Chromosomal Evolution and Apomixis in the Cruciferous Tribe Boechereae

. 2020 ; 11 () : 514. [epub] 20200528

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32547569

Grantová podpora
R01 GM086496 NIGMS NIH HHS - United States

The mustard family (Brassicaceae) comprises several dozen monophyletic clades usually ranked as tribes. The tribe Boechereae plays a prominent role in plant research due to the incidence of apomixis and its close relationship to Arabidopsis. This tribe, largely confined to western North America, harbors nine genera and c. 130 species, with >90% of species belonging to the genus Boechera. Hundreds of apomictic diploid and triploid Boechera hybrids have spurred interest in this genus, but the remaining Boechereae genomes remain virtually unstudied. Here we report on comparative genome structure of six genera (Borodinia, Cusickiella, Phoenicaulis, Polyctenium, Nevada, and Sandbergia) and three Boechera species as revealed by comparative chromosome painting (CCP). All analyzed taxa shared the same seven-chromosome genome structure. Comparisons with the sister Halimolobeae tribe (n = 8) showed that the ancestral Boechereae genome (n = 7) was derived from an older n = 8 genome by descending dysploidy followed by the divergence of extant Boechereae taxa. As tribal divergence post-dated the origin of four tribe-specific chromosomes, it is proposed that these chromosomal rearrangements were a key evolutionary innovation underlaying the origin and diversification of the Boechereae in North America. Although most Boechereae genera exhibit genomic conservatism, intra-tribal cladogenesis has occasionally been accompanied by chromosomal rearrangements (particularly inversions). Recently, apomixis was reported in the Boechereae genera Borodinia and Phoenicaulis. Here, we report sexual reproduction in diploid Nevada, diploid Sandbergia, and tetraploid Cusickiella and aposporous apomixis in tetraploids of Polyctenium and Sandbergia. In sum, apomixis is now known to occur in five of the nine Boechereae genera.

Zobrazit více v PubMed

Alexander P. J., Windham M. D., Beck J. B., Al-Shehbaz I. A., Allphin L., Bailey C. D. (2013). Molecular phylogenetics and taxonomy of the genus Boechera and related genera (Brassicaceae: Boechereae). Syst. Bot. 38 192–209. 10.1600/036364413x661917 DOI

Alexander P. J., Windham M. D., Beck J. B., Al-Shehbaz I. A., Allphin L., Bailey C. D. (2015). Weaving a tangled web: divergent and reticulate speciation in Boecher fendleri sensu lato (Brassicaceae; Boechereae). Syst. Bot. 40 572–596. 10.1600/036364415x688745 DOI

Al-Shehbaz I. A. (2012). A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61 931–954. 10.1002/tax.615002 DOI

Asker S. E., Jerling L. (1992). Apomixis in Plants. Boca Raton, FL: CRC Press.

Bailey C. D., Al-Shehbaz I. A., Rajanikanth G. (2007). Generic limits in tribe Halimolobeae and description of the new genus Exhalimolobos (Brassicaceae). Syst. Bot. 32 140–156. 10.1600/036364407780360166 DOI

Beck J. B., Alexander P. J., Allphin L., Al-Shehbaz I. A., Rushworth C., Bailey C. D., et al. (2012). Does hybridization drive the transition to asexuality in diploid Boechera (Brassicaceae)? Evolution 66 985–995. 10.1111/j.1558-5646.2011.01507.x PubMed DOI

Beilstein M. A., Nagalingum N. S., Clements M. D., Manchester S. R., Mathews S. (2010). Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 107 18724–18728. 10.1073/pnas.0909766107 PubMed DOI PMC

Böcher T. W. (1951). Cytological and embryological studies in the amphiapomictic Arabis holboellii complex. Det Kongelige Danske Videnskabernes Selskab. Biol. Skrif. 6 1–59.

Brukhin V., Osadtchiy J. V., Florez-Rueda A. M., Smetanin D., Bakin E., Nobre M. S., et al. (2019). The Boechera genus as a resource for apomixis research. Front. Plant Sci. 10:392 10.3389/fpls.2019.00392 PubMed DOI PMC

Carlsen T., Elven R., Brochmann C. (2010). The evolutionary history of Beringian Smelowskia (Brassicaceae) inferred from combined microsatellite and DNA sequence data. Taxon 59 427–438. 10.1002/tax.592008 DOI

Carman J. G. (1997). Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 61 51–94. 10.1111/j.1095-8312.1997.tb01778.x DOI

Carman J. G. (2007). “Do duplicate genes cause apomixis?,” in Apomixis: Evolution, Mechanisms and Perspectives, eds Horandl E., Grossniklaus U., van Dijk P. J., Sharbel T. F. (Liechtenstein: A. R. G. Gantner Verlag K. G; ), 63–91.

Carman J. G., Mateo de Arias M., Gao L., Zhao X., Kowallis B., Sherwood D. A., et al. (2019). Apospory in addition to diplospory is common in Boechera where it may facilitate speciation by recombination-driven apomixis-to-sex reversals. Front. Plant Sci. 10:724 10.3389/fpls.2019.00724 PubMed DOI PMC

Carter K. A., Liston A., Bassil N. V., Alice L. A., Bushakra J. M., Sutherland B. L., et al. (2019). Target capture sequencing unravels Rubus evolution. Front. Plant Sci. 10:1615 10.3389/fpls.2019.01615 PubMed DOI PMC

Cheng F., Wu J., Fang L., Wang X. (2012). Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front. Plant Sci. 3:198 10.3389/fpls.2019.00198 PubMed DOI PMC

Comai L. (2005). The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6 836–846. 10.1038/nrg1711 PubMed DOI

Cosendai A. C., Rodewald J., Hörandl E. (2011). Origin and distribution of autopolyploids via apomixis in the alpine species Ranunculus kuepferi (Ranunculaceae). Taxon 60 355–364. 10.1002/tax.602006 DOI

Couvreur T. L., Franzke A., Al-Shehbaz I. A., Bakker F. T., Koch M. A., Mummenhoff K. (2010). Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol. Biol. Evol. 27 55–71. 10.1093/molbev/msp202 PubMed DOI

Cowie R. H., Holland B. S. (2008). Molecular biogeography and diversification of the endemic terrestrial fauna of the Hawaiian Islands. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363 3363–3376. 10.1098/rstb.2008.0061 PubMed DOI PMC

Darlington C. D. (1939). The Evolution Of Genetic Systems. Cambridge: Cambridge University Press.

Doudkin R. V., Volkova S. A. (2013). A new species of Boechera (Brassicaceae) from the Primorsky Territory, Russia. Novon 22 411–414. 10.3417/2010077 DOI

Ellerstrom S. (1983). Apomictic progeny from Raphanobrassica. Hereditas 99:315 10.1111/j.1601-5223.1983.tb00906.x PubMed DOI

Ellerstrom S., Zagorcheva L. (1977). Sterility and apomictic embryo-sac formation in Raphanobrassica. Hereditas 87 107–119. 10.1111/j.1601-5223.1977.tb01251.x DOI

Faria R., Navarro A. (2010). Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25 660–669. 10.1016/j.tree.2010.07.008 PubMed DOI

Fransz P., Linc G., Lee C. R., Aflitos S. A., Lasky J. R., Toomajian C., et al. (2016). Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. Plant J. 88 159–178. 10.1111/tpj.13262 PubMed DOI PMC

Franzke A., German D., Al-Shehbaz I. A., Mummenhoff K. (2009). Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae. Taxon 58 425–437. 10.1002/tax.582009 DOI

Franzke A., Lysak M. A., Al-Shehbaz I. A., Koch M. A., Mummenhoff K. (2011). Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 16 108–116. 10.1016/j.tplants.2010.11.005 PubMed DOI

Freyman W. A., Höhna S. (2017). Cladogenetic and anagenetic models of chromosome number evolution: a Bayesian model averaging approach. Syst. Biol. 67 195–215. 10.1093/sysbio/syx065 PubMed DOI

German D. A., Friesen N. W. (2014). Shehbazia (Shehbazieae, Cruciferae), a new monotypic genus and tribe of hybrid origin from Tibet. Turczaninowia 17 17–23. 10.14258/turczaninowia.17.4.3 DOI

Givnish T. J., Spalink D., Ames M., Lyon S. P. (2016). Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J. Biogeogr. 43 1905–1916. 10.1111/jbi.12854 DOI

Gladenkov A. Y., Oleinik A. E., Marincovich L. (2002). A refined age for the earliest opening of Bering strait. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183 321–328. 10.1016/s0031-0182(02)00249-3 DOI

Hand M. L., Koltunow A. M. (2014). The genetic control of apomixis: asexual seed formation. Genetics 197 441–450. 10.1534/genetics.114.163105 PubMed DOI PMC

Hoffmann A. A., Rieseberg L. H. (2008). Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 39 21–42. 10.1146/annurev.ecolsys.39.110707.173532 PubMed DOI PMC

Hohmann N., Wolf E. M., Lysak M. A., Koch M. A. (2015). A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27 2770–2784. 10.1105/tpc.15.00482 PubMed DOI PMC

Hojsgaard D., Klatt S., Baier R., Carman J. G., Horandl E. (2014). Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 33 414–427. 10.1080/07352689.2014.898488 PubMed DOI PMC

Horandl E., Hojsgaard D. (2012). The evolution of apomixis in angiosperms: A reappraisal. Plant Biosyst. 146 681–693.

Hu T. T., Pattyn P., Bakker E. G., Cao J., Cheng J. F., Clark R. M., et al. (2011). The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43 476–481. 10.1038/ng.807 PubMed DOI PMC

Huang C. H., Sun R., Hu Y., Zeng L., Zhang N., Cai L., et al. (2016). Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 33 394–412. 10.1093/molbev/msv226 PubMed DOI PMC

Huang J., Yang L. Q., Yu Y., Liu Y. M., Xie D. F., Li J., et al. (2018). Molecular phylogenetics and historical biogeography of the tribe Lilieae (Liliaceae): bi-directional dispersal between biodiversity hotspots in Eurasia. Ann. Bot. 122 1245–1262. 10.1093/aob/mcy138 PubMed DOI PMC

Jiang D., Klaus S., Zhang Y.-P., Hillis D. M., Li J.-T. (2019). Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Nat. Sci. Rev. 6 739–745. 10.1093/nsr/nwz035 PubMed DOI PMC

Johri B. M., Ambegaokar K. B., Srivastava P. S. (1992). Comparative Embryology of Angiosperms, Vol. 1 New York, NY: Springer-Verlag.

Jordon-Thaden I., Koch M. A. (2012). “Detection of apomixis in an octoploid, alpine species, Draba oligosperma (Brassicaceae),” in Proceedings of the International Plant and Animal Genome Conference XX, San Diego, CA.

Jordon-Thaden I. E., Al-Shehbaz I. A., Koch M. A. (2013). Species richness of the globally distributed, arctic–alpine genus Draba L. (Brassicaceae). Alpine Bot. 123 97–106. 10.1007/s00035-013-0120-9 DOI

Kantama L., Sharbel T. F., Schranz M. E., Mitchell-Olds T., de Vries S., de Jong H. (2007). Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc. Natl. Acad. Sci. U.S.A. 104 14026–14031. 10.1073/pnas.0706647104 PubMed DOI PMC

Karl R., Koch M. A. (2013). A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Ann. Bot. 112 983–1001. 10.1093/aob/mct165 PubMed DOI PMC

Kim C., Kim S.-C., Kim J.-H. (2019). Historical biogeography of melanthiaceae: a case of Out-of-North America through the bering land Bridge. Front. Plant Sci. 10:396 10.3389/fpls.2019.00396 PubMed DOI PMC

Kliver S., Rayko M., Komissarov A., Bakin E., Zhernakova D., Prasad K., et al. (2018). Assembly of the Boechera retrofracta genome and evolutionary analysis of apomixis-associated genes. Genes 9:185 10.3390/genes9040185 PubMed DOI PMC

Koch M. A., Haubold B., Mitchell-Olds T. (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 17 1483–1498. 10.1093/oxfordjournals.molbev.a026248 PubMed DOI

Lee C. R., Wang B., Mojica J. P., Mandáková T., Prasad K. V. S. K., Goicoechea J. L., et al. (2017). Young inversion with multiple linked QTLs under selection in a hybrid zone. Nat. Ecol. Evol. 1:119. PubMed PMC

Li F. W., Rushworth C. A., Beck J. B., Windham M. D. (2017). Boechera microsatellite website: an online portal for species identification and determination of hybrid parentage. Database 2017:baw169 10.1093/database/baw169 PubMed DOI PMC

Linder H. P., Barker N. P. (2014). Does polyploidy facilitate long-distance dispersal? Ann. Bot. 113 1175–1183. 10.1093/aob/mcu047 PubMed DOI PMC

Lysak M. A., Mandáková T. (2013). “Analysis of plant meiotic chromosomes by chromosome painting,” in Methods in molecular biology, ed. Clifton N. J. (New York, NY: Humana Press; ), 13–24. 10.1007/978-1-62703-333-6_2 PubMed DOI

Lysak M. A., Mandáková T., Schranz M. E. (2016). Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 30 108–115. 10.1016/j.pbi.2016.02.001 PubMed DOI

Mandáková T., Lysak M. A. (2008). Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20 2559–2570. 10.1105/tpc.108.062166 PubMed DOI PMC

Mandáková T., Lysak M. A. (2016a). Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol. 1 43–51. 10.1002/cppb.20009 PubMed DOI

Mandáková T., Lysak M. A. (2016b). Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol. 1 359–371. 10.1002/cppb.20022 PubMed DOI

Mandáková T., Ashby K., Price B. J., Windham M. D., Carman J. G., Lysak M. A. (2020). Genome structure and apomixis in Phoenicaulis (Brassicaceae; Boechereae). J. Syst. Evol. 10.1111/jse.12555 DOI

Mandáková T., Gloss A. D., Whiteman N. K., Lysak M. A. (2016). How diploidization turned a tetraploid into a pseudotriploid. Am. J. Bot. 103 1–10. PubMed

Mandáková T., Heenan P. B., Lysak M. A. (2010). Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol. Biol. 10:367 10.1186/1471-2148-10-367 PubMed DOI PMC

Mandáková T., Hloušková P., German D. A., Lysak M. A. (2017a). Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiol. 174 2062–2071. 10.1104/pp.17.00457 PubMed DOI PMC

Mandáková T., Pouch M., Harmanová K., Zhan S. H., Mayrose I., Lysak M. A. (2017b). Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 26 6445–6462. 10.1111/mec.14379 PubMed DOI

Mandáková T., Schranz M. E., Sharbel T. F., de Jong H., Lysak M. A. (2015a). Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant J. 82 785–793. 10.1111/tpj.12849 PubMed DOI

Mandáková T., Singh V., Krämer U., Lysak M. A. (2015b). Genome structure of the heavy metal hyperaccumulator Noccaea caerulescens and its stability on metalliferous and nonmetalliferous soils. Plant Physiol. 169 674–689. 10.1104/pp.15.00619 PubMed DOI PMC

Mosquin T., Hayley D. E. (1966). Chromosome numbers and taxonomy of some Canadian Arctic plants. Can. J. Bot. 44 1209–1218. 10.1139/b66-132 DOI

Mulligan G. A. (1966). Chromosome numbers of the family Crucifereae III. Can. J. Bot. 44 309–319. 10.1139/b66-037 DOI

Mulligan G. A., Findlay J. N. (1970). Sexual reproduction and agamospermy in the genus Draba. Can. J. Bot. 48 269–271.

Naumova T. N., van der Laak J., Osadtchiy J., Matzk F., Kravtchenko A., Bergervoet J., et al. (2001). Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae). Sex. Plant Reprod. 14 195–200. 10.1007/s00497-001-0118-0 PubMed DOI

Nikolov L. A., Shushkov P., Nevado B., Ga X., Al-Shehbaz I. A., Filatov D., et al. (2019). Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 222 1638–1651. 10.1111/nph.15732 PubMed DOI

Ogutcen E., Vamosi J. C. (2016). phylogenetic study of the tribe Antirrhineae: genome duplications and long-distance dispersals from the old world to the new world. Am. J. Bot. 103 1071–1081. 10.3732/ajb.1500464 PubMed DOI

Rojek J., Kapusta M., Kozieradzka-Kiszkurno M., Majcher D., Gorniak M., Sliwinska E., et al. (2018). Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). Ann. Bot. 122 513–539. 10.1093/aob/mcy114 PubMed DOI PMC

Rokas A., Holland P. W. (2000). Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15 454–459. 10.1016/s0169-5347(00)01967-4 PubMed DOI

Roy B. A. (1995). The breeding systems of six species of Arabis (Brassicaceae). Am. J. Bot. 82 869–877. 10.1002/j.1537-2197.1995.tb15703.x DOI

Schranz M. E., Dobes C., Koch M. A., Mitchell-Olds T. (2005). Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Am. J. Bot. 92 1797–1810. 10.3732/ajb.92.11.1797 PubMed DOI

Stebbins G. L. (1971). Chromosomal Evolution in Higher Plants. London: E. Arnold.

Sybenga J. (1996). Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist? Genome 39 1176–1184. 10.1139/g96-148 PubMed DOI

Wang X.-J., Shi D.-C., Wang X.-Y., Wang J., Sun Y.-S., Liu J.-Q. (2015). Evolutionary migration of the disjunct salt cress eutrema salsugineum (= Thellungiella salsuginea, Brassicaceae) between Asia and North America. PLoS One 10:e0124010 10.1371/journal.pone.0124010 PubMed DOI PMC

Warwick S. I., Al-Shehbaz I. A. (2006). Brassicaceae: chromosome number index and database on CD-Rom. Pl. Syst. Evol. 259 237–248. 10.1007/s00606-006-0421-1 DOI

Wen J., Ickert-Bond S., Nie Z. L., Li R. (2010). “Timing and modes of evolution of eastern Asian - North American biogeographic disjunctions in seed plants,” in Darwin’s Heritage Today: Proceedings of the Darwin 2010 Beijing International Conference, eds Long M., Gu H., Zhou Z. (Beijing: Higher Education Press; ), 252–269.

Windham M. D., Beck J., Alexander P., Li F.-W., Rushworth C., Bailey C. D., et al. (2014). Newly Documented Hybrids In The Tribe Boechereae (Brassicaceae) Challenge Current Generic Circumscriptions In The Group. Available online at: http://www.2014.botanyconference.org/engine/search/index.php?func=detail&aid=312

Windham M. D., Beck J. B., Li F.-W., Allphin L., Carman J. G., Sherwood D. A., et al. (2015). Searching for diamonds in the apomictic rough: a case study involving Boechera lignifera (Brassicaceae). Syst. Bot. 40 1031–1044. 10.1600/036364415x690076 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evolution of an Apomixis-Specific Allele Class in Supernumerary Chromatin of Apomictic Boechera

. 2022 ; 13 () : 890038. [epub] 20220601

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace