The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30868165
PubMed Central
PMC6758578
DOI
10.1093/aob/mcz019
PII: 5380421
Knihovny.cz E-zdroje
- Klíčová slova
- Allopolyploidy, Asian Cardamine, Brassicaceae, GISH (genomic in situ hybridization), autopolyploidy, centromere repositioning, chromosome rearrangements, comparative chromosome painting, diploidization, genome collinearity, hybridization, invasive species,
- MeSH
- Brassicaceae * MeSH
- Cardamine * MeSH
- genom rostlinný MeSH
- lidé MeSH
- polyploidie MeSH
- zavlečené druhy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Dálný východ MeSH
- Evropa MeSH
BACKGROUND AND AIMS: Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS: Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS: All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS: Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
Center for Ecological Research Kyoto University Hirano Japan
Department of Botany Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Ali HB, Lysak MA, Schubert I. 2004. Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome 47: 954–960. PubMed
Alix K, Joets J, Ryder CD, et al. . 2008. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant Journal 56: 1030–1044. PubMed
Al-Shehbaz IA. 2012. A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61: 931–954.
Al-Shehbaz IA, Arai K, Ohba H. 2006. Cardamine. In: Iwatsuki K, Boufford DE, Ohba H, eds. Flora of Japan, Vol. IIa, Angiospermae, Dicotyledoneae, Archichlamydeae. Tokyo: Kodansha, 482–490.
Al-Shehbaz IA, Marhold K, Lihová J. 2010. Cardamine Linnaeus. In: Flora of North America Editorial Committee, Flora of North America: North of Mexico, Volume 7, Magnoliophyta: Salicaceae to Brassicaceae. New York: Oxford University Press, 464–484.
Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815. PubMed
Beliveau BJ, Joycea EF, Apostolopoulosa N, et al. . 2012. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proceedings of the National Academy of Sciences of the United States of America 109: 21301–21306. PubMed PMC
Betekhtin A, Jenkins G, Hasterok R. 2014. Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS One 9: e115108. PubMed PMC
Bleeker W. 2003. Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany. Molecular Ecology 12: 1831–1841. PubMed
Braz GT, He L, Zhao H, et al. . 2018. Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208: 513–523. PubMed PMC
Carlsen T, Bleeker W, Hurka H, Elven R, Brochmann C. 2009. Biogeography and phylogeny of Cardamine (Brassicaceae). Annals of the Missouri Botanical Garden 96: 215–236.
Chester M, Leitch AR, Soltis PS, Soltis DE. 2010. Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes 1: 166–192. PubMed PMC
Comai L, Tyagi AP, Lysak MA. 2003. FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Research 11: 217–226. PubMed
D’Hont A. 2005. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenetic and Genome Research 109: 27–33. PubMed
Dierschke T, Mandáková T, Lysak MA, Mummenhoff K. 2009. A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. Annals of Botany 204: 681–688. PubMed PMC
Du P, Zhuang L, Wang Y, et al. . 2017. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60: 93–103. PubMed
Filiault DL, Ballerini ES, Mandáková T, et al. . 2018. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. eLife 7: e36426. PubMed PMC
Geiser C, Mandáková T, Arrigo N, Lysak MA, Parisod C. 2016. Repeated whole-genome duplication, karyotype reshuffling and biased retention of stress-responding genes in Buckler Mustards. Plant Cell 28: 17–27. PubMed PMC
Gross BL, Rieseberg LH. 2005. The ecological genetics of homoploid hybrid speciation. Journal of Heredity 96: 241–252. PubMed PMC
Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J. 2015. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200: 771–779. PubMed PMC
Haudry A, Platts AE, Vello E, et al. . 2013. An atlas of over 90,000 conserved non-coding sequences yields detailed insight into crucifer regulatory regions. Nature Genetics 45: 891–898. PubMed
Hay AS, Pieper B, Cooke E, et al. . 2014. Cardamine hirsuta: a versatile genetic system for comparative studies. Plant Journal 78: 1–15. PubMed
Hay A, Tsiantis M. 2006. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature Genetics 38: 942–947. PubMed
Heenan PB. 2017. A taxonomic revision of Cardamine L. (Brassicaceae) in New Zealand. Phytotaxa 330: 1–154.
Hegarty MJ, Hiscock SJ. 2005. Hybrid speciation in plants: new insights from molecular studies. New Phytologist 165: 411–423. PubMed
Hou L, Xu M, Zhang Z, et al. . 2018. Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biology 18: 110. PubMed PMC
Idziak D, Betekhtin A, Wolny E, et al. . 2011. Painting the chromosomes of Brachypodium - current status and future prospects. Chromosoma 120: 469–479. PubMed PMC
Ijdo JW, Wells RA, Baldini A, Reeders ST. 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Research 19: 4780. PubMed PMC
Kantama L, Sharbel TF, Schranz ME, Mitchell-Olds T, de Vries S, de Jong H. 2007. Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proceedings of the National Academy of Sciences of the United States of America 104: 14026–14031. PubMed PMC
Kiefer M, Schmickl R, German DA, et al. . 2014. BrassiBase: Introduction to a novel knowledge database on Brassicaceae evolution. Plant and Cell Physiology 55: e3. PubMed
Kučera J, Valko I, Marhold K. 2005. On-line database of the chromosome numbers of the genus Cardamine (Brassicaceae). Biologia 60: 473–476. Database available online at http://www.cardamine.sav.sk/www/index.php?lang=en
Kudoh H. 2017. Biology of the weedy species of the genus Cardamine (Brassicaceae) in Japan. Journal of Weed Science and Technology 62: 175–183 (in Japanese with English summary).
Kudoh H, Ishiguri Y, Kawano S. 1993. Phenotypic variability in life history traits and phenology of field populations of Cardamine flexuosa and C. fallax (Cruciferae) in Honshu, Japan. Plant Species Biology 8: 7–20.
Lawrence WJC. 1931. The chromosome constitution of Cardamine pratensis and Verbascum phoeniceum. Genetica 13: 183–208.
Lihová J, Kučera J. 2007. [Reports]. In: Marhold K, ed., IAPT/IOPB Chromosome data reports 4. Taxon 56: 1269, E1–E2.
Lihová J, Marhold K. 2006. Phylogenetic and diversity patterns in Cardamine (Brassicaceae) – a genus with conspicuous polyploid and reticulate evolution. In: Sharma AK, Sharma A, eds. Plant genome: Biodiversity and evolution, Volume 1C, Phanerogams (Angiosperms - Dicotyledons). Enfield: Science Publishers, Inc, 149–186.
Lihová J, Marhold K, Kudoh H, Koch MA. 2006a Worldwide phylogeny and biogeography of Cardamine flexuosa (Brassicaceae) and its relatives. American Journal of Botany 93: 1206–1221. PubMed
Lihová J, Shimizu KK, Marhold K. 2006b Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Molecular Phylogenetics and Evolution 39: 759–786. PubMed
Lihová J, Kudoh H, Marhold K. 2010. Morphometric studies of polyploid Cardamine species (Brassicaceae) from Japan: solving a long-standing taxonomic and nomenclatural controversy. Australian Systematic Botany 23: 94–111.
Lim KB, Yang TJ, Hwang YJ, et al. . 2007. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant Journal 49: 173–183. PubMed
Lou Q, Zhang Y, He Y, et al. . 2014. Single‐copy genebased chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. The Plant Journal 78: 169–179. PubMed
Lysak MA, Lexer C. 2006. Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Systematics and Evolution 259: 175–198.
Lysak MA, Mandáková T. 2013. Analysis of plant meiotic chromosomes by chromosome painting. In: Clifton NJ, ed. Methods in molecular biology. New York: Humana Press, 13–24. PubMed
Lysak MA, Fransz PF, Ali HBM, Schubert I. 2001. Chromosome painting in Arabidopsis thaliana. Plant Journal 28: 689–697. PubMed
Lysak MA, Koch M, Pecinka A, Schubert I. 2005. Chromosome triplication found across the tribe Brassiceae. Genome Research 15: 516–525. PubMed PMC
Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America 103: 5224–5229. PubMed PMC
Lysak MA, Mandáková T, Schranz ME. 2016. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Current Opinion in Plant Biology 30: 108–115. PubMed
Maiorov SR. 2018. Melkotsvetkovye serdechniki sektsii Pteroneuron (DC.) Rouy et Fouc. (Cardamine L., Cruciferae) vo flore evropeiskoi Rossii. Phytodiversity of Eastern Europe 12: 6–17.
Malyschev LI, Peschkova GA. 1994. Flora Sibiri, vol. 7 Novosibirsk: Nauka.
Mandáková T, Lysak MA. 2008. Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20: 2559–2570. PubMed PMC
Mandáková T, Lysak MA. 2016a Chromosome preparation for cytogenetic analyses in Arabidopsis. Current Protocols in Plant Biology 1: 43–51. PubMed
Mandáková T, Lysak MA. 2016b Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Current Protocols in Plant Biology 1: 359–371. PubMed
Mandáková T, Lysak MA. 2019. Healthy leaves and roots: comparative structure of horseradish and watercress genomes. Plant Physiology 179: 66–73. PubMed PMC
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. 2010a Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277–2290. PubMed PMC
Mandáková T, Heenan PB, Lysak MA. 2010b Island species radiation and karyotypic stasis in Pachycladon. BMC Evolutionary Biology 10: 367. PubMed PMC
Mandáková T, Mummenhoff K, Al-Shehbaz IA, Mucina L, Muehlhausee A, Lysak MA. 2012. Whole-genome triplication and species radiation in the southern African tribe Heliophileae (Brassicaceae). Taxon 61: 989–1000.
Mandáková T, Shimizu Inatsugi R, Zozomová-Lihová J, et al. . 2013. The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25: 3280–3295. PubMed PMC
Mandáková T, Marhold K, Lysak MA. 2014. The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytologist 201: 982–992. PubMed
Mandáková T, Schranz ME, Sharbel TF, de Jong H, Lysak MA. 2015a Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant Journal 82: 785–793. PubMed
Mandáková T, Singh V, Kraemer U, Lysak MA. 2015b Genome structure of the heavy metal hyperaccumulator Noccaea caerulescens and its stability on metalliferous and non-metalliferous soils. Plant Physiology 169: 674–689. PubMed PMC
Mandáková T, Gloss AD, Whiteman NK, Lysak MA. 2016. How diploidization turned a tetraploid into a pseudotriploid. American Journal of Botany 103: 1187–1196. PubMed
Mandáková T, Hloušková P, German D, Lysak MA. 2017a Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiology 174: 2062–2071. PubMed PMC
Mandáková T, Li Z, Barker MS, Lysak MA. 2017b Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant Journal 91: 3–21. PubMed
Mandáková T, Pouch M, Harmannová K, Zhan SH, Mayrose I, Lysak MA. 2017c Multi-speed genome diploidization and diversification after an ancient allopolyploidization. Molecular Ecology 26: 1–18. PubMed
Marhold K, Lihová J. 2006. Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Plant Systematics and Evolution 259: 143–174.
Marhold K, Lihová J, Perný M, Grupe R, Neuffer B. 2002. Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. Botanical Journal of the Linnean Society 139: 275–294.
Marhold K, Šlenker M, Kudoh H, Zozomová-Lihová J. 2016. Cardamine occulta, the correct species name for invasive Asian plants previously classified as C. flexuosa, and its occurrence in Europe. PhytoKeys 62: 57–72. PubMed PMC
Marhold K, Šlenker M, Zozomová-Lihová J. 2018. Polyploidy and hybridization in the Mediterranean and neighbouring northern areas: examples from the genus Cardamine (Brassicaceae). Biologia Serbica 40: 47–59.
Matsumura J. 1912. Index plantarum japonicarum, Vol. 2 Tokioni: Marunzen.
Ohwi J. 1953. Flora of Japan. Tokyo: Shibundo.
Ohwi J. 1965. Flora of Japan. Revised edition. Tokyo: Shibundo.
Ohwi J, Kitagawa M. 1992. New Flora of Japan. Tokyo: Shibundo Co., Ltd. Publishers.
Post AR, Krings A, Xiang QY, Sosinski BR, Neal JC. 2009. Lectotypification of Cardamine flexuosa (Brassicaceae). Journal of the Botanical Research Institute of Texas 3: 227–230.
Qu M, Li K, Han Y, Chen L, Li Z, Han Y. 2017. Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenetic and Genome Research 153: 158–164. PubMed
Raina SN, Rani V. 2001. GISH technology in plant genome research. Methods in Cell Science 23: 83–104. PubMed
Ramzan F, Younis A, Lim KB. 2017. Application of genomic in situ hybridization in horticultural science. International Journal of Genetics 2017: 7561909. PubMed PMC
Rankin Rodríguez R, Greuter W. 2009. Brassicaceae. In: Greuter W, Rankin Rodríguez R, eds. Flora de la República de Cuba, serie A, Plantas Vasculares, Fascículo 15. Ruggell: AR Gantner Verlag KG, 1–51.
Rokas A, Holland PW. 2000. Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution 15: 454–459. PubMed
Shimizu-Inatsugi R, Terada A, Hirose K, Kudoh H, Sese J, Shimizu KK. 2017. Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Molecular Ecology 26: 193–207. PubMed
Schubert I, Fransz PF, Fuchs J, de Jong JH. 2001. Chromosome painting in plants. Methods in Cell Science 23: 57–69. PubMed
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. 1989. In situ localization of parental genomes in a wide hybrid. Annals of Botany 64: 315–324.
Silva GS, Souza MM. 2013. Genomic in situ hybridization in plants. Genetics and Molecular Research 12: 2953–2965. PubMed
Snowdon RJ. 2007. Cytogenetics and genome analysis in Brassica crops. Chromosome Research 15: 85–95. PubMed
Šlenker M, Zozomová-Lihová J, Mandáková T, et al. . 2018. Morphology and genome size of the widespread weed Cardamine occulta: how it differs from cleistogamic C. kokaiensis and other closely related taxa in Europe and Asia. Botanical Journal of the Linnean Society 187: 456–482.
Thompson IR. 1996. Cardamine. In: Walsh NG, Entwisle TJ, eds. Flora of Victoria, vol. 3 Melbourne: Inkata Press, 434–442.
Yatsu Y, Kachi N, Kudoh H. 2003. Ecological distribution and phenology of an invasive species, Cardamine hisuta L., and its native counterpart, Cardamine flexuosa With., in central Japan. Plant Species Biology 18: 35–42.
Younis A, Ramzan F, Hwang YJ, Lim KB. 2015. FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Reports 34: 1477–1488. PubMed
Zhou TY, Lu LL, Yang G, Al-Shehbaz IA. 2001. Brassicaceae. In: Wu ZY, Raven PH, eds. Flora of China, vol. 8 Beijing & St. Louis: Science Press & Missouri Botanical Garden Press, 1–193.
Zozomová-Lihová J, Krak K, et al. . 2014. b Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy. Annals of Botany 113: 817–830. PubMed PMC
Zozomová-Lihová J, Mandáková T, Mummenhoff K, Kovaříková A, Lysak MA, Kovařík A. 2014a When fathers are instant loosers: homogenisation of rDNA loci in recently formed Cardamine schulzii trigenomic allopolyploid. New Phytologist 203: 1096–1108. PubMed
Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning