Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26195571
PubMed Central
PMC4577401
DOI
10.1104/pp.15.00619
PII: pp.15.00619
Knihovny.cz E-zdroje
- MeSH
- Brassicaceae genetika metabolismus MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- druhová specificita MeSH
- genom rostlinný * MeSH
- genová přestavba MeSH
- homeostáza MeSH
- karyotypizace MeSH
- listy rostlin chemie MeSH
- molekulární evoluce MeSH
- půda chemie MeSH
- regulace genové exprese u rostlin MeSH
- těžké kovy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
- těžké kovy MeSH
Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation.
Zobrazit více v PubMed
Al-Shehbaz IA. (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61: 931–954
Al-Shehbaz IA. (2014) A synopsis of the genus Noccaea (Coluteocarpeae, Brassicaceae). Harv Pap Bot 19: 25–51
Anderson LK, Covey PA, Larsen LR, Bedinger P, Stack SM (2010) Structural differences in chromosomes distinguish species in the tomato clade. Cytogenet Genome Res 129: 24–34 PubMed
Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796. PubMed
Artelari R. (2002) Thlaspi L. In Strid A, Tan K, eds, Flora Hellenica, Vol 2 ARG Gantner Verlag, Koenigstein, Germany, pp 253–261
Assunção AGL, Da Costa Martins P, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24: 217–226
Assunção AGL, Pieper B, Vromans J, Lindhout P, Aarts MG, Schat H (2006) Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation. New Phytol 170: 21–32 PubMed
Assunção AGL, Ten Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159: 411–419 PubMed
Auger DL, Sheridan WF (2012) Plant chromosomal deletions, insertions, and rearrangements. In Bass HW, Birchler JA, eds, Plant Cytogenetics. Springer, New York, pp 3–36
Banásová V, Horak O, Nadubinská M, Čiamporová M, Lichtscheidl I (2008) Heavy metal content in Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in central Slovakia. Int J Environ Pollut 33: 133–145
Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37: 251–268 PubMed
Besnard G, Basic N, Christin PA, Savova-Bianchi D, Galland N (2009) Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations? New Phytol 181: 974–984 PubMed
Charlesworth B. (1992) Evolutionary rates in partially self-fertilizing species. Am Nat 140: 126–148 PubMed
Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25: 1541–1554 PubMed PMC
Coyne JA, Aulard S, Berry A (1991) Lack of underdominance in a naturally occurring pericentric inversion in Drosophila melanogaster and its implications for chromosome evolution. Genetics 129: 791–802 PubMed PMC
Coyne JA, Meyers W, Crittenden AP, Sniegowski P (1993) The fertility effects of pericentric inversions in Drosophila melanogaster. Genetics 134: 487–496 PubMed PMC
Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland, MA
Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, et al. (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43: 913–918 PubMed PMC
Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Krämer U, et al. (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24: 708–723 PubMed PMC
Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MGM, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet 113: 907–920 PubMed
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2: 2233–2244 PubMed
Eichten SR, Ellis NA, Makarevitch I, Yeh CT, Gent JI, Guo L, McGinnis KM, Zhang X, Schnable PS, Vaughn MW, et al. (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8: e1003127. PubMed PMC
Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145: 429–437 PubMed
Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16: 108–116 PubMed
Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49: 1–15 PubMed
Hall AE, Kettler GC, Preuss D (2006) Dynamic evolution at pericentromeres. Genome Res 16: 355–364 PubMed PMC
Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170: 239–260 PubMed
Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U (2013) Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet 9: e1003707. PubMed PMC
Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14: 252–259 PubMed
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453: 391–395 PubMed
Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143: 1705–1719 PubMed PMC
Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24: 724–737 PubMed PMC
Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19: 4780. PubMed PMC
Kiefer M, Schmickl R, German DA, Mandáková T, Lysak MA, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA (2014) BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant Cell Physiol 55: e3. PubMed
Király G, Ferakova V, Mereďa P, Hodálová I, Eliáš P (2013) Thlaspi jankae: the IUCN red list of threatened species, version 2014.2. www.iucnredlist.org. (September 10, 2014)
Kirkpatrick M. (2010) How and why chromosome inversions evolve. PLoS Biol 8: e1000501. PubMed PMC
Koch M, Al-Shehbaz IA (2004) Taxonomic and phylogenetic evaluation of the American “Thlaspi” species: identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Syst Bot 29: 375–384
Koch M, Mummenhoff K (2001) Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Plant Syst Evol 227: 209–225
Koch M, Mummenhoff K, Hurka H (1998) Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in western Europe: evidence from genetic studies based on isozyme analysis. Biochem Syst Ecol 26: 823–838
Koch MA, German DA (2013) Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Front Plant Sci 4: 267. PubMed PMC
Kocsis E, Trus BL, Steer CJ, Bisher ME, Steven AC (1991) Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J Struct Biol 107: 6–14 PubMed
Krämer U. (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61: 517–534 PubMed
Krämer U, Sinclair SA (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823: 1553–1567 PubMed
Lowry DB, Willis JH (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol 8: e1000500. PubMed PMC
Lysak MA, Mandáková T (2013) Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol Biol 990: 13–24 PubMed
Maestri E, Pirondini A, Visioli G, Marmiroli N (2013) Trade-off between genetic variation and ecological adaptation of metallicolous and non-metallicolous Noccaea and Thlaspi species. Environ Exp Bot 96: 1–10
Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20: 2559–2570 PubMed PMC
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66: 5.1–5.31 PubMed
Meyer FK. (2001) Kritische Revision der “Thlaspi”: Arten Europas, Afrikas und Vorderasiens. Spezieller Teil. I. Thlaspi L. Haussknechtia 8: 3–42
Meyer FK. (2006a) Kritische Revision der “Thlaspi”: Arten Europas, Afrikas und Vorderasiens: Spezieller Teil. VIII. Raparia F.K. Mey. Haussknechtia 11: 196–206
Meyer FK. (2006b) Kritische Revision der “Thlaspi”: Arten Europas, Afrikas und Vorderasiens. Spezieller Teil. IX. Noccaea Moench. Haussknechtia 12: 1–343
Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98: 12084–12088 PubMed PMC
Nosil P, Feder JL (2013) Genome evolution and speciation: toward quantitative descriptions of pattern and process. Evolution 67: 2461–2467 PubMed
Ó Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE 6: e17814. PubMed PMC
Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217-218: 8–17 PubMed
Reeves RD. (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L. and other genera of the Brassicaceae. Taxon 37: 309–318
Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18: 275–283
Reeves RD, Schwartz C, Morel JL, Edmonson J (2001) Distribution and metal-accumulating behaviour of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3: 145–172
Rieseberg LH. (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16: 351–358 PubMed
Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11: 535–542 PubMed
Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27: 207–216 PubMed
Schwander T, Libbrecht R, Keller L (2014) Supergenes and complex phenotypes. Curr Biol 24: R288–R294 PubMed
Sjödin J. (1971) Induced paracentric and pericentric inversions in Vicia faba L. Hereditas 67: 39–54
Talbert PB, Henikoff S (2006) Spreading of silent chromatin: inaction at a distance. Nat Rev Genet 7: 793–803 PubMed
Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142: 148–167 PubMed PMC
Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82: 63–80
Thomas JW, Cáceres M, Lowman JJ, Morehouse CB, Short ME, Baldwin EL, Maney DL, Martin CL (2008) The chromosomal polymorphism linked to variation in social behavior in the white-throated sparrow (Zonotrichia albicollis) is a complex rearrangement and suppressor of recombination. Genetics 179: 1455–1468 PubMed PMC
Tuomainen M, Tervahauta A, Hassinen V, Schat H, Koistinen KM, Lehesranta S, Rantalainen K, Häyrinen J, Auriola S, Anttonen M, et al. (2010) Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. J Exp Bot 61: 1075–1087 PubMed PMC
van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142: 1127–1147 PubMed PMC
van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31: 301–324 PubMed
Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ Exp Bot 77: 156–164
Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37: 269–281 PubMed
Willing EM, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, Becker C, Warthmann N, Chica C, Szarzynska B, et al. (2015) Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants 1: 14023 PubMed
Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, et al. (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109: 12219–12224 PubMed PMC
Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178: 315–325 PubMed
The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches
Chromosomal Evolution and Apomixis in the Cruciferous Tribe Boechereae
Monophyletic Origin and Evolution of the Largest Crucifer Genomes