prunus fruticosa Pallas]. Unpublished doctoral dissertation thesis, Polish Academy of Sciences, Krakow: Institute of Botany.

Wójcicki, J. J. (1991). Variability of Prunus fruticosa Pall. and the problem of an anthropohybridization. Veröffentlichungen Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 106, 266‐272.

Wójcicki, J. J. , & Marhold, K. (1993). Variability, hybridization and distribution of Prunus fruticosa (Rosaceae) in the Czech Republic and Slovakia. Polish Botanical Studies, 5, 9–24.

Zobrazit více v PubMed

Dryad
10.5061/dryad.v7k54df

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace