Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers
Jazyk angličtina Země Čína Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33367262
PubMed Central
PMC7747968
DOI
10.1016/j.xplc.2020.100093
PII: S2590-3462(20)30117-6
Knihovny.cz E-zdroje
- Klíčová slova
- Erythranthe, Mimulus, allopolyploid, polyploidy, speciation, whole-genome duplication,
- MeSH
- duplikace genu * MeSH
- fenotyp MeSH
- fertilita genetika MeSH
- genom rostlinný * MeSH
- hybridizace genetická * MeSH
- Mimulus genetika MeSH
- molekulární evoluce * MeSH
- polyploidie * MeSH
- reprodukční izolace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hybridization is a creative evolutionary force, increasing genomic diversity and facilitating adaptation and even speciation. Hybrids often face significant challenges to establishment, including reduced fertility that arises from genomic incompatibilities between their parents. Whole-genome duplication in hybrids (allopolyploidy) can restore fertility, cause immediate phenotypic changes, and generate reproductive isolation. Yet the survival of polyploid lineages is uncertain, and few studies have compared the performance of recently formed allopolyploids and their parents under field conditions. Here, we use natural and synthetically produced hybrid and polyploid monkeyflowers (Mimulus spp.) to study how polyploidy contributes to the fertility, reproductive isolation, phenotype, and performance of hybrids in the field. We find that polyploidization restores fertility and that allopolyploids are reproductively isolated from their parents. The phenotype of allopolyploids displays the classic gigas effect of whole-genome duplication, in which plants have larger organs and are slower to flower. Field experiments indicate that survival of synthetic hybrids before and after polyploidization is intermediate between that of the parents, whereas natural hybrids have higher survival than all other taxa. We conclude that hybridization and polyploidy can act as sources of genomic novelty, but adaptive evolution is key in mediating the establishment of young allopolyploid lineages.
Department of Biological and Environmental Sciences University of Stirling Stirling FK9 4LA UK
Department of Botany Charles University 128 43 Prague 2 Czech Republic
Department of Plants and Crops Ghent University 9000 Ghent Belgium
Zobrazit více v PubMed
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. PubMed
Abbott R.J., Hegarty M.J., Hiscock S.J., Brennan A.C. Homoploid hybrid speciation in action. Taxon. 2010;59:1375–1386.
Abbott R.J., Lowe A.J. Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol. J. Linn. Soc. 2004;82:467–474.
Ainouche M.L., Baumel A., Salmon A., Yannic G. Hybridization, polyploidy and speciation in Spartina (Poaceae) New Phytol. 2003;161:165–172.
Ainouche M.L., Fortune P.M., Salmon A., Parisod C., Grandbastien M.A., Fukunaga K., Ricou M., Misset M.T. Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae) Biol. Inv. 2009;11:1159–1173.
Alix K., Gerard P.R., Schwarzacher T., Heslop-Harrison J.S.P. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann. Bot. 2017;120:183–194. PubMed PMC
Anderson E. Hybridization of the habitat. Evolution. 1948:1–9.
Arnold M.L. Oxford University Press; Oxford: 1997. Natural Hybridization and Evolution.
Arnold M.L., Hodges S.A. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 1995;10:67–71. PubMed
Arnold M.L., Kentner E.K., Johnston J.A., Cornman S., Bouck A.C. Natural hybridisation and fitness. Taxon. 2001;50:93–104.
Ashton P.A., Abbott R.J. Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis Rosser (Compositae) Heredity. 1992;68:25–32.
Baduel P., Bray S., Vallejo-Marin M., Kolář F., Yant L. The “polyploid hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018;6:117.
Bates D., Maechler M., Bolker B. 2014. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1-7.http://CRAN.R-project.org/package=lme4
Beardsley P.M., Schoenig S.E., Whittall J.B., Olmstead R.G. Patterns of evolution in western North American Mimulus (Phrymaceae) Am. J. Bot. 2004;91:474–489. PubMed
Benedict B.G., Modliszewski J.L., Sweigart A.L., Martin N.H., Ganders F.R., Willis J.H. Mimulus sookensis (Phrymaceae), a new allotetraploid species derived from Mimulus guttatus and Mimulus nasutus. Madroño. 2012;59:29–43.
Bomblies K., Higgins J.D., Yant L. Meiosis evolves: adaptation to external and internal environments. New Phytol. 2015;208:306–323. doi: 10.1111/nph.13499. PubMed DOI
Bomblies K., Madlung A. Polyploidy in the Arabidopsis genus. Chromosome Res. 2014;22:117–134. PubMed
Castro M., Castro S., Loureiro J. Production of synthetic tetraploids as a tool for polyploid research. Web Ecol. 2018;18:129–141.
Cooley A.M., Willis J.H. Genetic divergence causes parallel evolution of flower color in Chilean Mimulus. New Phytol. 2009;183:729–739. PubMed
Coughlan J.M., Wilson Brown M., Willis J.H. Patterns of hybrid seed inviability in the Mimulus guttatus sp. complex reveal a potential role of parental conflict in reproductive isolation. Curr. Biol. 2020;30:83–93 e85. PubMed PMC
Coyne J.A., Orr H.A. Sinauer Associates; Sunderland, MA: 2004. Speciation.
Da Re D., Olivares A.P., Smith W., Vallejo-Marín M. Global analysis of ecological niche conservation and niche shift in invasive and hybrid populations of monkeyflowers (Mimulus guttatus, M. luteus and M. × robertsii) Plant Ecol. Div. 2020 doi: 10.1080/17550874.2020.1750721. DOI
Dalrymple R.L., Buswell J.M., Moles A.T. Asexual plants change just as often and just as fast as do sexual plants when introduced to a new range. Oikos. 2015;124:196–205.
Dasmahapatra K.K., Walters J.R., Briscoe A.D., Davey J.W., Whibley A., Nadeau N.J., Zimin A.V., Hughes D.S., Ferguson L.C., Martin S.H. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012;487:94. PubMed PMC
De Storme N., Zamariola L., Mau M., Sharbel T.F., Geelen D. Volume-based pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants. Plant Reprod. 2013;26:65–81. PubMed
Dermen H. Colchicine polyploidy and technique. Biol. Rev. 1940;6:599–635.
Dobzhansky T.G. Columbia University Press; New York: 1937. Genetics and the Origin of Species.
Doležel J., Greilhuber J., Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233. PubMed
Doyle J.J., Coate J.E. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int. J. Plant Sci. 2019;180:1–52.
Edger P.P., Smith R., McKain M.R., Cooley A.M., Vallejo-Marin M., Yuan Y., Bewick A.J., Ji L., Platts A.E., Bowman M.J. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell. 2017;29:2150–2167. PubMed PMC
Elgvin T.O., Trier C.N., Torresen O.K., Hagen I.J., Lien S., Nederbragt A.J., Ravinet M., Jensen H., Saetre G.P. The genomic mosaicism of hybrid speciation. Sci. Adv. 2017;3:e1602996. PubMed PMC
Eng W.H., Ho W.S. Polyploidization using colchicine in horticultural plants: a review. Sci. Hort. 2019;246:604–617.
Goldschmidt R. Some aspects of evolution. Science. 1933;78:539–547. PubMed
Grant A.L. A monograph of the genus Mimulus. Ann. Miss. Bot. Gard. 1924;11:99–380.
Grant P.R., Grant B.R. Hybridization increases population variation during adaptive radiation. Proc. Natl. Acad. Sci. U S A. 2019;116:23216–23224. PubMed PMC
Grant V. The origin of a new species of Gilia in a hybridization experiment. Genetics. 1966;54:1189–1199. PubMed PMC
Grant V. Columbia University Press; New York: 1971. Plant Speciation.
Hegarty M., Coate J., Sherman-Broyles S., Abbott R., Hiscock S., Doyle J. Lessons from natural and artificial polyploids in higher plants. Cytogenet. Genome Res. 2013;140:204–225. PubMed
Hegarty M.J., Abbott R.J., Hiscock S.J. Allopolyploid speciation in action: the origins and evolution of Senecio cambrensis. In: Soltis P.S., Soltis D.E., editors. Polyploidy and Genome Evolution. Springer-Verlag; Berlin: 2012. pp. 245–270.
Hegarty M.J., Barker G.L., Wilson I.D., Abbott R.J., Edwards K.J., Hiscock S.J. Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr. Biol. 2006;16:1652–1659. PubMed
Hegarty M.J., Hiscock S.J. Hybrid speciation in plants: new insights from molecular studies. New Phytol. 2005;165:411–423. PubMed
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–363. PubMed
Husband B.C. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol. J. Linn. Soc. 2004;82:537–546.
Husband B.C., Ozimec B., Martin S.L., Pollock L. Mating consequences of polyploid evolution in flowering plants: Current trends and insights from synthetic polyploids. Int. J. Plant Sci. 2008;169:195–206.
Husband B.C., Sabara H.A. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae) New Phytol. 2004;161:703–713. PubMed
Husband B.C., Schemske D.W. Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. J. Ecol. 2000;88:689–701.
Jenczewski E. Evolution: he who grabs too much loses all. Curr. Biol. 2013;23:R961–R963. PubMed
Kelly J.K., Rasch A., Kalisz S. A method to estimate pollen viability from pollen size variation. Am. J. Bot. 2002;89:1021–1023. PubMed
Kenney A.M., Sweigart A.L. Reproductive isolation and introgression between sympatric Mimulus species. Mol. Ecol. 2016;25:2499–2517. PubMed
Kerwin R.E., Sweigart A.L. Rampant misexpression in a Mimulus (monkeyflower) introgression line caused by hybrid sterility, not regulatory divergence. Mol. Biol. Evol. 2020;37:2084–2098. PubMed PMC
Kinser T.J., Smith R.D., Lawrence A.H., Cooley A.M., Vallejo-Marín M., Smith G.C., Puzey J.R. Mechanisms driving endosperm-based hybrid incompatibilities: insights from hybrid monkeyflowers. bioRxiv. 2018 doi: 10.1101/461939. DOI
Kohler C., Mittelsten Scheid O., Erilova A. The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet. 2010;26:142–148. PubMed
Lafon-Placette C., Kohler C. Embryo and endosperm, partners in seed development. Curr. Opin. Plant Biol. 2014;17:64–69. PubMed
Leitch I.J., Hanson L., Lim K.Y., Kovarik A., Chase M.W., Clarkson J.J., Leitch A.R. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae) Ann. Bot. 2008;101:805–814. PubMed PMC
Levin D.A. Polyploidy and novelty in flowering plants. Am. Nat. 1983;122:1–25.
Levin D.A. Oxford University Press; Oxford: 2002. The Role of Chromosomal Change in Plant Evolution.
Liaw A., Wiener M. Classification and regression by randomForest. R. News. 2002;2:18–22.
Liston A., Wei N., Tennessen J.A., Li J., Dong M., Ashman T.L. Revisiting the origin of octoploid strawberry. Nat. Genet. 2020;52:2–4. PubMed
Loureiro J., Rodriguez E., Dolezel J., Santos C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 2007;100:875–888. PubMed PMC
Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013;110:99–104. PubMed PMC
Maherali H., Walden A.E., Husband B.C. Genome duplication and the evolution of physiological responses to water stress. New Phytol. 2009;184:721–731. PubMed
Mallet J. Hybrid speciation. Nature. 2007;446:279–283. PubMed
Mallet J., Besansky N., Hahn M.W. How reticulated are species? BioEssays. 2016;38:140–149. PubMed PMC
Mandakova T., Kovarik A., Zozomova-Lihova J., Shimizu-Inatsugi R., Shimizu K.K., Mummenhoff K., Marhold K., Lysak M.A. The more the merrier: recent hybridization and polyploidy in cardamine. Plant Cell. 2013;25:3280–3295. PubMed PMC
Marburger S., Monnahan P., Seear P.J., Martin S.H., Koch J., Paajanen P., Bohutinska M., Higgins J.D., Schmickl R., Yant L. Interspecific introgression mediates adaptation to whole genome duplication. Nat. Commun. 2019;10:5218. PubMed PMC
Martin N.H., Willis J.H. Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution. 2007;61:68–82. PubMed
Mason A.S., Pires J.C. Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet. 2015;31:5–10. PubMed
Mavrodiev E.V., Chester M., Suarez-Santiago V.N., Visger C.J., Rodriguez R., Susanna A., Baldini R.M., Soltis P.S., Soltis D.E. Multiple origins and chromosomal novelty in the allotetraploid Tragopogon castellanus (Asteraceae) New Phytol. 2015;206:1172–1183. PubMed
Medel R., Botto-Mahan C., Kalin-Arroyo M. Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower, Mimulus luteus. Ecology. 2003;84:1721–1732.
Mitchell N., Owens G.L., Hovick S.M., Rieseberg L.H., Whitney K.D. Hybridization speeds adaptive evolution in an eight-year field experiment. Sci. Rep. 2019;9:6746. PubMed PMC
Mukherjee B.B., Vickery R.K. Chromosome counts in the section Simiolus of the genus Mimulus (Scrophulariaceae). V. The chromosomal homologies of M. guttatus and its allied species and varieties. Madroño. 1962;16:141–172.
Munzbergova Z. Colchicine application significantly affects plant performance in the second generation of synthetic polyploids and its effects vary between populations. Ann. Bot. 2017;120:329–339. PubMed PMC
Nesom G.L. Taxonomy of Erythranthe Sect. Simiola (Phrymaceae) in the USA and Mexico. Phytoneuron. 2012;40:1–123.
Otto S.P. The evolutionary consequences of polyploidy. Cell. 2007;131:452–462. PubMed
Otto S.P., Whitton J. Polyploid incidence and evolution. Annu. Rev. Genet. 2000;34:401–437. PubMed
Pan J.J., Price J.S. Fitness and evolution in clonal plants: the impact of clonal growth. Evol. Ecol. 2001;15:583–600.
Pantoja P.O., Simón-Porcar V.I., Puzey J.R., Vallejo-Marín M. Genetic variation and clonal diversity in introduced populations of Mimulus guttatus assessed by genotyping at 62 single nucleotide polymorphism loci. Plant Ecol. Div. 2017;10:5–15.
Porturas L.D., Anneberg T.J., Curé A.E., Wang S., Althoff D.M., Segraves K.A. A meta-analysis of whole genome duplication and the effects on flowering traits in plants. Am. J. Bot. 2019;106:469–476. PubMed
Preston C.D., Pearman D.A., Dines T.D. Oxford University Press; Oxford: 2002. New Atlas of the British and Irish Flora.
Ramsey J. Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae) Heredity. 2007;98:143–150. PubMed
Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U S A. 2011;108:7096–7101. PubMed PMC
Ramsey J., Schemske D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann. Rev. Ecol. Syst. 1998;29:467–501.
Ramsey J., Schemske D.W. Neopolyploidy in flowering plants. Ann. Rev. Ecol. Syst. 2002;33:589–639.
Renny-Byfield S., Gong L., Gallagher J.P., Wendel J.F. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol. Biol. Evol. 2015;32:1063–1071. PubMed
Rieseberg L.H. The role of hybridization in evolution: old wine in new skins. Am. J. Bot. 1995;82:944–953.
Rieseberg L.H., Carney S.E. Plant hybridization. New Phytol. 1998;140:599–624. PubMed
Runemark A., Vallejo-Marin M., Meier J.I. Eukaryote hybrid genomes. Plos Genet. 2019;15:e1008404. PubMed PMC
Schwenk K., Brede N., Streit B. Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008;363:2805–2811. PubMed PMC
Seehausen O. Hybridization and adaptive radiation. Trends Ecol. Evol. 2004;19:198–207. PubMed
Silverside A.J. A new binomial in Mimulus. Watsonia. 1990;18:210–212.
Simón-Porcar V.I., Silva J.L., Meeus S., Higgins J.D., Vallejo-Marín M. Recent autopolyploidization in a naturalized population of Mimulus guttatus (Phrymaceae) Bot. J. Linn. Soc. 2017;185:189–207.
Snodgrass S.J., Jareczek J., Wendel J.F. An examination of nucleotypic effects in diploid and polyploid cotton. AoB Plants. 2017;9 doi: 10.1093/aobpla/plw082. PubMed DOI PMC
Soltis D.E., Soltis P.S. Allopolyploid speciation in Tragopogon - insights from chloroplast DNA. Am. J. Bot. 1989;76:1119–1124.
Soltis D.E., Visger C.J., Marchant D.B., Soltis P.S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 2016;103:1146–1166. PubMed
Soltis P.S., Liu X., Marchant D.B., Visger C.J., Soltis D.E. Polyploidy and novelty: Gottlieb's legacy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369 doi: 10.1098/rstb.2013.0351. PubMed DOI PMC
Soltis P.S., Marchant D.B., Van de Peer Y., Soltis D.E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015;35:119–125. PubMed
Soltis P.S., Soltis D.E. Multiple origins of the allotetraploid Tragopogon mirus (Compositae): rDNA Evidence. Syst. Bot. 1991;16:407–413.
Soltis P.S., Soltis D.E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 2009;60:561–588. PubMed
Sonnleitner M., Weis B., Flatscher R., Garcia P.E., Suda J., Krejcikova J., Schneeweiss G.M., Winkler M., Schonswetter P., Hulber K. Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae) PLoS One. 2013;8:e78959. PubMed PMC
Stace C.A. Cambridge University Press; Cambridge: 2010. New Flora of the British Isles.
Stace C.A., Crawley M.J. William Collins; London: 2015. Alien Plants.
Stace C.A., Preston C.D., Pearman D.A. Botanical Society of Britain and Ireland; Bristol: 2015. Hybrid Flora of the British Isles.
Stanton K., Valentin C.M., Wijnen M.E., Stutstman S., Palacios J.J., Cooley A.M. Absence of postmating barriers between a selfing versus outcrossing Chilean Mimulus species pair. Am. J. Bot. 2016;103:1030–1040. PubMed
Stebbins G.L. The role of hybridization in evolution. Proc. Am. Phil. Soc. 1959;103:231–251.
Stebbins G.L. Edward Arnold; London: 1971. Chromosomal Evolution in Higher Plants.
Stebbins G.L. Polyploidy, hybridization, and the invasion of new habitats. Ann. Miss. Bot. Gard. 1985;72:824–832.
Suarez-Gonzalez A., Lexer C., Cronk Q.C.B. Adaptive introgression: a plant perspective. Biol. Lett. 2018;14:20170688. PubMed PMC
Sutherland B.L., Galloway L.F. Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytol. 2017;213:404–412. PubMed
Sweigart A.L., Fishman L., Willis J.H. A simple genetic incompatibility causes hybrid male sterility in Mimulus. Genetics. 2006;172:2465–2479. PubMed PMC
Tate J.A., Symonds V.V., Doust A.N., Buggs R.J., Mavrodiev E., Majure L.C., Soltis P.S., Soltis D.E. Synthetic polyploids of Tragopogon miscellus and T. mirus (Asteraceae): 60 Years after Ownbey's discovery. Am. J. Bot. 2009;96:979–988. PubMed
Taylor S.A., Larson E.L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 2019;3:170–177. PubMed
Temsch E.M., Greilhuber J., Krisai R. Genome size in liverworts. Preslia. 2010;82:63–80.
Vallejo-Marin M. Mimulus peregrinus (Phrymaceae): a new British allopolyploid species. PhytoKeys. 2012;14:1–14. PubMed PMC
Vallejo-Marin M., Buggs R.J.A., Cooley A.M., Puzey J.R. Speciation by genome duplication: repeated origins and genomic composition of the recently formed allopolyploid species Mimulus peregrinus. Evolution. 2015;69:1487–1500. PubMed PMC
Vallejo-Marin M., Cooley A.M., Lee M.Y., Folmer M., McKain M.R., Puzey J.R. Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor. Am. J. Bot. 2016;103:1272–1288. PubMed
Vallejo-Marin M., Hiscock S.J. Hybridization and hybrid speciation under global change. New Phytol. 2016;211:1170–1187. PubMed
Vallejo-Marin M., Lye G.C. Hybridisation and genetic diversity in introduced Mimulus (Phrymaceae) Heredity. 2013;110:111–122. PubMed PMC
Vallejo-Marín M., Quenu M., Ritchie S., Meeus S. Partial interfertility between independently originated populations of the neo-allopolyploid Mimulus peregrinus. Plant Syst. Evol. 2017;303:1081–1092.
Van de Peer Y., Mizrachi E., Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017;18:411–424. PubMed
Van Drunen W.E., Husband B.C. Immediate versus evolutionary consequences of polyploidy on clonal reproduction in an autopolyploid plant. Ann. Bot. 2018;122:195–205. PubMed PMC
Vickery R.K. Barriers to gene exchange within Mimulus guttatus (Scrophulariaceae) Evolution. 1959;13:300–310.
Vickery R.K. Barriers to gene exchange between members of Mimulus guttatus complex ( Scrophulariaceae ) Evolution. 1964;18:52.
Vickery R.K. Springer; New York: 1978. Case Studies in the Evolution of Species Complexes in Mimulus.
Vickery R.K. Speciation by aneuploidy and polyploidy in Mimulus (Scrophulariaceae) Great Basin Nat. 1995;55:174–176.
Vickery R.K., Anderson D.G. Experimental hybridizations in the genus Mimulus. VI. Section Erythranthe. Proc. Utah Acad. Sci. 1967;44:321–333.
Vickery R.K., Crook K., Lindsay D., Mia M., Tai W. Chromosome counts in section Simiolus of the genus Mimulus (Scrophulariaceae). VII. New numbers for M. guttatus, M. cupreus, and M. tilingii. Madroño. 1968;19:211–218.
Vickery R.K., Mia M. Experimental hybridizations in the genus Mimulus (Scrophulariaceae). III. Utah Acad. Proc. 1967;43:105–114.
Vickery R.K., Mukherjee B.B. Experimental hybridizations in the genus Mimulus. I. Proc. Utah Acad. Sci. 1966;43:83–113.
Wei N., Du Z., Liston A., Ashman T.L. Genome duplication effects on functional traits and fitness are genetic context and species dependent: studies of synthetic polyploid Fragaria. Am. J. Bot. 2020;107:262–272. PubMed
Wyatt R., Odrzykoski I.J., Stoneburner A., Bass H.W., Galau G.A. Allopolyploidy in bryophytes: multiple origins of Plagiomnium medium. Proc. Natl. Acad. Sci. U S A. 1988;85:5601–5604. PubMed PMC