The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure

. 2014 Feb ; 201 (3) : 982-992. [epub] 20131030

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24400905

The origin of Cardamine flexuosa (Wavy Bittercress) has been a conundrum for more than six decades. Here we identify its parental species, analyse its genome structure in comparison to parental genomes and describe intergenomic structural variations in C. flexuosa. Genomic in situ hybridization (GISH) and comparative chromosome painting (CCP) uncovered the parental genomes and the chromosome composition of C. flexuosa and its presumed diploid progenitors. Cardamine flexuosa is an allotetraploid (2n = 4x = 32), originating from two diploid species, Cardamine amara and Cardamine hirsuta (2n = 2x = 16). The two parental species display almost perfectly conserved chromosomal collinearity for seven out of the eight chromosomes. A 13 Mb pericentric inversion distinguishes chromosome CA1 from CH1. A comparative cytomolecular map was established for C. flexuosa by CCP/GISH. Whereas conserved chromosome collinearity between the C. amara and C. hirsuta subgenomes might have promoted intergenomic rearrangements through homeologous recombination, only one reciprocal translocation between two homeologues has occurred since the origin of C. flexuosa. The genome of C. flexuosa demonstrates that allopolyploids can maintain remarkably stable subgenomes over 10(4) -10(5) yr throughout a wide distribution range. By contrast, the rRNA genes underwent genome-specific elimination towards a diploid-like number of loci.

Zobrazit více v PubMed

Ainouche ML, Baumel A, Salmon A. 2004. Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biological Journal of the Linnean Society 82: 475-484.

Al-Shehbaz IA, Marhold K, Lihová J. 2010. Cardamine Linnaeus. In: Flora of North America Editorial Committee, ed. Flora of North America: North of Mexico, Volume 7, Magnoliophyta: Salicaceae to Brassicaceae. New York, NY, USA, Oxford, UK: Oxford University Press, Inc. 464-484.

Ariyadasa R, Stein N. 2012. Advances in BAC-based physical mapping and map integration strategies in plants. Journal of Biomedicine and Biotechnology 2012: 184854.

Banach E. 1950. Cardamine. In: Skalinska M, ed. Studies in chromosome numbers of Polish angiosperms. Acta Societatis Botanicorum Poloniae 20: 45-68.

Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S. 2010. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 107: 18724-18728.

Bendiksby M, Tribsch A, Borgen L, Trávníček P, Brysting AK. 2011. Allopolyploid origins of the Galeopsis tetraploids - revisiting Müntzing's classical textbook example using molecular tools. New Phytologist 191: 1150-1167.

Bennett ST, Kenton AY, Bennett MD. 1992. Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma 101: 420-424.

Birchler JA, Veitia RA. 2012. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences, USA 109: 14746-14753.

Blenda A, Fang DD, Rami J-F, Garsmeur O, Luo F, Lacape J-M. 2012. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS ONE 7: e45739.

Brysting AK, Holst-Jensen A, Leitch I. 2000. Genomic origin and organization of the hybrid Poa jemtlandica (Poaceae) verified by genomic in situ hybridization and chloroplast DNA sequences. Annals of Botany 85: 439-445.

Carlsen T, Bleeker W, Hurka H, Elven R, Brochmann C. 2009. Biogeography and phylogeny of Cardamine (Brassicaceae). Annals of Missouri Botanical Garden 96: 215-236.

Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X. 2013. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25: 1541-1554.

Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE. 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proceedings of the National Academy of Sciences, USA 109: 1176-1181.

Cifuentes M, Grandont L, Moore G, Chevre AM, Jenczewski E. 2010. Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytologist 186: 29-36.

Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR. 2005. Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytologist 168: 241-252.

Dellaporta SL, Wood J, Hicks JB. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1: 19-21.

Ellis RP, Jones BMG. 1969. The origin of Cardamine flexuosa with evidence form morphology and geographical distribution. Watsonia 7: 92-103.

Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH. 2000. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100: 367-376.

Gill BS. 1991. Nucleo-cytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants. In: Sasakuma T, Kinoshita T, eds. Proceedings of the Kihara Memorial International Symposium on cytoplasmic engineering in wheat. Yokohama, Japan: Kihara Memorial Foundation, 48-53.

Guggisberg A, Baroux C, Grossniklaus U, Conti E. 2008. Genomic origin and organization of the allopolyploid Primula egaliksensis investigated by in situ hybridization. Annals of Botany 101: 919-927.

Hay A, Tsiantis M. 2006. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature Genetics 38: 942-947.

Hayasaki M, Morikawa T, Tarumoto I. 2000. Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization. Genes and Genetic Systems 75: 167-171.

Ijdo JW, Wells RA, Baldini A, Reeders ST. 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Research 19: 4780.

Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M. 2006. A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Molecular Biology and Evolution 23: 1217-1231.

Jakobsson M, Säll T, Lind-Halldén C, Halldén C. 2007. The evolutionary history of the common chloroplast genome of Arabidopsis thaliana and A. suecica. Journal of Evolutionary Biology 20: 104-121.

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97-100.

Kocsis E, Trus BL, Steer CJ, Bisher ME, Steven AC. 1991. Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. Journal of Structural Biology 107: 6-14.

Kopecký D, Havránková M, Loureiro J, Castro S, Lukaszewski AJ, Bartoš J, Kopecká J, Doležel J. 2010. Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum. Cytogenetic and Genome Research 129: 162-172.

Kotseruba V, Gernand D, Meister A, Houben A. 2003. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8). Genome 46: 156-163.

Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR. 2008. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Annal of Botany 101: 815-823.

Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch AR. 2004. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biological Journal of the Linnean Society 82: 615-625.

Ksiazczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, Tesarikova Z, Coriton O, Chevre AM. 2011. Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120: 557-571.

Leitch AR, Leitch IJ. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629-646.

Lihová J, Marhold K, Kudoh H, Koch MA. 2006. Worldwide phylogeny and biogeography of Cardamine flexuosa (Brassicaceae) and its relatives. American Journal of Botany 93: 1206-1221.

Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR. 2007a. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytologist 175: 756-763.

Lim KY, Matyasek R, Kovarik A, Leitch AR. 2004. Genome evolution in allotetraploid Nicotiana. Biological Journal of the Linnean Society 82: 599-606.

Lim KY, Matyasek R, Kovarik A, Leitch A. 2007b. Parental origin and genome evolution in the allopolyploid Iris versicolor. Annals of Botany 100: 219-224.

Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR. 2008. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS ONE 3: e3353.

Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF. 2001. Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44: 321-330.

Luo M-C, Ma Y, You FM, Anderson OD, Kopecký D, Šimková H, Šafář J, Doležel J, Gill B, McGuire PE et al. 2010. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genomics 11: 122.

Madlung A, Wendel JF. 2013. Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenetic and Genome Research 140: 270-285.

Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A. 2010. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evolutionary Biology 10: 291.

Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277-2290.

Mandáková T, Kovařík A, Zozomová-Lihová J, Shimizu-Inatsugi R, Shimizu KK, Mummenhoff K, Marhold K, Lysak MA. 2013. The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25: 3280-3295.

Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E et al. 2008. An integrated DArT-SSR linkage map of durum wheat. Molecular Breeding 22: 629-648.

Marhold K. 1995. Taxonomy of the genus Cardamine L. (Cruciferae) in the Carpathians and Pannonia. III. Folia Geobotanica et Phytotaxanomica 30: 397-434.

Mlinarec J, Šatović Z, Malenica N, Ivančić-Baće I, Besendorfer V. 2012. Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Annals of Botany 110: 703-712.

Nicolas SD, Monodn H, Eber F, Chevre A-M, Jenczewski E. 2012. Non-random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization. Plant Journal 21: 373-385.

Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J et al. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423-427.

Paun O, Forest F, Fay MF, Chase MW. 2009. Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytologist 182: 507-518.

Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid O. 2011. Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 9: 24.

Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS. 2004. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proceedings of the National Academy of Sciences, USA 101: 18240-18245.

Post AR, Ali R, Krings A, Xiang J, Sosinski BR, Neal JC. 2011. On the identity of the Weedy Bittercresses (Cardamine: Brassicaceae) in United States nurseries: evidence from molecules and morphology. Weed Science 59: 123-135.

Potato Genome Sequencing Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189-195.

Raskina O, Barber JC, Nevo E, Belyayev A. 2008. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenetic and Genome Research 120: 351-357.

Schranz ME, Lysak MA, Mitchell-Olds T. 2006. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomics. Trends in Plant Science 11: 535-542.

Schubert I, Lysak MA. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27: 207-216.

Sierro N, van Oeveren J, van Eijk MJT, Martin F, Stormo KE, Peitsch MC, Ivanov NV. 2013. Whole genome profiling physical map and ancestral annotation of tobacco Hicks Broadleaf. Plant Journal 75: 880-889.

Soltis PS, Soltis DE. 2009. The role of hybridization in plant speciation. Annual Review of Plant Biology 60: 561-588.

Udall JA, Quijada PA, Osborn TC. 2005. Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169: 967-979.

Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ. 2011a. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12: 101.

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F et al. 2011b. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43: 1035-1039.

Weiss-Schneeweiss H, Bloch C, Turner B, Villasenor JL, Stuessy TF, Schneeweiss GM. 2012. The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium Sect. Melampodium; Asteraceae). Evolution 66: 211-228.

Wendel JF, Schnabel A, Seelanan T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences, USA 92: 280-284.

Xiong Z, Gaeta RT, Pires JC. 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proceedings of the National Academy of Sciences, USA 108: 7908-7913.

Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F et al. 2013. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences, USA 110: 3447-3452.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits

. 2023 Jul 25 ; 14 (1) : 4102. [epub] 20230725

The evolutionary history of Cardamine bulbifera shows a successful rapid postglacial Eurasian range expansion in the absence of sexual reproduction

. 2022 Sep 06 ; 130 (2) : 245-263.

A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis

. 2021 Oct 02 ; 219 (2) : .

Novelty and Convergence in Adaptation to Whole Genome Duplication

. 2021 Aug 23 ; 38 (9) : 3910-3924.

Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides

. 2021 ; 12 () : 659275. [epub] 20210428

The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants

. 2020 ; 11 () : 41. [epub] 20200210

Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana (Musa Spp.)

. 2019 ; 10 () : 1503. [epub] 20191120

Origin and Evolution of Diploid and Allopolyploid Camelina Genomes Were Accompanied by Chromosome Shattering

. 2019 Nov ; 31 (11) : 2596-2612. [epub] 20190826

The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives

. 2019 Sep 24 ; 124 (2) : 209-220.

Healthy Roots and Leaves: Comparative Genome Structure of Horseradish and Watercress

. 2019 Jan ; 179 (1) : 66-73. [epub] 20181105

Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae)

. 2018 Nov 01 ; 67 (6) : 1010-1024.

Cardamine occulta, the correct species name for invasive Asian plants previously classified as C. flexuosa, and its occurrence in Europe

. 2016 ; (62) : 57-72. [epub] 20160325

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace