The evolutionary history of Cardamine bulbifera shows a successful rapid postglacial Eurasian range expansion in the absence of sexual reproduction
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35789248
PubMed Central
PMC9445599
DOI
10.1093/aob/mcac088
PII: 6628835
Knihovny.cz E-zdroje
- Klíčová slova
- Cardamine bulbifera, chromosome painting, clonal reproduction, demographic history, ecological modelling, evolutionary history, genomics, polyploidy, postglacial expansion, reproductive shift,
- MeSH
- Bayesova věta MeSH
- Cardamine * genetika MeSH
- fylogeneze MeSH
- polyploidie MeSH
- rozmnožování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS: We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS: Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS: A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Agerbirk N, Hansen CC, Kiefer C, et al. . 2021. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. Phytochemistry 185: 112668. doi:10.1016/j.phytochem.2021.112668. PubMed DOI
Al-Shehbaz I. 1988. The genera of Arabideae (Cruciferae; Brassicaceae) in the southeastern United States. Journal of the Arnold Arboretum 69: 85–166. doi:10.5962/bhl.part.2391. DOI
Ančev M, Yurukova-Grancharova P, Ignatova P, et al. . 2013. Cardamine × rhodopaea (Brassicaceae), a triploid hybrid from the West Rhodope Mts: morphology, distribution, relationships and origin. Phytologia Balcanica 19: 323–338.
Barrett SCH. 2015. Influences of clonality on plant sexual reproduction. Proceedings of the National Academy of Sciences of the USA 112: 8859–8866. doi:10.1073/pnas.1501712112. PubMed DOI PMC
Brzosko E, Wróblewska A, Ratkiewicz M.. 2002. Spatial genetic structure and clonal diversity of island populations of lady’s slipper (Cypripedium calceolus) from the Biebrza National Park (northeast Poland). Molecular Ecology 11: 2499–2509. doi:10.1046/j.1365-294x.2002.01630.x. PubMed DOI
Cain ML, Milligan BG, Strand AE.. 2000. Long-distance seed dispersal in plant populations. American Journal of Botany 87: 1217–1227. PubMed
Camacho C, Coulouris G, Avagyan V, et al. . 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T.. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC
Carlsen T, Bleeker W, Hurka H, Elven R, Brochmann C.. 2009. Biogeography and phylogeny of Cardamine (Brassicaceae). Annals of the Missouri Botanical Garden 96: 215–236. doi:10.3417/2007047. DOI
Cesca G, Peruzzi L.. 2002. A new species of Cardamine subgen. Dentaria (Cruciferae), apoendemic in Calabria (Southern Italy). Plant Biosystems 136: 313–320.
Csilléry K, François O, Blum MGB.. 2012. abc: an R package for approximate Bayesian computation (ABC). Methods in Ecology and Evolution 3: 475–479. doi:10.1111/j.2041-210x.2011.00179.x. PubMed DOI
Danecek P, Auton A, Abecasis G, et al. . 2011. The variant call format and VCFtools. Bioinformatics 27: 2156–2158. doi:10.1093/bioinformatics/btr330. PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D.. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. doi:10.1038/nmeth.2109. PubMed DOI PMC
Detling LE. 1936. The genus Dentaria in the Pacific States. American Journal of Botany 23: 570–576. doi:10.1002/j.1537-2197.1936.tb09027.x. DOI
Dilcher D. 2000. Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. Proceedings of the National Academy of Sciences of the USA 97: 7030–7036. doi:10.1073/pnas.97.13.7030. PubMed DOI PMC
Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 77–93. doi:10.1666/0094-8373(2005)031[0077:kicasm]2.0.co;2. DOI
Dorken ME, Eckert CG.. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). Journal of Ecology 89: 339–350. doi:10.1046/j.1365-2745.2001.00558.x. DOI
Drummond AJ, Suchard MA, Xie D, Rambaut A.. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi:10.1093/molbev/mss075. PubMed DOI PMC
Earl DA, vonHoldt BM.. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.
Easterly NW. 1963. Chromosome numbers of some northwestern Ohio Cruciferae. Castanea 28: 39–42.
Eckert CG. 2002. The loss of sex in clonal plants. In: Steufer JF, Erschbamer B, Huber H, et al. eds. Ecology and evolutionary biology of clonal plants. Dordrecht: Springer Netherlands, 279–298.
Eckert CG, Dorken ME, Mitchell SA.. 1999. Loss of sex in clonal populations of a flowering plant, Decodon verticillatus (Lythraceae). Evolution 53: 1079–1092. doi:10.1111/j.1558-5646.1999.tb04523.x. PubMed DOI
Eckert CG, Lui K, Bronson K, Corradini P, Bruneau A.. 2003. Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Molecular Ecology 12: 331–344. doi:10.1046/j.1365-294x.2003.01737.x. PubMed DOI
Eriksson O. 1996. Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77: 248. doi:10.2307/3546063. DOI
Evanno G, Regnaut S, Goudet J.. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Excoffier L, Lischer HEL.. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. doi:10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M.. 2013. Robust demographic inference from genomic and SNP data. PLoS Genetics 9: e1003905. doi:10.1371/journal.pgen.1003905. PubMed DOI PMC
Fick SE, Hijmans RJ.. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315. doi:10.1002/joc.5086. DOI
Fischer E, Gröger A, Lobin W.. 2018. Illustrated field guide to the flora of Georgia (South Caucasus). Koblenz: Universität Koblenz-Landau.
Franzke A, Pollmann K, Bleeker W, Kohrt R, Hurka H.. 1998. Molecular systematics of Cardamine and allied genera (Brassicaceae): ITS and non-coding chloroplast DNA. Folia Geobotanica 33: 225–240. doi:10.1007/bf03216204. DOI
Fryxell PA. 1957. Mode of reproduction of higher plants. Botanical Review 23: 135–233. doi:10.1007/bf02869758. DOI
Gams H. 1922. Noch einmal die Herkunft von Cardamine bulbifera (L.) Crantz und Bemerkungen über sonstige Halb- und Ganzwaisen. Berichte der Deutschen Botanischen Gesellschaft 40: 362–367.
Gan X, Hay A, Kwantes M, et al. . 2016. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nature Plants 2: 16167. doi:10.1038/nplants.2016.167. PubMed DOI PMC
Gent PR, Danabasoglu G, Donner LJ, et al. . 2011. The Community Climate System Model version 4. Journal of Climate 24: 4973–4991.
Gömöry D, Paule L, Vyšný J.. 2007. Patterns of allozyme variation in western Eurasian Fagus. Botanical Journal of the Linnean Society 154: 165–174. doi:10.1111/j.1095-8339.2007.00666.x. DOI
Guindon S, Gascuel O.. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704. doi:10.1080/10635150390235520. PubMed DOI
Harriman NA. 1965. The genus Dentaria L.(Cruciferae) in eastern North America. PhD Thesis, Vanderbilt University, USA.
Henderson IR, Bomblies K.. 2021. Evolution and plasticity of genome-wide meiotic recombination rates. Annual Review of Genetics 55: 23–43. doi:10.1146/annurev-genet-021721-033821. PubMed DOI
Hohmann N, Wolf EM, Lysak MA, Koch MA.. 2015. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27: 2770–2784. doi:10.105/tpc.15.00482. PubMed DOI PMC
Hohmann N, Wolf EM, Rigault P, et al. . 2018. Ginkgo biloba’s footprint of dynamic Pleistocene history dates back only 390,000 years ago. BMC Genomics 19: 299. doi:10.1186/s12864-018-4673-2. PubMed DOI PMC
Hojsgaard D, Hörandl E.. 2019. The rise of apomixis in natural plant populations. Frontiers in Plant Science 10. doi:10.3389/fpls.2019.00358. PubMed DOI PMC
Honnay O, Bossuyt B.. 2005. Prolonged clonal growth: escape route or route to extinction? Oikos 108: 427–432. doi:10.1111/j.0030-1299.2005.13569.x. DOI
Hotter M, Neuner W, Binder T.. 1997. Dentaria polyphylla Waldst. et. Kit. sowie die Hybriden D. x degeniana Janchen et Watzl, D. x killiasii (Brügger) O. E. Schulz in Österreich (Nordtirol, Vorarlberg) nachgewiesen (Phanerogamia, Brassicaceae). Veröffentlichungen des Tiroler Landesmuseum Ferdinandeum 77: 193–202.
Huang XC, German DA, Koch MA.. 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany 125: 29–47. doi:10.1093/aob/mcz123. PubMed DOI PMC
Jakobsson M, Rosenberg NA.. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. doi:10.1093/bioinformatics/btm233. PubMed DOI
Janchen E, Watzl B.. 1908. Ein neuer Dentaria-Bastard. Österreichische Botanische Zeitschrift 58: 36–36. doi:10.1007/bf01793207. DOI
Katoh K, Standley DM.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC
Kawabe A, Nukii H, Furihata HY.. 2018. Exploring the history of chloroplast capture in Arabis using whole chloroplast genome sequencing. International Journal of Molecular Sciences 19: 602. PubMed PMC
Kawecki TJ. 2008. Adaptation to marginal habitats. Annual Review of Ecology, Evolution, and Systematics 39: 321–342. doi:10.1146/annurev.ecolsys.38.091206.095622. DOI
Kiefer M, Schmickl R, German DA, et al. . 2014. BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant and Cell Physiology 55: e3. doi:10.1093/pcp/pct158. PubMed DOI
Koch MA, Marhold K.. 2012. Phylogeny and systematics of Brassicaceae – introduction. Taxon 61: 929–930. doi:10.1002/tax.615001. DOI
Koch MA, German DA, Kiefer M, Franzke A.. 2018. Database taxonomics as key to modern plant biology. Trends in Plant Science 23: 4–6. doi:10.1016/j.tplants.2017.10.005. PubMed DOI
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A.. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453–4455. doi:10.1093/bioinformatics/btz305. PubMed DOI PMC
Kučera J, Valko I, Marhold K.. 2005. On-line database of the chromosome numbers of the genus Cardamine (Brassicaceae). Biologia - Section Botany 60: 473–476.
Leopold W. 1928. Beiträge zur Kenntnis der Gattung Cardamine: Mit besonderer Berücksichtigung der Hybridenfrage in der Sektion Dentaria. Graz: Institut Für systematische Botanik der Universität Graz.
Levins R. 1968. Evolution in changing environments: some theoretical explorations. Princeton: Princeton University Press.
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. http://arxiv.org/abs/1303.3997. Accessed 12 April 2022.
Li H, Handsaker B, Wysoker A, et al. . 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC
Lihová J, Shimizu KK, Marhold K.. 2006. Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Molecular Phylogenetics and Evolution 39: 759–786. doi:10.1016/j.ympev.2006.01.027. PubMed DOI
Lihová J, Kučera J, Perný M, Marhold K.. 2007. Hybridization between two polyploid Cardamine (Brassicaceae) species in north-western Spain: discordance between morphological and genetic variation patterns. Annals of Botany 99: 1083–1096. PubMed PMC
Lysak MA, Mandáková T, Schranz ME.. 2016. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Current Opinion in Plant Biology 30: 108–115. doi:10.1016/j.pbi.2016.02.001. PubMed DOI
Magri D, Vendramin GG, Comps B, et al. . 2006. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist 171: 199–221. doi:10.1111/j.1469-8137.2006.01740.x. PubMed DOI
Mandáková T, Lysak MA.. 2016a. Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Current Protocols in Plant Biology 1: 359–371. doi:10.1002/cppb.20022. PubMed DOI
Mandáková T, Lysak MA.. 2016b. Chromosome preparation for cytogenetic analyses in Arabidopsis. Current Protocols in Plant Biology 1: 43–51. doi:10.1002/cppb.20009. PubMed DOI
Mandáková T, Kovařík A, Zozomová-Lihová J, et al. . 2013. The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25: 3280–3295. doi:10.1105/tpc.113.114405. PubMed DOI PMC
Mandáková T, Marhold K, Lysak MA.. 2014. The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytologist 201: 982–992. PubMed
Mandáková T, Zozomová-Lihová J, Kudoh H, Zhao Y, Lysak MA, Marhold K.. 2019. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Annals of Botany 124: 209–220. doi:10.1093/aob/mcz019. PubMed DOI PMC
Marhold K, Lihová J, Perný M, Grupe R, Neuffer B.. 2002. Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. Botanical Journal of the Linnean Society 139: 275–294.
Marhold K, Šlenker M, Zozomová-Lihová J.. 2018. Polyploidy and hybridization in the Mediterranean and neighbouring areas towards the north: examples from the genus Cardamine (Brassicaceae). Biologia Serbica 40.
Maynard-Smith J. 1978. Models in ecology. Cambridge: Cambridge University Press.
McKenna A, Hanna M, Banks E, et al. . 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297–1303. doi:10.1101/gr.107524.110. PubMed DOI PMC
Meloni M, Reid A, Caujapé-Castells J, et al. . 2013. Effects of clonality on the genetic variability of rare, insular species: the case of Ruta microcarpa from the Canary Islands. Ecology and Evolution 3: 1569–1579. doi:10.1002/ece3.571. PubMed DOI PMC
Müller M, Lopez PA, Papageorgiou AC, Tsiripidis I, Gailing O.. 2019. Indications of genetic admixture in the transition zone between Fagus sylvatica L. and Fagus sylvatica ssp. orientalis Greut. & Burd. Diversity 11: 90. doi:10.3390/d11060090. DOI
Myers N, Mittermeler RA, Mittermeler CG, Da Fonseca GAB, Kent J.. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. PubMed
Noroozi J, Willner W, Pauli H, Grabherr G.. 2014. Phytosociology and ecology of the high-alpine to subnival scree vegetation of N and NW Iran (Alborz and Azerbaijan Mts.). Applied Vegetation Science 17: 142–161.
Ortiz. 2019. doi: 10.5281/zenodo.1257057. DOI
Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR.. 1988. Chloroplast DNA variation and plant phylogeny. Annals of the Missouri Botanical Garden 75: 1180. 1180–1206. doi:10.2307/2399279. DOI
Paradis E, Schliep K.. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528. doi:10.1093/bioinformatics/bty633. PubMed DOI
Pfeiffer T, Klahr A, Heinrich A, Schnittler M.. 2011. Does sex make a difference? Genetic diversity and spatial genetic structure in two co-occurring species of Gagea (Liliaceae) with contrasting reproductive strategies. Plant Systematics and Evolution 292: 189–201. doi:10.1007/s00606-010-0404-0. DOI
Pfeiffer T, Klahr A, Peterson A, Levichev IG, Schnittler M.. 2012. No sex at all? Extremely low genetic diversity in Gagea spathacea (Liliaceae) across Europe. Flora 207: 372–378.
Phillips SB, Aneja VP, Kang D, Arya SP.. 2006. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. International Journal of Global Environmental Issues 6: 231–231252. doi:10.1504/ijgenvi.2006.010156. DOI
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME.. 2017. Opening the black box: an open-source release of Maxent. Ecography 40: 887–893. doi:10.1111/ecog.03049. DOI
Plue J, Van Calster H, Auestad I, et al. . 2021. Buffering effects of soil seed banks on plant community composition in response to land use and climate. Global Ecology and Biogeography 30: 128–139.
Pritchard JK, Stephens M, Donnelly P.. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. doi:10.1093/genetics/155.2.945. PubMed DOI PMC
Ren M, Zhang Q, Zhang D.. 2004. Geographical variation in the breeding systems of an invasive plant, Eichhornia crassipes, within China. Chinese Journal of Plant Ecology 28: 753–760.
Richards AJ. 1986. Plant breeding systems. London: George Allen & Unwin.
Rieseberg LH, Soltis DE.. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5: 65–84.
Robledo-Arnuncio JJ, Klein EK, Muller-Landau HC, Santamaría L.. 2014. Space, time and complexity in plant dispersal ecology. Movement Ecology 2: 16. doi:10.1186/s40462-014-0016-3. PubMed DOI PMC
Rödder D, Engler JO.. 2011. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global Ecology and Biogeography 20: 915–927. doi:10.1111/j.1466-8238.2011.00659.x. DOI
Ronsheim ML, Bever JD.. 2000. Genetic variation and evolutionary trade-offs for sexual and asexual reproductive modes in Allium vineale (Liliaceae). American Journal of Botany 87: 1769–1777. PubMed
Ru Y, Schulz R, Koch MA.. 2020. Successful without sex – the enigmatic biology and evolutionary origin of coralroot bittercress (Cardamine bulbifera, Brassicaceae). Perspectives in Plant Ecology, Evolution and Systematics 46: 125557. doi:10.1016/j.ppees.2020.125557. DOI
Rudall PJ, Bateman RM.. 2007. Developmental bases for key innovations in the seed-plant microgametophyte. Trends in Plant Science 12: 317–326. doi:10.1016/j.tplants.2007.06.004. PubMed DOI
Schmid E. 1919. Die Gattung Dentaria. In: Hegi G. ed. Illustrierte Flora von Mitteleuropa. Stuttgart: Antiquariat Engel, 321–333.
Schoener TW. 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704–726. doi:10.2307/1935534. DOI
Schulz OE. 1903. Monographie der Gattung Cardamine. Leipzig: Wilhelm Engelmann.
Schulz OE. 1936. Cruciferae. In: Engler A, Prantl KA. eds. Die Natürlichen Pflanzenfamilien. Leipzig: Wilhelm Engelmann, 227–658.
Schwarzenbach F. 1922. Untersuchungen über die Sterilität von Cardamine bulbifera (L.) Crantz. Flora oder Allgemeine Botanische Zeitung 115: 393–514. doi:10.1016/s0367-1615(17)31771-8. DOI
Şekercioĝlu CH, Anderson S, Akçay E, et al. . 2011. Turkey’s globally important biodiversity in crisis. Biological Conservation 144: 2752–2769.
Silander JA. 1985. Microevolution in clonal plants. In: Jackson JBC, Buss LW, Cook RE. eds. Population biology and evolution of clonal organisms. New Haven: Yale University Press, 107–152.
Sweeney PW, Price RA.. 2000. Polyphyly of the genus Dentaria (Brassicaceae): evidence from trnL intron and ndhF sequence data. Systematic Botany 25: 468–478. doi:10.2307/2666690. DOI
Tsitrone A, Kirkpatrick M, Levin DA.. 2003. A model for chloroplast capture. Evolution 57: 1776–1782. doi:10.1111/j.0014-3820.2003.tb00585.x. PubMed DOI
Tsujimura N, Ishida K.. 2008. Isozyme variation under different modes of reproduction in two clonal winter annuals, Sedum rosulato-bulbosum and Sedum bulbiferum (Crassulaceae). Plant Species Biology 23: 71–80. doi:10.1111/j.1442-1984.2008.00215.x. DOI
Urbanska KM. 1987. Disturbance, hybridization and hybrid speciation. In: Disturbance in grasslands. Dordrecht: Springer Netherlands, 285–301.
Vallejo-Marín M, Dorken ME, Barrett SCH.. 2010. The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution, and Systematics 41: 193–213.
Van Der Merwe M, Spain CS, Rossetto M.. 2010. Enhancing the survival and expansion potential of a founder population through clonality. New Phytologist 188: 868–878. doi:10.1111/j.1469-8137.2010.03396.x. PubMed DOI
Van Drunen WE, Dorken ME.. 2012. Trade-offs between clonal and sexual reproduction in Sagittaria latifolia (Alismataceae) scale up to affect the fitness of entire clones. New Phytologist 196: 606–616. doi:10.1111/j.1469-8137.2012.04260.x. PubMed DOI
Walden N, German DA, Wolf EM, et al. . 2020. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nature Communications 11: 3795. doi:10.1038/s41467-020-17605-7. PubMed DOI PMC
Warren DL, Glor RE, Turelli M.. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883. doi:10.1111/j.1558-5646.2008.00482.x. PubMed DOI
Warren DL, Matzke NJ, Cardillo M, et al. . 2021. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44: 504–511. doi:10.1111/ecog.05485. DOI
Xiao Y, Tang J, Qing H, Zhou C, Kong W, An S.. 2011. Trade-offs among growth, clonal, and sexual reproduction in an invasive plant Spartina alterniflora responding to inundation and clonal integration. Hydrobiologia 658: 353–363.
Dryad
10.5061/dryad.1ns1rn8w3