Evolution of an Apomixis-Specific Allele Class in Supernumerary Chromatin of Apomictic Boechera
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35720540
PubMed Central
PMC9198585
DOI
10.3389/fpls.2022.890038
Knihovny.cz E-zdroje
- Klíčová slova
- Boechera, UPGRADE2, apomixis, gene evolution, heterochromatic chromosome, pollen, supernumerary DNA, tapetum,
- Publikační typ
- časopisecké články MeSH
Asexual reproduction through seeds in plants (i.e., apomixis) is a heritable trait, and apomixis- linked loci have been identified in multiple species. However, direct identification of genomic elements is typically hindered as apomixis-linked loci and are commonly found in recombination-suppressed and repetitive regions. Heterochromatinized elements, such as B chromosomes and other supernumerary chromosomal DNA fragments have long been known to be associated with asexuality in both plants and animals and are prime candidate regions for the evolution of multiple apomixis factors controlling the individual elements of apomixis. Here, we examined molecular evolution, gene regulation, and chromosomal location of a male apomeiosis factor (UPG2), a long noncoding RNA gene, in sexual and apomictic Boechera with and without male apomeiosis (i.e., balanced and unbalanced apomicts). We revealed the origin of the gene in the apomixis genome on an apomixis-specific, supernumerary heterochromatic Boechera chromosome (Boe1). The UPG2 is active in the tapetum at male meiosis. We found allele classes specific to apomictic and sexual Boechera accessions and a third class that shares the features of both and points to a convergent transition state. Sex alleles are found only in some of the sexual accessions and have higher nucleotide divergence and lower transcriptional activity compared to apo alleles. These data demonstrate selective pressure to maintain the function of UPG2 for unreduced pollen formation in apomicts as the occasional transmission of the allele from unbalanced apomicts into sexual organisms that lead to pseudogenization and functional decay of copies in sexual organisms.
Central European Institute of Technology Masaryk University Brno Czechia
Saskatoon Research and Development Centre Saskatoon SK Canada
Zobrazit více v PubMed
Adolfsson S., Bengtsson B. O. (2007). The spread of apomixis and its effect on resident genetic variation. J. Evol. Biol. 20, 1933–1940. 10.1111/j.1420-9101.2007.01371.x PubMed DOI
Alexander P. J., Windham M. D., Beck J. B., Al-Shehbaz I. A., Allphin L., Bailey C. D. (2015). Weaving a tangled web: divergent and reticulate speciation in Boechera fendleri Sensu Lato (Brassicaceae: Boechereae). Syst. Bot. 40, 572–596. 10.1600/036364415X688745 DOI
Aliyu O. M., Schranz M. E., Sharbel T. F. (2010). Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae). Am. J. Botany. 97, 1719–1731. 10.3732/ajb.1000188 PubMed DOI
Andersson D. I., Jerlström-Hultqvist J., Näsvall J. (2015). Evolution of new functions de novo and from preexisting genes. Cold Spring Harb. Perspect. Biol. 7, a017996. 10.1101/cshperspect.a017996 PubMed DOI PMC
Asker S. E., Jerling L. (1992). Apomixis in Plants. Boca Raton, FL: CRC Press.
Barcaccia G., Albertini E. (2013). Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod. 26, 159–179. 10.1007/s00497-013-0222-y PubMed DOI PMC
Barcaccia G., Palumbo F., Sgorbati S., Albertini E., Pupilli F. (2020). A reappraisal of the evolutionary and developmental pathway of apomixis and its genetic control in angiosperms. Genes. 11, 859. 10.3390/genes11080859 PubMed DOI PMC
Beck J. B., Alexander P. J., Allphin L., Al-Shehbaz I. A., Rushworth C., Bailey C. D., et al. . (2011). Does hybridization drive the transition to asexuality in diploid Boechera? Evolution. 66, 985–995. 10.1111/j.1558-5646.2011.01507.x PubMed DOI
Beziat C., Kleine-Vehn J., Feraru E. (2017). Histochemical staining of β-glucuronidase and its spatial quantification. Methods Mol. Biol. 1497, 73–80. 10.1007/978-1-4939-6469-7_8 PubMed DOI
Böcher T. W. (1951). Cytological and embryologal studies in the amphiapomictic Arabis holboellii complex. Biologiske Skrifter / Kongelige Danske Videnskabernes Selskab. 6, 1–59.
Brandt A., Tran Van P., Bluhm C., Anselmetti Y., Dumas Z., Figuet E., et al. . (2021). Haplotype divergence supports long-term asexuality in the oribatid mite Oppiella nova. Proc. Natl. Acad. Sci. U S A. 118, e2101485118. 10.1073/pnas.2101485118 PubMed DOI PMC
Calderini O., Chang S. B., De Jong H., Busti A., Paolocci F., Arcioni S., et al. . (2006). Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor. Appl. Genet. 112, 1179–1191. 10.1007/s00122-006-0220-7 PubMed DOI
Camacho J. P., Sharbel T. F., Beukeboom L. W. (2000). B-chromosome evolution. Philos. Trans. R So. Lond B Biol. Sci. 355, 163–178. 10.1098/rstb.2000.0556 PubMed DOI PMC
Cao Y., Li K., Li Y., Zhao X., Wang L. (2020). MYB transcription factors as regulators of secondary metabolism in plants. Biology 9, 61. 10.3390/biology9030061 PubMed DOI PMC
Carman J. G. (1997). Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 61, 51–94. 10.1111/j.1095-8312.1997.tb01778.x DOI
Carman J. G., Mateo de Arias M., Gao L., Zhao X., Kowallis B. M., Sherwood D. A., et al. . (2019). Apospory and diplospory in diploid boechera (brassicaceae) may facilitate speciation by recombination-driven apomixis-to-sex reversals. Front. Plant Sci. 10, 724. 10.3389/fpls.2019.00724 PubMed DOI PMC
Chapman H., Bicknell R. (2000). Recovery of a sexual and an apomictic hybrid from crosses between the facultative apomicts Hieracium caespitosum and H. praealtum. N. Z. J. Ecol. 24, 81–85.
Cheng L., Connor T. R., Sirén J., Aanensen D. M., Corander J. (2013). Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228. 10.1093/molbev/mst028 PubMed DOI PMC
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal. 16:735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI
Corral J. M., Vogel H., Aliyu O. M., Hensel G., Thiel T., Kumlehn J., et al. . (2013). A conserved apomixis-specific polymorphism is correlated with exclusive DEDDh exonuclease expression in premeiotic ovules of apomictic Boechera. Plant Physiol. 163, 1660–1672. 10.1104/pp.113.222430 PubMed DOI PMC
Crow J. F., Kimura M. (1965). Evolution in sexual and asexual populations. Am. Nat. 99, 439–450. 10.1086/282389 DOI
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772. 10.1038/nmeth.2109 PubMed DOI PMC
de Meeûs T., Prugnolle F., Agnew P. (2007). Asexual reproduction: genetics and evolutionary aspects. Cell. Mol. Life Sci. 64, 1355–1372. 10.1007/s00018-007-6515-2 PubMed DOI PMC
Excoffier L., Lischer H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567:564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI
Fu H., Zheng Z., Dooner H. K. (2002). Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc. Natl. Acad. Sci. U S A. 99, 1082–1087. 10.1073/pnas.022635499 PubMed DOI PMC
Fu Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925. 10.1093/genetics/147.2.915 PubMed DOI PMC
Fyon F., Lenormand T. (2018). Cis-regulator runaway and divergence in asexuals. Evolution 72, 426–439. 10.1111/evo.13424 PubMed DOI
Grimanelli D., Leblanc O., Espinosa E., Perotti E., González De León D., Savidan Y. (1998). Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80, 33–39. 10.1046/j.1365-2540.1998.00263.x PubMed DOI
Hand M. L., Koltunow A. M. (2014). The genetic control of apomixis: asexual seed formation. Genetics 197, 441–450. 10.1534/genetics.114.163105 PubMed DOI PMC
Hojsgaard D., Klatt S., Baier R., Carman J. G., Hörandl E. (2014). Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 33, 414–427. 10.1080/07352689.2014.898488 PubMed DOI PMC
Kantama L., Sharbel T. F., Schranz M. E., Mitchell-Olds T., Vries S.d, de Jong H. (2007). Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc. Natl. Acad. Sci. U.S.A. 104, 14026–14031. 10.1073/pnas.0706647104 PubMed DOI PMC
Karimi M., Inzé D, Depicker A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195. 10.1016/S1360-138502251-3 PubMed DOI
Kearney M. (2005). Hybridization, glaciation and geographical parthenogenesis. Trends Ecol. Evol. 20, 495–502. 10.1016/j.tree.2005.06.005 PubMed DOI
Kent T. V., Uzunović J, Wright S. I. (2017). Coevolution between transposable elements and recombination. Philos. Trans. R Soc. Lond B Biol. Sci. 372, 20160458. 10.1098/rstb.2016.0458 PubMed DOI PMC
Kotani Y., Henderson S. T., Suzuki G., Johnson S. D., Okada T., Siddons H., et al. . (2014). The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. New Phytol. 201, 973–981. 10.1111/nph.12574 PubMed DOI
Lei X., Liu B. (2020). Tapetum-dependent male meiosis progression in plants: increasing evidence emerges. Front. Plant Sci. 10, 1667. 10.3389/fpls.2019.01667 PubMed DOI PMC
Lovell J. T., Aliyu O. M., Mau M., Schranz E. M., Koch M., Kiefer C., et al. . (2013). On the origin and evolution of apomixis in Boechera. Plant Reprod. 26, 309–315. 10.1007/s00497-013-0218-7 PubMed DOI PMC
Lovell J. T., Williamson R. J., Wright S. I., McKay J. K., Sharbel T. F. (2017). Mutation accumulation in an asexual relative of Arabidopsis. PLOS Gene. 13, e1006550. 10.1371/journal.pgen.1006550 PubMed DOI PMC
Lynch M., Crease T. (1990). The analysis of population survey data on DNA sequence variation. Mol. Biol. Evol. 7, 377–394. PubMed
Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., et al. . (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant. 8, 1274–1284. 10.1016/j.molp.2015.04.007 PubMed DOI
Mandáková T, Lysak M. A. (2016a). Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol. 1, 43–51. 10.1002/cppb.20009 PubMed DOI
Mandáková T., Hlouškov,á P, Windham M. D., Mitchell-Olds T., Ashby K., Price B., et al. . (2020). Chromosomal evolution and apomixis in the cruciferous tribe boechereae. Front. Plant Sci. 11, 514. 10.3389/fpls.2020.00514 PubMed DOI PMC
Mandáková T., Lysak M. A. (2016b). Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol. 1, 359–371. 10.1002/cppb.20022 PubMed DOI
Mandáková T., Schranz M. E., Sharbel T. F., de Jong H., Lysak M. A. (2015). Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant J. 82, 785–793. 10.1111/tpj.12849 PubMed DOI
Mau M., Corral J. M., Vogel H., Melzer M., Fuchs J., Kuhlmann M., et al. . (2013). The conserved chimeric transcript UPGRADE-2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species. Plant Physiol. 163, 1640–1659. 10.1104/pp.113.222448 PubMed DOI PMC
Mau M., Liiving T., Fomenko L., Goertzen R., Paczesniak D., Böttner L., et al. . (2021). The spread of infectious asexuality through haploid pollen. New Phytol. 230, 804–820. 10.1111/nph.17174 PubMed DOI
Mau M., Lovell J. T., Corral J. M., Kiefer C., Koch M. A., Aliyu O. M., et al. . (2015). Hybrid apomicts trapped in the ecological niches of their sexual ancestors. Proc. Natl. Acad. Sci. 112, 2357–2365. 10.1073/pnas.1423447112 PubMed DOI PMC
Miller M. A., Pfeiffer W., Schwartz T. (2012) The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources, in Proceedings of the 1st Conference of the Extreme Science Engineering Discovery Environment: Bridging from the Extreme to the Campus Beyond (Chicago, IL: Association for Computing Machinery; ), 29–48.
Monroe J. G., McKay J. K., Weigel D., Flood P. J. (2021). The population genomics of adaptive loss of function. Heredity 126, 383–395. 10.1038/s41437-021-00403-2 PubMed DOI PMC
Näsvall J., Sun L., Roth J. R., Andersson D. I. (2012). Real-time evolution of new genes by innovation, amplification, and divergence. Science 338:384–387. 10.1126/science.1226521 PubMed DOI PMC
Ozias-Akins P., Roche D., Hanna W. W. (1998). Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc. Natl. Acad. Sci. 95, 5127–5132. 10.1073/pnas.95.9.5127 PubMed DOI PMC
Paradis E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420. 10.1093/bioinformatics/btp696 PubMed DOI
Paradis E., Claude J., Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. 10.1093/bioinformatics/btg412 PubMed DOI
Paun O., Stuessy T. F., Hörandl E. (2006). The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytol. 171, 223–236. 10.1111/j.1469-8137.2006.01738.x PubMed DOI
Pellino M., Sharbel T. F., Mau M., Amiteye S., Corral J. M. (2011). Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual Boechera. BMC Res. Notes 4, 303. 10.1186/1756-0500-4-303 PubMed DOI PMC
Posada D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. 10.1093/molbev/msn083 PubMed DOI
Pupilli F., Barcaccia G. (2012). Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. J. Biotechnol. 159, 291–311. 10.1016/j.jbiotec.2011.08.028 PubMed DOI
R Development-Core-Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Reagin M. J. (2003). TempliPhi - a sequencing template preparation procedure that eliminates ov and DNA purification. J. Biomol. Tech. 14, 143–8. 10.1080/02713680490905817 PubMed DOI PMC
Revell L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. 10.1111/j.2041-210X.2011.00169.x DOI
Roche D., Hanna W. W., Ozias-Akins P. (2001). Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex. Plant Reprod. 13, 343–349. 10.1007/s004970100094 DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. . (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E., et al. . (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. 10.1093/molbev/msx248 PubMed DOI
Sanders P. M., Bui A. Q., Weterings K., McIntire K. N., Hsu Y.-C., Lee P. Y., et al. . (1999). Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reproduct. 11, 297–322. 10.1007/s004970050158 DOI
Schmidt A. (2020). Controlling apomixis: shared features and distinct characteristics of gene regulation. Genes 11, 329. 10.3390/genes11030329 PubMed DOI PMC
Schranz M. E., Dobe,š C, Koch M. A., Mitchell-Olds T. (2005). Sexual reproduction, hybridization, apomixis and polyploidization in the genus Boechera (Brassicaceae). Am. J. Botany 92, 1797–1810. 10.3732/ajb.92.11.1797 PubMed DOI
Scott R. J., Spielman M., Dickinson H. G. (2004). Stamen structure and function. The Plant Cell 16, 46–60. 10.1105/tpc.017012 PubMed DOI PMC
Sharbel T. F., Mitchell-Olds T. (2001). Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae). Heredity 87, 59–68. 10.1046/j.1365-2540.2001.00908.x PubMed DOI
Sharbel T. F., Mitchell-Olds T., Dobes C., Kantama L., de Jong H. (2005). Biogeographic distribution of polyploidy and B chromosomes in the apomictic Boechera holboellii complex. Cytogenet. Genome Res. 109, 283–292. 10.1159/000082411 PubMed DOI
Sharbel T. F., Voigt M.-L., Corral J. M., Galla G., Kumlehn J., Klukas C., et al. . (2010). Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. The Plant Cell 22, 655–671. 10.1105/tpc.109.072223 PubMed DOI PMC
Sharbel T. F., Voigt M. L., Mitchell-Olds T., Kantama L., de Jong H. (2004). Is the aneuploid chromosome in an apomictic Boechera holboellii a genuine B chromosome? Cytogenet. Genome Res. 10, 173–183. 10.1159/000079284 PubMed DOI
Smith J. M. (1968). Evolution in sexual and asexual populations. Am. Nat. 102, 469–473. 10.1086/282559 DOI
Tajima F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595. 10.1093/genetics/123.3.585 PubMed DOI PMC
Theune M. L., Bloss U., Brand L. H., Ladwig F., Wanke D. (2019). Phylogenetic analyses and GAGA-motif binding studies of BBR/BPC proteins lend to clues in GAGA-motif recognition and a regulatory role in brassinosteroid signaling. Front. Plant Sci. 10, 466. 10.3389/fpls.2019.00466 PubMed DOI PMC
Tian F., Yang D.-C., Meng Y.-Q., Jin J., Gao G. (2019). PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113. 10.1093/nar/gkz1020 PubMed DOI PMC
Tomiuk J. (2007). Population Genetics: Evolutionary Features of Asexual Species, in Progress in Botany, eds Esser K., Löttge U., Beyschlag W. (Berlin, Heidelberg: Springer; ), 130–50.
Tonkin-Hill G., Lees J. A., Bentley S. D., Frost S. D. W., Corander J. (2018). RhierBAPS: an R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93. 10.12688/wellcomeopenres.14694.1 PubMed DOI PMC
Underwood C. J., Vijverberg K., Rigola D., Okamoto S., Oplaat C., Camp RHMOd, et al. . (2022). A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 54, 84–93. 10.1038/s41588-021-00984-y PubMed DOI
Van Dijk P. J., Vijverberg K. (2005). The significance of apomixis in the evolution of the angiosperms: A reappraisal, in Plant Species-Level Systematics: New Perspectives on Pattern and Process, eds Bakker F., Chatrou L., Gravendeel B., Pelser P. B. (Gantner Verlag, Ruggell, Liechtenstein: ), 101–116.
Vašut R. J., Vijverberg K., van Dijk P. J., de Jong H. (2014). Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region. Genome 57, 609–620. 10.1139/gen-2014-0143 PubMed DOI
Vielle-Calzada J.-P., Crane C. F., Stelly D. M. (1996). Apomixis: the asexual revolution. Science 274, 1322–1323. 10.1126/science.274.5291.1322 DOI
Windham M. D., Al-Shehbaz I. A. (2006). New and noteworthy species of genus-species Boechera (Brassicaceae) I: sexual diploids. Harvard Papers Botany. 11, 61–88. 10.3100/1043-4534(2006)11[61:NANSOB]2.0.CO;2 DOI
Windham M. D., Al-Shehbaz I. A. (2007a). New and noteworthy species of Boechera (Brassicaceae) III: additional sexual diploids and apomictic hybrids. Harvard Papers Botany 12, 235–257. 10.3100/1043-4534(2007)12[235:NANSOB]2.0.CO;2 DOI
Windham M. D., Al-Shehbaz I. A. (2007b). New and noteworthy species of Boechera (Brassicaceae) II: Apomictic hybrids. Harvard Papers Botany 11, 257–274. 10.3100/1043-4534(2007)11[257:NANSOB]2.0.CO;2 DOI
Yang Z., Wafula E. K., Kim G., Shahid S., McNeal J. R., Ralph P. E., et al. . (2019). Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nat. Plants 5, 991–1001. 10.1038/s41477-019-0458-0 PubMed DOI
Zmieńko A., Samelak A, Kozłowski P., Figlerowicz M. (2014). Copy number polymorphism in plant genomes. Theor. Appl. Genet. 127, 1–18. 10.1007/s00122-013-2177-7 PubMed DOI PMC