Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae)

. 2018 Nov 01 ; 67 (6) : 1010-1024.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29562303

Grantová podpora
P 25131 Austrian Science Fund FWF - Austria

Allopolyploidy has played an important role in the evolution of the flowering plants. Genome mergers are often accompanied by significant and rapid alterations of genome size and structure via chromosomal rearrangements and altered dynamics of tandem and dispersed repetitive DNA families. Recent developments in sequencing technologies and bioinformatic methods allow for a comprehensive investigation of the repetitive component of plant genomes. Interpretation of evolutionary dynamics following allopolyploidization requires both the knowledge of parentage and the age of origin of an allopolyploid. Whereas parentage is typically inferred from cytogenetic and phylogenetic data, age inference is hampered by the reticulate nature of the phylogenetic relationships. Treating subgenomes of allopolyploids as if they belonged to different species (i.e., no recombination among subgenomes) and applying cross-bracing (i.e., putting a constraint on the age difference of nodes pertaining to the same event), we can infer the age of allopolyploids within the framework of the multispecies coalescent within BEAST2. Together with a comprehensive characterization of the repetitive DNA fraction using the RepeatExplorer pipeline, we apply the dating approach in a group of closely related allopolyploids and their progenitor species in the plant genus Melampodium (Asteraceae). We dated the origin of both the allotetraploid, Melampodium strigosum, and its two allohexaploid derivatives, Melampodium pringlei and Melampodium sericeum, which share both parentage and the direction of the cross, to the Pleistocene ($<$1.4 Ma). Thus, Pleistocene climatic fluctuations may have triggered formation of allopolyploids possibly in short intervals, contributing to difficulties in inferring the precise temporal order of allopolyploid species divergence of M. sericeum and M. pringlei. The relatively recent origin of the allopolyploids likely played a role in the near-absence of major changes in the repetitive fraction of the polyploids' genomes. The repetitive elements most affected by the postpolyploidization changes represented retrotransposons of the Ty1-copia lineage Maximus and, to a lesser extent, also Athila elements of Ty3-gypsy family.

Zobrazit více v PubMed

Ayres D.L.,, Darling A.,, Zwickl D.J.,, Beerli P.,, Holder M.T.,, Lewis P.O.,, Huelsenbeck J.P.,, Ronquist F.,, Swofford D.L.,, Cummings M.P.,, Rambaut A.,, Suchard M.A. 2012. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61:170–173. PubMed PMC

Baele G.,, Lemey P.,, Bedford T.,, Rambaut A.,, Suchard M.A.,, Alekseyenko A.V. 2012. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29:2157–2167. PubMed PMC

Baele G.,, Li W.L.S.,, Drummond A.J.,, Suchard M.A.,, Lemey P. 2013. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30:239–243. PubMed PMC

Barker M.S.,, Baute G.J.,, Liu S.L., 2012. Duplications and turnover in plant genomes. In: Wendel J.,, Greilhuber J.,, Dolezel J.,, Leitch I.J.Plant genome diversity, vol. 1 Vienna, Austria: Springer, p. 155–169.

Bennetzen J.L.,, Wang H. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65:505–530. PubMed

Bertrand Y.J.,, Scheen A.-C.,, Marcussen T.,, Pfeil B.E.,, de Sousa F.,, Oxelman B. 2015. Assignment of homoeologs to parental genomes in allopolyploids for species tree inference, with an example from Fumaria (Papaveraceae). Syst. Biol. 64:448–471. PubMed

Blöch C.,, Weiss-Schneeweiss H.,, Schneeweiss G.M.,, Barfuss M.H.,, Rebernig C.A.,, Villaseñor J.L.,, Stuessy T.F. 2009. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Mol. Phylogenet. Evol. 53:220–233. PubMed PMC

Brochmann C.,, Brysting A.K.,, Alsos I.G.,, Borgen L.,, Grundt H.H.,, Scheen A.C., Elven R. 2004. Polyploidy in arctic plants. Biol. J. Linnean Soc. 82:521–536.

Chester M.,, Gallagher J.P.,, Symonds V.V.,, da Silva A.V.C.,, Mavrodiev E.V.,, Leitch A.R.,, Soltis P.S.,, Soltis D.E. 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. USA 109:1176–1181. PubMed PMC

Chester M.,, Riley R.,, Soltis P.,, Soltis D. 2015. Patterns of chromosomal variation in natural populations of the neoallotetraploid Tragopogon mirus (Asteraceae). Heredity 114:309–317. PubMed PMC

Comai L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6:836–846. PubMed

Dodsworth S.,, Leitch A.R.,, Leitch I.J. 2015. Genome size diversity in angiosperms and its influence on gene space. Curr. Opin. Genet. Dev. 35:73–78. PubMed

Dodsworth S.,, Jang T.S.,, Struebig M.,, Chase M.W.,, Weiss-Schneeweiss H.,, Leitch A.R. 2017. Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). Plant Syst. Evol. 303:1013–1020. PubMed PMC

Doyle J.,, Doyle J. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

Doyle J.J.,, Egan A.N. 2010. Dating the origins of polyploidy events. New Phytol. 186:73–85. PubMed

Drummond A.J.,, Ho S.Y.,, Phillips M.J.,, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:699. PubMed PMC

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. PubMed PMC

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368–376. PubMed

Garrido-Ramos M.A. 2015. Satellite DNA in plants: more than just rubbish. Cytogenet. Genome Res. 146:153–170. PubMed

Grant V. 1981. Plant speciation. New York, USA: Columbia University Press.

Hawkins J.S.,, Proulx S.R.,, Rapp R.A.,, Wendel, J.F. 2009. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc. Natl. Acad. Sci. USA 106:17811–17816. PubMed PMC

Heled J.,, Drummond A.J. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27:570–580. PubMed PMC

Hollister J.D. 2015. Polyploidy: adaptation to the genomic environment. New Phytol. 205:1034–1039. PubMed

Huang C.-H.,, Zhang C.,, Liu M.,, Hu Y.,, Gao T.,, Qi J.,, Ma H. 2016. Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33:2820–2835. PubMed PMC

Jang T.-S.,, Weiss-Schneeweiss H. 2015. Formamide-free genomic in situ hybridization allows unambiguous discrimination of highly similar parental genomes in diploid hybrids and allopolyploids. Cytogenet. Genome Res. 146:325–331. PubMed

Jiao Y.N.,, Wickett N.J.,, Ayyampalayam S.,, Chanderbali A.S.,, Landherr L.,, Ralph P.E.,, Tomsho P.E.,, Hu Y.,, Liang H.Y.,, Soltis P.S.,, Soltis D.E.,, Clifton S.W.,, Schlarbaum S.E.,, Schuster S.C.,, Ma H.,, Leebens-Mack J.,, dePamphilis C.W. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. PubMed

Jones G. 2017. Bayesian phylogenetic analysis for diploid and allotetraploid species networks. bioRxiv, 10.1101/129361. DOI

Jones G.,, Sagitov S.,, Oxelman B. 2013. Statistical inference of allopolyploid species networks in the presence of incomplete lineage sorting. Syst. Biol. 62:467–478. PubMed

Kay K.M.,, Whittall J.B.,, Hodges S.A. 2006. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol. Biol. 6:36. PubMed PMC

Kellogg E.A. 2016. Has the connection between polyploidy and diversification actually been tested? Curr. Opin. Plant Biol. 30:25–32. PubMed

Kelly L.J.,, Renny-Byfield S.,, Pellicer J.,, Macas J.,, Novák P.,, Neumann P.,, Lysak M.A.,, Day P.D.,, Berger M.,, Fay M.F.,, Nichols R.A.,, Leitch A.R.,, Leitch I.J. 2015. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol. 208:596–607. PubMed PMC

Kim K.-J.,, Choi K.-S.,, Jansen R.K. 2005. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol. Biol. Evol. 22:1783–1792. PubMed

Koh J.,, Soltis P.S.,, Soltis D.E. 2010. Homoeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 11:97. PubMed PMC

Kovařík A.,, Dadejova M.,, Lim Y.K.,, Chase M.W.,, Clarkson J.J.,, Knapp S.,, Leitch A.R. 2008. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann. Bot. 101:815–823. PubMed PMC

Kumar S.,, Stecher G.,, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874. PubMed PMC

Leitch I.,, Bennett M. 2004. Genome downsizing in polyploid plants. Biol. J. Linnean Soc. 82:651–663.

Lim K.Y.,, Kovařík A.,, Matyasek R.,, Chase M.W.,, Clarkson J.J.,, Grandbastien M.,, Leitch A.R. 2007. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 175:756–763. PubMed

Lysak M.A.,, Koch M.A.,, Beaulieu J.M.,, Meister A.,, Leitch I.J. 2009. The dynamic ups and downs of genome size evolution in Brassicaceae. Mol. Biol. Evol. 26:85-98. PubMed

Ma X.-F.,, Gustafson J. 2005. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet. Genome Res. 109:236–249. PubMed

Macas J.,, Meszaros T.,, Nouzova M. 2002. PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35. PubMed

Macas J.,, Novák P.,, Pellicer J.,, Čížková J.,, Koblížková A.,, Neumann P.,, Fuková I.,, Doležel J.,, Kelly L.J.,, Leitch I.J. 2015. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One 10:e0143424. PubMed PMC

Madlung A. 2013. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104. PubMed PMC

Mandáková T.,, Kovařík A.,, Zozomová-Lihová J.,, Shimizu-Inatsugi R.,, Shimizu K.K.,, Mummenhoff K.,, Marhold K.,, Lysak M.A. 2013. The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25:3280–3295. PubMed PMC

Mandáková T.,, Marhold K.,, Lysak M.A. 2014. The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol. 201:982–992. PubMed

Marcussen T.,, Jakobsen K.S.,, Danihelka J.,, Ballard H.E.,, Blaxland K.,, Brysting A.K.,, Oxelman B. 2012. Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst. Biol. 61:107–126. PubMed PMC

Marcussen T.,, Heier L.,, Brysting A.K.,, Oxelman B.,, Jakobsen K.S. 2015. From gene trees to a dated allopolyploid network: insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64:84–101. PubMed PMC

Mayrose I.,, Zhan S.H.,, Rothfels C.J.,, Magnuson-Ford K.,, Barker M.S.,, Rieseberg L.H.,, Otto S.P. 2011. Recently formed polyploid plants diversify at lower rates. Science 333:1257–1257. PubMed

McCann J.,, Schneeweiss G.M.,, Stuessy T.F.,, Villaseñor J.L.,, Weiss-Schneeweiss H. 2016. The impact of reconstruction methods, phylogenetic uncertainty and branch lengths on inference of chromosome number evolution in American daisies (Melampodium, Asteraceae). PLoS One 11:e0162299. PubMed PMC

McCann J. 2017. Genome evolution of diploids and polyploids in genus Melampodium (Asteraceae) [Ph.D. Thesis]. University of Vienna. p. 39–66.

Metcalfe S.E.,, O’Hara S.L.,, Caballero M.,, Davies S.J. 2000. Records of Late Pleistocene–Holocene climatic change in Mexico—a review. Quat. Sci. Rev. 19:699–721.

Nguyen L.-T.,, Schmidt H.A.,, von Haeseler A.,, Minh B.Q. 2015. IQ-Tree: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268–274. PubMed PMC

Novák P.,, Neumann P.,, Macas J. 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. PubMed PMC

Novák P.,, Neumann P.,, Pech J.,, Steinhaisl J.,, Macas J. 2013. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793. PubMed

Ogilvie H.A.,, Drummond A.J. 2017. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34:2101–2114. PubMed PMC

Parisod C.,, Senerchia N. 2012. Responses of transposable elements to polyploidy. In: Grandbastien M.A.,, Casacuberta J.M., editors. Plant transposable elements. Vienna, Austria: Springer; pp. 147–168.

Renny-Byfield S.,, Chester M.,, Kovařík A.,, Le Comber S.C.,, Grandbastien M.-A.,, Deloger M.,, Nichols R.,, Macas J.,, Novák P.,, Chase M.W.,, Leitch A.W. 2011. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol. Biol. Evol. 28:2843–2854. PubMed

Renny-Byfield S.,, Chester M.,, Nichols R.A.,, Macas J.,, Novák P.,, Leitch A.R. 2012. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One 7:e36963. PubMed PMC

Renny-Byfield S.,, Kovařík A.,, Kelly L.J.,, Macas J.,, Novák P.,, Chase M.W.,, Nichols R.A.,, Pancholi M.R.,, Grandbastien M.-A.,, Leitch A.R. 2013. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low-and high-copy sequences. Plant J. 74:829–839. PubMed

Rieseberg L.H.,, Willis J.H. 2007. Plant speciation. Science 317:910–914. PubMed PMC

Shih P.M.,, Matzke N.J. 2013. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc. Natl. Acad. Sci. USA 110:12355–12360. PubMed PMC

Soltis D.E.,, Buggs R.J.,, Doyle J.J.,, Soltis P.S. 2010. What we still don’t know about polyploidy. Taxon 59:1387–1403.

Stuessy T.F.,, Blöch C.,, Villaseñor J.L.,, Rebernig C.A.,, Weiss-Schneeweiss H. 2011. Phylogenetic analyses of DNA sequences with chromosomal and morphological data confirm and refine sectional and series classification within Melampodium (Asteraceae, Millerieae). Taxon 60:436–449.

Than C.,, Ruths D.,, Nakhleh L. 2008. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9:1. PubMed PMC

Torices R. 2010. Adding time-calibrated branch lengths to the Asteraceae supertree. J. Syst. Evol. 48:271–278.

Weiss-Schneeweiss H.,, Blöch C.,, Turner B.,, Villaseñor J.L.,, Stuessy T.F.,, Schneeweiss G.M. 2012. The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae). Evolution 66:211–228. PubMed

Weiss-Schneeweiss H.,, Emadzade K.,, Jang T.-S.,, Schneeweiss G. 2013. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 140:137–150. PubMed PMC

Wendel J.F. 2015. The wondrous cycles of polyploidy in plants. Am. J. Bot. 102:1753–1756. PubMed

Wolfe K.H. 2001. Yesterday’s polyploids and the mystery of diploidization. Nat. Rev. Genet. 2:333–341. PubMed

Wood T.E.,, Takebayashi N.,, Barker M.S.,, Mayrose I.,, Greenspoon P.B.,, Rieseberg L.H. 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 106:13875-13879. PubMed PMC

Zozomová-Lihová J.,, Mandáková T.,, Kovaříková A.,, Mühlhausen A.,, Mummenhoff K.,, Lysak M.A.,, Kovařík A. 2014. When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine schulzii trigenomic allopolyploid. New Phytol. 203:1096–1108. PubMed

Zobrazit více v PubMed

Dryad
10.5061/dryad.dg8q0

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...