The more the merrier: recent hybridization and polyploidy in cardamine
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24082009
PubMed Central
PMC3809532
DOI
10.1105/tpc.113.114405
PII: tpc.113.114405
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- Cardamine genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- genová dávka MeSH
- hybridizace genetická MeSH
- hybridizace in situ MeSH
- molekulární sekvence - údaje MeSH
- nestabilita genomu * MeSH
- polyploidie MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- triploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This article describes the use of cytogenomic and molecular approaches to explore the origin and evolution of Cardamine schulzii, a textbook example of a recent allopolyploid, in its ~110-year history of human-induced hybridization and allopolyploidy in the Swiss Alps. Triploids are typically viewed as bridges between diploids and tetraploids but rarely as parental genomes of high-level hybrids and polyploids. The genome of the triploid semifertile hybrid Cardamine × insueta (2n = 24, RRA) was shown to combine the parental genomes of two diploid (2n = 2x = 16) species, Cardamine amara (AA) and Cardamine rivularis (RR). These parental genomes have remained structurally stable within the triploid genome over the >100 years since its origin. Furthermore, we provide compelling evidence that the alleged recent polyploid C. schulzii is not an autohexaploid derivative of C. × insueta. Instead, at least two hybridization events involving C. × insueta and the hypotetraploid Cardamine pratensis (PPPP, 2n = 4x-2 = 30) have resulted in the origin of the trigenomic hypopentaploid (2n = 5x-2 = 38, PPRRA) and hypohexaploid (2n = 6x-2 = 46, PPPPRA). These data show that the semifertile triploid hybrid can promote a merger of three different genomes and demonstrate how important it is to reexamine the routinely repeated textbook examples using modern techniques.
Zobrazit více v PubMed
Abbott R.J., Lowe A.J. (2004). Origins, establishment and evolution of new polyploidy species: Senecio cambrensis and S. eboracensis in the British Isles. Biol. J. Linn. Soc. Lond. 82: 467–474
Abbott, R.J., and Rieseberg, L.H. (2012). Hybrid speciation. In Encyclopedia of Life Sciences (eLS, online). (Chichester, UK: John Wiley & Sons). doi: 10.1002/9780470015902.a0001753.pub2 DOI
Ainouche M.L., Baumel A., Salmon A. (2004). Spartina anglica C. E. Hubbard: A natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol. J. Linn. Soc. Lond. 82: 475–484
Arrigo N., Barker M.S. (2012). Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15: 140–146 PubMed
Benson G. (1999). Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27: 573–580 PubMed PMC
Burton T.L., Husband B.C. (2001). Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): Consequences for tetraploid establishment. Heredity (Edinb) 87: 573–582 PubMed
Canales C., Barkoulas M., Galinha C., Tsiantis M. (2010). Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development. J. Plant Res. 123: 25–33 PubMed
Chester M., Gallagher J.P., Symonds V.V., Cruz da Silva A.V., Mavrodiev E.V., Leitch A.R., Soltis P.S., Soltis D.E. (2012). Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. USA 109: 1176–1181 PubMed PMC
Clement M., Posada D., Crandall K.A. (2000). TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–1659 PubMed
Comai L. (2005). The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6: 836–846 PubMed
Considine M.J., Wan Y., D’Antuono M.F., Zhou Q., Han M., Gao H., Wang M. (2012). Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus. PLoS ONE 7: e29449. PubMed PMC
Cozzolino S., Cafasso D., Pellegrino G., Musacchio A., Widmer A. (2007). Genetic variation in time and space: the use of herbarium specimens to reconstruct patterns of genetic variation in the endangered orchid Anacamptis palustris. Conserv. Genet. 8: 629–639
Cusimano N., Sousa A., Renner S.S. (2012). Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by 'x'. Ann. Bot. (Lond.) 109: 681–692 PubMed PMC
Darriba D., Taboada G.L., Doallo R., Posada D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9: 772. PubMed PMC
Dellaporta S.L., Wood J., Hicks J.B. (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21
Doyle J.J., Flagel L.E., Paterson A.H., Rapp R.A., Soltis D.E., Soltis P.S., Wendel J.F. (2008). Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet. 42: 443–461 PubMed
Franzke A., Lysak M.A., Al-Shehbaz I.A., Koch M.A., Mummenhoff K. (2011). Cabbage family affairs: The evolutionary history of Brassicaceae. Trends Plant Sci. 16: 108–116 PubMed
Franzke A., Mummenhoff K. (1999). Recent hybrid speciation in Cardamine (Brassicaceae). Conversion of nuclear ribosomal ITS sequences in statu nascendi. Theor. Appl. Genet. 98: 831–834
Grant, V. (1981). Plant Speciation, 2nd ed. (New York: Columbia University Press).
Hegarty, M.J., Abott, R.J., and Hiscock, S.J. (2012). Allopolyploid speciation in action: The origins and evolution of Senecio cambrensis In Polyploidy and Genome Evolution, P.S. Soltis and D.E. Soltis, eds (Berlin, Heidelberg, Germany: Springer-Verlag), pp. 245–270.
Hegarty M.J., Hiscock S.J. (2008). Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18: R435–R444 PubMed
Hemleben V., Kovarik A., Torres-Ruiz R.A., Volkov R.A., Beridze T. (2007). Plant highly repeated satellite DNA: Molecular evolution, distribution, and use for identification of hybrids. Syst. Biodivers. 5: 277–289
Henry I.M., Dilkes B.P., Young K., Watson B., Wu H., Comai L. (2005). Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170: 1979–1988 PubMed PMC
Husband B.C. (2004). The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol. J. Linn. Soc. Lond. 82: 537–546
International Brachypodium Initiative (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763–768 PubMed
International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature 436: 793–800 PubMed
Jiao Y., et al. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100 PubMed
Johannessen M.M., Andersen B.A., Damgaard C., Jørgensen R.B. (2005). Maternal inheritance of chloroplasts between Brassica rapa and F1-hybrids demonstrated by cpDNA markers specific to oilseed rape and B. rapa. Mol. Breed. 16: 271–278
Kantama L., Sharbel T.F., Schranz M.E., Mitchell-Olds T., de Vries S., de Jong H. (2007). Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc. Natl. Acad. Sci. USA 104: 14026–14031 PubMed PMC
Koch M.A., Weisshaar B., Kroymann J., Haubold B., Mitchell-Olds T. (2001). Comparative genomics and regulatory evolution: Conservation and function of the Chs and Apetala3 promoters. Mol. Biol. Evol. 18: 1882–1891 PubMed
Kovarik A., Pires J.C., Leitch A.R., Lim K.Y., Sherwood A.M., Matyasek R., Rocca J., Soltis D.E., Soltis P.S. (2005). Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169: 931–944 PubMed PMC
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. (2009). Circos: An information aesthetic for comparative genomics. Genome Res. 19: 1639–1645 PubMed PMC
Kučera J., Valko I., Marhold K. (2005). On-line database of the chromosome numbers of the genus Cardamine (Brassicaceae). Biologia 60: 473–476
Lawrence W.J.C. (1931). The chromosome constitution of Cardamine pratensis and Verbascum phoeniceum. Genetica 13: 183–208
Lihová, J., and Marhold, K. (2006). Phylogenetic and diversity patterns in Cardamine (Brassicaceae) – A genus with conspicuous polyploid and reticulate evolution. In Plant Genome: Biodiversity and Evolution: Phanerogams (Angiosperm -Dicotyledons), Vol. 1C, A.K. Sharma and A. Sharma, eds (Enfield, NH: Science Publishers), pp. 149–186
Lihová J., Shimizu K.K., Marhold K. (2006). Allopolyploid origin of Cardamine asarifolia (Brassicaceae): Incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Mol. Phylogenet. Evol. 39: 759–786 PubMed
Lövkvist B. (1956). The Cardamine pratensis complex. Outline of its cytogenetics and taxonomy. Symb. Bot. Ups. 14: 1–131
Luo M.C., et al. (2009). Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. USA 106: 15780–15785 PubMed PMC
Lysak M.A., Berr A., Pecinka A., Schmidt R., McBreen K., Schubert I. (2006). Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA 103: 5224–5229 PubMed PMC
Lysak M.A., Mandáková T. (2013). Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol. Biol. 990: 13–24 PubMed
Mandáková T., Heenan P.B., Lysak M.A. (2010a). Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol. Biol. 10: 367. PubMed PMC
Mandáková T., Joly S., Krzywinski M., Mummenhoff K., Lysak M.A. (2010b). Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277–2290 PubMed PMC
Marhold, K. (1995). Cardamine rivularis auct. non Schur in the Eastern Alps. Carinthia II 53 (Sonderheft): 101–102.
Mason A.S., Nelson M.N., Yan G., Cowling W.A. (2011). Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol. 11: 103. PubMed PMC
Matyášek R., Fulneček J., Leitch A.R., Kovařík A. (2011). Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. New Phytol. 192: 747–759 PubMed
Murat F., Xu J.H., Tannier E., Abrouk M., Guilhot N., Pont C., Messing J., Salse J. (2010). Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 20: 1545–1557 PubMed PMC
Neuffer B., Jahncke P. (1997). RAPD analyses of recent hybrid speciation events in Cardamine (Brassicaceae). Folia Geobot. Phytotaxon. 32: 57–67
Neuffer, B., Mönninghoff, U., and Hurka, H. (2009). Arealausbreitung entlang von Höhengradienten – Wiesenschaumkraut am Urnerboden. In Biologische Invasionen und Phytodiversität. Auswirkungen und Handlungsoptionen, W. Bleeker and H. Hurka, eds (Osnabrück, Germany: Universität Osnabrück), pp. 20–21.
Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11: 378. PubMed PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29: 792–793 PubMed
Ownbey M. (1950). Natural hybridization and amphiploidy in the genus Tragopogon. Am. J. Bot. 37: 487–499
Ramsey J., Schemske D.W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29: 467–501
Renny-Byfield S., Ainouche M., Leitch I.J., Lim K.Y., Le Comber S.C., Leitch A.R. (2010). Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann. Bot. (Lond.) 105: 527–533 PubMed PMC
Schranz M.E., Lysak M.A., Mitchell-Olds T. (2006). The ABC’s of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends Plant Sci. 11: 535–542 PubMed
Shaw J., Lickey E.B., Beck J.T., Farmer S.B., Liu W., Miller J., Siripun K.C., Winder C.T., Schilling E.E., Small R.L. (2005). The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92: 142–166 PubMed
Soltis D.E., Soltis P.S., Pires J.C., Kovarik A., Tate J., Mavrodiev E. (2004). Recent and recurrent polyploidy in Tragopogon (Asteraceae): Cytogenetic, genomic and genetic comparisons. Biol. J. Linn. Soc. Lond. 82: 485–501
Soltis D.E., Albert V.A., Leebens-Mack J., Bell C.D., Paterson A.H., Zheng C., Sankoff D., Depamphilis C.W., Wall P.K., Soltis P.S. (2009). Polyploidy and angiosperm diversification. Am. J. Bot. 96: 336–348 PubMed
Soltis P.S., Soltis D.E. (2009). The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60: 561–588 PubMed
Sonnhammer E.L., Durbin R. (1995). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167: GC1–GC10 PubMed
Staats M., Erkens R.H.J., van de Vossenberg B., Wieringa J.J., Ken Kraaijeveld K., Stielow B., Geml J., Richardson J.E., Bakker F.T. (2013). Genomic treasure troves: Complete genome sequencing of herbarium and insect museum specimens. PLoS ONE 8: e69189. PubMed PMC
Suda J., Trávníček P. (2006). Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—New prospects for plant research. Cytometry A 69: 273–280 PubMed
Španiel S., Marhold K., Passalacqua N.G., Zozomová-Lihová J. (2011). Intricate variation patterns in the diploid-polyploid complex of Alyssum montanum-A. repens (Brassicaceae) in the Apennine Peninsula: Evidence for long-term persistence and diversification. Am. J. Bot. 98: 1887–1904 PubMed
Urbanska K.M., Hurka H., Landolt E., Neuffer B., Mummenhoff K. (1997). Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, central Switzerland: Biosystematic and molecular evidence. Plant Syst. Evol. 204: 233–256
Urbanska, K.M., and Landolt, E. (1999). Patterns and processes of man-influenced hybridisation in Cardamine L. In Plant Evolution in Man-made Habitats, L.W.D. van Raamsdonk and H.C.M. den Nijs, eds (Amsterdam: Hugo de Vries Laboratory), pp. 29–47.
Urbanska-Worytkiewicz K. (1977a). Reproduction in natural triploid hybrids (2n = 24) between Cardamine rivularis Schur and C. amara L. Ber. Geobot. Inst. ETH. Stiftung Rübel 44: 42–85
Urbanska-Worytkiewicz K. (1977b). An autoallohexaploid in Cardamine L., new to the Swiss flora. Ber. Geobot. Inst. ETH. Stiftung Rübel 44: 86–103
Urbanska-Worytkiewicz K.M. (1978). Ségrégation polarisée chez les hybrides naturels triploïdes (2n = 24) entre Cardamine rivularis Schur (2n = 16) et C. amara L. (2n = 16). Bull. Soc. Bot. Franc. Actual Bot. 1–2: 91–93
Urbanska-Worytkiewicz, K.M. (1980). Reproductive strategies in a hybridogenous population of Cardamine L. Acta Oecol., Oecol. Pl. 1: 137–150.
Urbanska-Worytkiewicz K., Landolt E. (1972). Natürliche Bastarde zwischen Cardamine amara L. und C. rivularis Schur aus den Schweizer Alpen. Ber. Geobot. Inst. ETH. Stiftung Rübel 41: 88–101
Urbanska-Worytkiewicz K., Landolt E. (1974). Hybridation naturelle entre Cardamine rivularis Schur et C. amara L., ses aspects cytologiques et écologiques. Act. Soc. Helv. Sci. Nat. 1974: 89–90
Vallejo-Marín M. (2012). Mimulus peregrinus (Phrymaceae): A new British allopolyploid species. PhytoKeys 14: 1–14 PubMed PMC
Wood T.E., Takebayashi N., Barker M.S., Mayrose I., Greenspoon P.B., Rieseberg L.H. (2009). The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 106: 13875–13879 PubMed PMC
Xiong Z., Gaeta R.T., Pires J.C. (2011). Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. USA 108: 7908–7913 PubMed PMC
Zimmerli S. (1986). Einfluss der Bewirtschaftung auf die Entstehung und Struktur der Cardamine-Populationen auf dem Urnerboden. Veröff. Geobot. Inst. ETH. Stiftung Rübel 87: 141–154
Zwickl, D.J. (2006). Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD dissertation (Austin, TX: University of Texas).
Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers
Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning
Healthy Roots and Leaves: Comparative Genome Structure of Horseradish and Watercress
Monophyletic Origin and Evolution of the Largest Crucifer Genomes
Chromatin features of plant telomeric sequences at terminal vs. internal positions
GENBANK
JQ412178, JQ412179, JQ412180, KC902641, KC902642, KC902643, KC902644, KC902645, KC902646, KC902647, KC902648, KC902649, KC902650, KC902651, KC902652, KC902653, KC902654, KC902655, KC902656, KC902657, KC902658, KC902659, KC902660, KC902661, KC902662, KC902663, KC902664, KC902665, KC902666, KC902667, KC902668, KC902669, KC902670, KC902671, KC902672, KC902673, KC902674, KC902675, KC902676, KC902677, KC902678, KC902679, KC902680, KC902681, KC902682, KC902683, KC902684, KC902685, KC902686, KC902687, KC902688, KC902689, KC902690, KC902691, KC902692, KC902693, KC902694, KC902695, KC902696, KC902697, KC902698, KC902699, KC902700, KC902701, KC902702, KC902703, KC902704, KC902705, KC902706, KC902707, KC902708, KC902709, KC902710, KC902711, KC902712, KC902713, KC902714, KC902715, KC902716, KC902717, KC902718, KC902719, KC902720, KC902721, KC902722, KC902723, KC902724, KC902725, KC902726, KC902727, KC902728, KC902729, KC902730, KC902731, KC902732, KC902733, KC902734, KC902735, KC902736, KC902737, KC902738, KC902739, KC902740, KC902741, KC902742, KC902743, KC902744, KC902745, KC902746, KC902747, KC902748, KC902749