Morphological and environmental differentiation as prezygotic reproductive barriers between parapatric and allopatric Campanula rotundifolia agg. cytotypes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34559179
PubMed Central
PMC9904352
DOI
10.1093/aob/mcab123
PII: 6374997
Knihovny.cz E-zdroje
- Klíčová slova
- Campanula rotundifolia agg, allopatry, contact zone, cytotype distribution, diploid, environmental niche shift, hexaploid, morphological differentiation, parapatry, polyploidy, reproductive isolation, tetraploid,
- MeSH
- Campanulaceae * MeSH
- diploidie MeSH
- ploidie MeSH
- polyploidie MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Reproductive isolation and local establishment are necessary for plant speciation. Polyploidy, the possession of more than two complete chromosome sets, creates a strong postzygotic reproductive barrier between diploid and tetraploid cytotypes. However, this barrier weakens between polyploids (e.g. tetraploids and hexaploids). Reproductive isolation may be enhanced by cytotype morphological and environmental differentiation. Moreover, morphological adaptations to local conditions contribute to plant establishment. However, the relative contributions of ploidy level and the environment to morphology have generally been neglected. Thus, the extent of morphological variation driven by ploidy level and the environment was modelled for diploid, tetraploid and hexaploid cytotypes of Campanula rotundifolia agg. Cytotype distribution was updated, and morphological and environmental differentiation was tested in the presence and absence of natural contact zones. METHODS: Cytotype distribution was assessed from 231 localities in Central Europe, including 48 localities with known chromosome counts, using flow cytometry. Differentiation in environmental niche and morphology was tested for cytotype pairs using discriminant analyses. A structural equation model was used to explore the synergies between cytotype, environment and morphology. KEY RESULTS: Tremendous discrepancies were revealed between the reported and detected cytotype distribution. Neither mixed-ploidy populations nor interploidy hybrids were detected in the contact zones. Diploids had the broadest environmental niche, while hexaploids had the smallest and specialized niche. Hexaploids and spatially isolated cytotype pairs differed morphologically, including allopatric tetraploids. While leaf and shoot morphology were influenced by environmental conditions and polyploidy, flower morphology depended exclusively on the cytotype. CONCLUSIONS: Reproductive isolation mechanisms vary between cytotypes. While diploids and polyploids are isolated postzygotically, the environmental niche shift is essential between higher polyploids. The impact of polyploidy and the environment on plant morphology implies the adaptive potential of polyploids, while the exclusive relationship between flower morphology and cytotype highlights the role of polyploidy in reproductive isolation.
Zobrazit více v PubMed
Anderson MJM. 2006. Distance‐based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253. PubMed
Balao F, Herrera J, Talavera S. 2011. Phenotypic consequences at the microevolutionary scale of polyploidy and genome size dynamics. Journal of Evolutionary Biology 192: 256–265. PubMed
Barker M, Rayens W. 2003. Partial least squares for discrimination. Journal of Chemometrics 17: 166–173.
te Beest M, Le Roux JJ, Richardson DM, et al. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109: 19–45. PubMed PMC
Bjørnstad ON. 2019. ncf: spatial covariance functions. R package version 1.2-8. https://ento.psu.edu/directory/onb1.
Bjørnstad ON, Falck W. 2001. Nonparametric spatial covariance functions: estimation and testing. Environmental and Ecological Statistics 8: 53–70.
Blackith RE, Reyment RA. 1971. Multivariate morphometrics. London: Academic Press.
Böcher TW. 1936. Cytological studies on Campanula rotundifolia. Hereditas 22: 269–277.
Brady KU, Kruckeberg AR, Bradshaw HD. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics 36: 243–266.
Brochmann C, Brysting AK, Alsos IG, et al. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521–536.
Broennimann O, Fitzpatrick MC, Pearman PB, et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481–497.
Caperta AD, Castro S, Loureiro J, et al. 2017. Biogeographical, ecological and ploidy variation in related asexual and sexual Limonium taxa (Plumbaginaceae). Botanical Journal of the Linnean Society 183: 75–93.
Castro M, Castro S, Figueiredo A, Husband BC, Loureiro J. 2018. Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone. AoB Plants 10: 1–18. PubMed PMC
Castro M, Loureiro J, Figueiredo A, Serrano M, Husband BC, Castro S. 2020. Different patterns of ecological divergence between two tetraploids and their diploid counterpart in a parapatric linear coastal distribution polyploid complex. Frontiers in Plant Science 11: 315. PubMed PMC
Castro M, Loureiro J, Husband BC, Castro S. 2020. The role of multiple reproductive barriers: strong post-pollination interactions govern cytotype isolation in a tetraploid–octoploid contact zone. Annals of Botany 126: 991–1003. PubMed PMC
Čertner M, Fenclová E, Kúr P, et al. 2017. Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Annals of Botany 120: 303–315. PubMed PMC
Christensen RHB. 2019. ordinal - regression models for ordinal data. R package version 2019.4-25. https://github.com/runehaubo/ordinal
Chumová Z, Krejčíková J, Mandáková T, Sud J, Trávníček P. 2015. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). Plos One 10: e0133748. doi:10.1371/journal.pone.0133748. PubMed DOI PMC
Claude J. 2008. Morphometrics with R. New York: Springer Science & Business Media.
De Marco P, Nóbrega CC. 2018. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS One 13: e0202403. PubMed PMC
Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233–2244. PubMed
Doyle JJ, Sherman-Broyles S. 2017. Double trouble: taxonomy and definition of polyploidy. New Phytologist 213: 487–493. PubMed
Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. 2006. Multi- and megavariate data analysis. Part II. Advanced applications and method extensions. Umea: Umetrics Academy.
Fenaroli F, Pistarino A, Peruzzi L, Cellinese N. 2013. Campanula martinii (Campanulaceae), a new species from northern Italy. Phytotaxa 111: 27–38.
Flagel LE, Wendel JF. 2009. Gene duplication and evolutionary novelty in plants. New Phytologist 183: 557–564. PubMed
Flatscher R, García PE, Hülber K, et al. 2015. Underestimated diversity in one of the world’s best studied mountain ranges: the polyploid complex of Senecio carniolicus (Asteraceae) contains four species in the European Alps. Phytotaxa 213: 1–21. PubMed PMC
Gadella TWJ. 1964. Cytotaxonomic studies in the genus Campanula. Wentia 11: 1–104.
Glennon KL, Ritchie ME, Segraves KA. 2014. Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecology Letters 17: 574–582. PubMed
Hanušová K, Čertner M, Urfus T, et al. 2019. Widespread co-occurrence of multiple ploidy levels in fragile ferns (Cystopteris fragilis complex; Cystopteridaceae) probably stems from similar ecology of cytotypes, their efficient dispersal and inter-ploidy hybridization. Annals of Botany 123: 845–855. PubMed PMC
Hopkins R. 2013. Reinforcement in plants. New Phytologist 197: 1095–1103. PubMed
Hülber K, Sonnleitner M, Suda J, et al. 2015. Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae). Ecology and Evolution 5: 1224–1234. PubMed PMC
Husband BC, Baldwin SJ, Sabara HA. 2016. Direct vs. indirect effects of whole-genome duplication on prezygotic isolation in chamerion angustifolium: Implications for rapid speciation. American Journal of Botany 103: 1259–1271. PubMed
Husband BC, Schemske DW. 2000. Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. Journal of Ecology 88: 689–701.
Jiao Y, Wickett NJ, Ayyampalayam S, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. PubMed
Jiménez-Valverde A, Nakazawa YJ, Lira-Noriega A, Peterson Townsend A. 2009. Environmental correlation structure and ecological niche model projections. Biodiversity Informatics 6: 28–35.
Kaplan Z. 2012. Flora and phytogeography of the Czech Republic. Preslia 84: 505–573.
Karunarathne P, Schedler M, Martínez EJ, Honfi AI, Novichkova A, Hojsgaard D. 2018. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Annals of Botany 121: 1183–1196. PubMed PMC
Kennedy BF, Sabara HA, Haydon D, Husband BC. 2006. Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150: 398–408. PubMed
Kirkpatrick M. 2000. Reinforcement and divergence under assortative mating. Proceedings of the Royal Society B: Biological Sciences 267: 1649–1655. PubMed PMC
Kobrlová L, Hroneš M, Koutecký P, Štech M, Trávníček B. 2016. Symphytum tuberosum complex in central Europe: cytogeography, morphology, ecology and taxonomy. Preslia 88: 77–112.
Köhler C, Mittelsten Scheid O, Erilova A. 2010. The impact of the triploid block on the origin and evolution of polyploid plants. Trends in Genetics 26: 142–148. PubMed
Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science 22: 1041–1055. PubMed
Kolář F, Fér T, Štech M, et al. 2012. Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7: e39988. PubMed PMC
Kovačić S. 2004. The genus Campanula L. (Campanulaceae) in Croatia, circum-Adriatic and west Balkan region. Acta Botanica Croatica 63: 171–202.
Kovanda M. 1966. Some chromosome counts in the Campanula rotundifolia Complex II. Folia Geobotanica & Phytotaxonomica 1: 268–273.
Kovanda M. 1967. Polyploidie a variabilita v komplexu Campanula rotundifolia L. PhD Thesis, Charles University, Czech Republic.
Kovanda M. 1970a. Polyploidy and variation in the Campanula rotundifolia complex. Part I. (general). Rozpravy Československé Akademie Věd 80: 5–95.
Kovanda M. 1970b. Polyploidy and variation in the Campanula rotundifolia complex. Part II. (Taxonomic) 1. Revision of the groups Saxicolae, Lanceolatae and Alpicolae in Czechoslovakia and adjacent regions. Folia Geobotanica et Phytotaxonomica 5: 171–208.
Kovanda M. 1977. Polyploidy and variation in the Campanula rotundifolia complex. Part II. (Taxonomic) 2. Revision of the groups Vulgares and Scheuchzerianae in Czechoslovakia and adjacent regions. Folia Geobotanica et Phytotaxonomica 12: 23–89.
Kovanda M. 1983. Chromosome numbers in selected Angiosperms. Preslia 55: 193–205.
Kovanda M. 2002. A range extension for Campanula moravica. Thaiszia 12: 179–181.
Krejčíková J, Sudová R, Lučanová M, et al. 2013. High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Annals of Botany 111: 641–649. PubMed PMC
Laane MM, Croff BE, Wahlstrøm R. 1983. Cytotype distribution in the Campanula rotundifolia complex in Norway, and cyto-morphological characteristics of diploid and tetraploid groups. Hereditas 99: 21–48. PubMed
Lafon-Placette C, Johannessen IM, Hornslien KS, et al. 2017. Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proceedings of the National Academy of Sciences 114: E1027–E1035. PubMed PMC
Landis JB, Soltis DE, Li Z, et al. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany 105: 348–363. PubMed
Laport RG, Hatem L, Minckley RL, Ramsey J. 2013. Ecological niche modeling implicates climatic adaptation, competitive exclusion, and niche conservatism among Larrea tridentata cytotypes in North American deserts. The Journal of the Torrey Botanical Society 140: 349–363.
Laport RG, Minckley RL, Ramsey J. 2016. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. American Journal of Botany 103: 1358–1374. PubMed
Laport RG, Muhia P, Kennell C, Hasan H. 2017. Assessing water use variation among the cytotypes of the autopolyploid southwestern desert Creosotebush (Larrea tridentata [DC.] Coville: Zygophyllaceae). Madroño 64: 32–42.
Laport RG, Ramsey J. 2015. Morphometric analysis of the North American creosote bush (Larrea tridentata, Zygophyllaceae) and the microspatial distribution of its chromosome races. Plant Systematics and Evolution 301: 1581–1599.
Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35–43.
Levin DA. 1983. Polyploidy and novelty in flowering plants. The American Naturalist 122: 1–25.
Levin DA. 2019. Why polyploid exceptionalism is not accompanied by reduced extinction rates. Plant Systematics and Evolution 305: 1–11.
López-Jurado J, Mateos-Naranjo E, Balao F. 2019. Niche divergence and limits to expansion in the high polyploid Dianthus broteri complex. New Phytologist 222: 1076–1087. PubMed
Lüdecke D, Makowski D, Waggoner P. 2020. Performance: assessment of regression models performance. R package version 0.4.4. https://easystats.github.io/performance/.
Maad J, Armbruster WS, Fenster CB. 2013. Floral size variation in Campanula rotundifolia (Campanulaceae) along altitudinal gradients: patterns and possible selective mechanisms. Nordic Journal of Botany 31: 361–371.
Macková L, Nosková J, Ďurišová Ľ, Urfus T. 2020. Insights into the cytotype and reproductive puzzle of Cotoneaster integerrimus in the Western Carpathians. Plant Systematics and Evolution 306: 1–14.
Macková L, Vít P, Urfus T. 2018. Crop-to-wild hybridization in cherries—empirical evidence from Prunus fruticosa. Evolutionary Applications 11: 1748–1759. PubMed PMC
Mandáková T, Kovařík A, Zozomová-Lihová J, et al. 2013. The more the merrier: recent hybridization and polyploidy in Cardamine. The Plant Cell 25: 3280–3295. PubMed PMC
Mandáková T, Pouch M, Harmanová K, Zhan SH, Mayrose I, Lysak MA. 2017. Multispeed genome diploidization and diversification after an ancient allopolyploidization. Molecular Ecology 26: 6445–6462. PubMed
Manly BFJ. 2006. Randomization, bootstrap and Monte Carlo methods in biology. Boca Raton: CRC Press.
Mansion G, Parolly G, Crowl AA, et al. 2012. How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS One 7: e50076. doi:10.1371/journal.pone.0050076. PubMed DOI PMC
Mao Y, Gabel A, Nakel T, et al. 2020. Selective egg cell polyspermy bypasses the triploid block. eLife 9: 1–15. PubMed PMC
Marhold K, Mártonfi P, Mereďa P, Mráz P, eds.2007. Chromosome number survey of the ferns and flowering plants of Slovakia. Bratislava: VEDA.
Mayrose I, Zhan SH, Rothfels CJ, et al. 2015. Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis et al. (2014). New Phytologist 206: 27–35. PubMed
Meeus S, Šemberová K, De Storme N, Geelen D, Vallejo-Marín M. 2020. Effect of whole-genome duplication on the evolutionary rescue of sterile hybrid monkeyflowers. Plant Communication s1: 100093. PubMed PMC
Mevik B-H, Wehrens R, Liland KH. 2019. pls: partial least squares and principal component regression. R package version 2.7-1. https://github.com/khliland/pls.
Molina-Henao YF, Hopkins R. 2019. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. American Journal of Botany 106: 61–70. PubMed
Moore RC, Purugganan MD. 2005. The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology 8: 122–128. PubMed
Mráz P. 2005. Chromosome number and DNA ploidy level reports from Central Europe - 1. Biologia, Bratislava 60: 99–103.
Mráz P, Ronikier M. 2016. Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biological Journal of the Linnean Society 119: 528–559.
Mráz P, Šingliarová B, Urfus T, Krahulec F. 2008. Cytogeography of Pilosella officinarum (Compositae): altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Annals of Botany 101: 59–71. PubMed PMC
Muñoz-Pajares AJ, Perfectti F, Loureiro J, et al. 2017. Niche differences may explain the geographic distribution of cytotypes in Erysimum mediohispanicum. Plant Biology 20: 139–147. PubMed
Murdoch D, Chow ED. 2018. ellipse: functions for drawing ellipses and ellipse-like confidence regions. R package version 0.4.1. https://CRAN.R-project.org/package=ellipse.
Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface 14: 20170213. PubMed PMC
Nierbauer KU, Paule J, Zizka G. 2017. Heteroploid reticulate evolution and taxonomic status of an endemic species with bicentric geographical distribution. AoB Plants 9: plx002. PubMed PMC
Oksanen J, Blanchet FG, Friendly M, et al. 2019. vegan: community ecology package. R package version 2.5-4. https://github.com/vegandevs/vegan.
Pannell JR, Obbard DJ, Buggs RJA. 2004. Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biological Journal of the Linnean Society 82: 547–560.
Parisod C, Besnard G. 2007. Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Molecular Ecology 16: 2755–2767. PubMed
Paule J, Wagner ND, Weising K, Zizka G. 2017. Ecological range shift in the polyploid members of the South American genus Fosterella (Bromeliaceae). Annals of Botany 120: 233–243. PubMed PMC
Peskoller A, Silbernagl L, Hülber K, Sonnleitner M, Schönswetter P. 2021. Do pentaploid hybrids mediate gene flow between tetraploid Senecio disjunctus and hexaploid S. carniolicus s. str. (S. carniolicus aggregate, Asteraceae)? Alpine Botany131, 151–160. 10.1007/s00035-021-00254-x. DOI
Pinheiro J, Bates D. 2000. Mixed-effects models in S and S-PLUS. New York: Springer Science & Business Media.
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. 2019. nlme: linear and nonlinear mixed effects models. R package version 3.1-139. https://svn.r-project.org/R-packages/trunk/nlme/.
Podlech D. 1965. Revision der europäischen und nordafrikanischen Vertreter der Subsect. Heterophylla (Wit.) Fed. der Gattung Campanula L. Feddes Repertorium 71: 50–187.
Porturas LD, Anneberg TJ, Curé AE, Wang S, Althoff DM, Segraves KA. 2019. A meta-analysis of whole genome duplication and the effects on flowering traits in plants. American Journal of Botany 106: 469–476. PubMed
Preite V, Stöcklin J, Armbruster GFJ, Scheepens JF. 2015. Adaptation of flowering phenology and fitness-related traits across environmental gradients in the widespread Campanula rotundifolia. Evolutionary Ecology 29: 249–267.
R Core Team. 2019. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467–501.
Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics 33: 589–639.
Rauchová J. 2007. Karyologická, fenetická a genetická diferenciace českého subendemického taxonu Campanula gentilis Kovanda. MSc Thesis, Charles University, Czech Republic.
Ray‐Mukherjee J, Nimon K, Mukherjee S, et al. 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods in Ecology and Evolution 5: 320–328.
Rejlová L, Chrtek J, Trávníček P, Lučanová M, Vít P, Urfus T. 2019. Polyploid evolution: the ultimate way to grasp the nettle. PLoS One 14: 1–24. PubMed PMC
Rice A, Glick L, Abadi S, et al. 2015. The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytologist 206: 19–26. PubMed
Rice A, Šmarda P, Novosolov M, et al. 2019. The global biogeography of polyploid plants. Nature Ecology and Evolution 3: 265–273. PubMed
Roquet C, Sanmartín I, Garcia-Jacas N, et al. 2009. Reconstructing the history of Campanulaceae with a Bayesian approach to molecular dating and dispersal–vicariance analyses. Molecular Phylogenetics and Evolution 52: 575–587. PubMed
Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B. 2014. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology 115: 15–40.
Schönswetter P, Lachmayer M, Lettner C, et al. 2007. a. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. Journal of Plant Research 120: 721–725. PubMed
Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C. 2007b. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution 42: 92–103. PubMed
Scott RJ, Spielman M, Bailey H, Dickinson HG. 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125: 3329–3341. PubMed
Segraves KA, Thompson JN, Soltis PS, Soltis DE. 1999. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Molecular Ecology 8: 253–262.
Šemberová K. 2013. Population cytotype structure and phenotypic variation in Campanula moravica. MSc Thesis, Charles University, Czech Republic.
Shipley B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90: 363–368. PubMed
Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, et al. 2021. Application-based guidelines for best practices in plant flow cytometry. Cytometry A. doi: 10.1002/cyto.a.24499. PubMed DOI
Simón-Porcar VI, Silva JL, Meeus S, Higgins JD, Vallejo-Marín M. 2017. Recent autopolyploidization in a naturalized population of Mimulus guttatus (Phrymaceae). Botanical Journal of the Linnean Society 20: 1–19.
Soltis DE, Albert VA, Leebens-Mack J, et al. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96: 336–348. PubMed
Soltis DE, Burleigh GJ. 2009. Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms. Proceedings of the National Academy of Sciences of the United States of America 106: 5455–5456. PubMed PMC
Sonnleitner M, Flatscher R, Escobar García P, et al. 2010. Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Annals of Botany 106: 967–977. PubMed PMC
Sonnleitner M, Hülber K, Flatscher R, et al. 2016. Ecological differentiation of diploid and polyploid cytotypes of Senecio carniolicus sensu lato (Asteraceae) is stronger in areas of sympatry. Annals of Botany 117: 269–276. PubMed PMC
Stevens CJ, Wilson J, McAllister HA. 2012. Biological Flora of the British Isles: Campanula rotundifolia. Journal of Ecology 100: 821–839.
Suda J, Herben T. 2013. Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data. Proceedings of the Royal Society B: Biological Sciences 280: 20122387. PubMed PMC
Sutherland BL, Galloway LF. 2016. Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytologist 213: 404–412. PubMed
Sutherland BL, Galloway LF. 2018. Effects of glaciation and whole genome duplication on the distribution of the Campanula rotundifolia polyploid complex. American Journal of Botany 105: 1760–1770. PubMed
Sutherland BL, Galloway LF. 2021. Variation in heteroploid reproduction and gene flow across a polyploid complex: one size does not fit all. Ecology and Evolution 11: 9676–9688. PubMed PMC
Sutherland BL, Miranda-Katz T, Galloway LF. 2020. Strength in numbers? Cytotype frequency mediates effect of reproductive barriers in mixed-ploidy arrays. Evolution 74: 2281–2292. PubMed
Sutherland BL, Quarles BM, Galloway LF. 2018. Intercontinental dispersal and whole-genome duplication contribute to loss of self-incompatibility in a polyploid complex. American Journal of Botany 105: 1–8. PubMed
Trávníček P, Eliášová A, Suda J. 2010. The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia 82: 149–163.
Trávníček P, Jersáková J, Kubátová B, et al. 2012. Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Annals of Botany 110: 977–986. PubMed PMC
Trygg J, Wold S. 2002. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 16: 119–128.
Tutz G, Hennevogl W. 1996. Random effects in ordinal regression models. Computational Statistics & Data Analysis 22: 537–557.
Vít P, Lepší M, Lepší P. 2012. There is no diploid apomict among Czech Sorbus species: a biosystematic revision of S. eximia and discovery of S. barrandienica. Preslia 84: 71–96.
Wehrens R. 2011. Chemometrics with R. Berlin: Springer-Verlag.
Wei N, Tennessen JA, Liston A, Ashman TL. 2017. Present-day sympatry belies the evolutionary origin of a high-order polyploid. New Phytologist 216: 279–290. PubMed PMC
Weiss H, Dobeš C, Schneeweiss GM, Greimler J. 2002. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae). New Phytologist 156: 85–94.
Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM. 2013. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenetic and Genome Research 140: 137–150. PubMed PMC
Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753–1756. PubMed
Westerhuis JA, Hoefsloot HC, Smit S, et al. 2008. Assessment of PLSDA cross validation. Metabolomics 4: 81–89.
Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer.
Wilson J, Perry A, Shepherd JR, Durán-Castillo M, Jeffree CE, Cavers S. 2020. Invasion, isolation and evolution shape population genetic structure in Campanula rotundifolia. AoB Plants 12: 1–14. PubMed PMC
Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58: 109–130.
Wos G, Mořkovská J, Bohutínská M, et al. 2019. Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Annals of Botany 124: 255–268. PubMed PMC