Young inversion with multiple linked QTLs under selection in a hybrid zone
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM086496
NIGMS NIH HHS - United States
PubMed
28812690
PubMed Central
PMC5607633
DOI
10.1038/s41559-017-0119
PII: s41559-017-0119
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.
Department of Biology Colorado State University Fort Collins Colorado 80523 USA
Department of Biology Duke University Box 90338 Durham North Carolina 27708 USA
Department of Energy Joint Genome Institute Walnut Creek California 94598 USA
Department of Plant Ecology and Genetics Uppsala University Norbyvägen 18D SE 752 36 Uppsala Sweden
HudsonAlpha Institute for Biotechnology Huntsville Alabama 35806 USA
Phyzen Genomics Institute Phyzen Inc Seoul 151 836 South Korea
Zobrazit více v PubMed
Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8:e1000501. doi: 10.1371/journal.pbio.1000501. PubMed DOI PMC
Huber B, et al. Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity. 2015;114:515–524. doi: 10.1038/hdy.2015.22. PubMed DOI PMC
Lowry DB, Willis JHA. Widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biology. 2010;8:e1000500. doi:1000510.1001371/journal.pbio.1000500. PubMed PMC
Corbett-Detig RB, Hartl DL. Population genomics of inversion polymorphisms in Drosophila melanogaster. PLoS Genet. 2012;8:e1003056. doi: 10.1371/journal.pgen.1003056. PubMed DOI PMC
Kirkpatrick M, Kern A. Where’s the money? Inversions, genes, and the hunt for genomic targets of selection. Genetics. 2012;190:1153–1155. doi: 10.1534/genetics.112.139899. PubMed DOI PMC
Guillen Y, Ruiz A. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics. 2012;13 doi: 10.1186/1471-2164-13-53. PubMed DOI PMC
Smith AC, et al. Maternal gametic transmission of translocations or inversions of human chromosome 11p15.5 results in regional DNA hypermethylation and downregulation of CDKN1C expression. Genomics. 2012;99:25–35. doi: 10.1016/j.ygeno.2011.10.007. PubMed DOI PMC
Kennington WJ, Partridge L, Hoffmann AA. Patterns of diversity and linkage disequilibrium within the cosmopolitan inversion In(3R)Payne in Drosophila melanogaster are indicative of coadaptation. Genetics. 2006;172:1655–1663. PubMed PMC
Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation. Genetics. 2006;173:419–434. PubMed PMC
Rieseberg LH. Chromosomal rearrangements and speciation. Trends in Ecology & Evolution. 2001;16:351–358. PubMed
Noor MAF, Grams KL, Bertucci LA, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:12084–12088. PubMed PMC
Navarro A, Barton NH. Accumulating postzygotic isolation genes in parapatry: A new twist on chromosomal speciation. Evolution. 2003;57:447–459. PubMed
Lohse K, Clarke M, Ritchie M, Etges W. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution. 2015 PubMed PMC
Huang CH, et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol. 2016;33:394–412. doi: 10.1093/molbev/msv226. PubMed DOI PMC
Lee CR, Mitchell-Olds T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Molec Ecol. 2011;20:4631–4642. doi: 10.1111/j.1365-294X.2011.05310.x. PubMed DOI PMC
Lee CR, Mitchell-Olds T. Complex trait divergence contributes to environmental niche differentiation in ecological speciation of Boechera stricta. Molec Ecol. 2013;22:2204–2217. PubMed PMC
Anderson J, Lee CR, Mitchell-Olds T. Life history QTLs and natural selection on flowering time in Boechera stricta, a perennial relative of Arabidopsis. Evolution. 2010;65:771–787. PubMed PMC
Prasad K, et al. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science. 2012;337:1081–1084. doi: 10.1126/science.1221636. PubMed DOI PMC
Heo JY, et al. Identification of quantitative trait loci and a candidate locus for freezing tolerance in controlled and outdoor environments in the overwintering crucifer Boechera stricta. Plant, Cell & Environment. 2014;37:2459–2469. doi: 10.1111/pce.12365. PubMed DOI PMC
Anderson JT, Lee CR, Mitchell-Olds T. Strong selection genome-wide enhances fitness tradeoffs across environments and episodes of selection. Evolution. 2014;68:16–31. doi: 10.1111/evo.12259. PubMed DOI PMC
Schranz ME, Windsor AJ, Song B-H, Lawton-Rauh A, Mitchell-Olds T. Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol. 2007;144:286–298. doi: 10.1104/pp.107.096685. PubMed DOI PMC
Mehringer PJ, Arno SF, Petersen KL. Postglacial history of Lost Trail Pass Bog, Bitterroot Mountains, Montana. Arctic and Alpine Research. 1977;9:345–368.
Mumma SA, Whitlock C, Pierce K. A 28,000 year history of vegetation and climate from Lower Red Rock Lake, Centennial Valley, Southwestern Montana, USA. Palaeogeography Palaeoclimatology Palaeoecology. 2012;326:30–41. doi: 10.1016/j.palaeo.2012.01.036. DOI
Ossowski S, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327:92–94. doi: 10.1126/science.1180677. PubMed DOI PMC
Anderson J, Lee CR, Rushworth C, Colautti R, Mitchell-Olds T. Genetic tradeoffs and conditional neutrality contribute to local adaptation. Molec Ecol. 2013;22:699–708. PubMed PMC
Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings Biological Sciences/The Royal Society. 2012;279:3843–3852. doi: 10.1098/rspb.2012.1051. PubMed DOI PMC
Smadja CM, Butlin RK. A framework for comparing processes of speciation in the presence of gene flow. Molecular Ecology. 2011;20:5123–5140. doi: 10.1111/j.1365-294X.2011.05350.x. PubMed DOI
Guerrero RF, Rousset F, Kirkpatrick M. Coalescent patterns for chromosomal inversions in divergent populations. Philosophical Transactions of the Royal Society B-Biological Sciences. 2012;367:430–438. doi: 10.1098/rstb.2011.0246. PubMed DOI PMC
Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics. 2000;155:1405–1413. PubMed PMC
Naseeb S, et al. Widespread impact of chromosomal inversions on gene expression uncovers robustness via phenotypic buffering. Molecular Biology and Evolution. 2016;33:1679–1696. doi: 10.1093/molbev/msw045. PubMed DOI PMC
Chapman JA, et al. Meraculous: De Novo genome assembly with short paired-end reads. PLoS ONE. 2011;6:e23501. doi: 10.1371/journal.pone.0023501. PubMed DOI PMC
van Oeveren J, et al. Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Research. 2011;21:618–625. doi: 10.1101/gr.112094.110. PubMed DOI PMC
Soderlund C, Humphray S, Dunham A, French L. Contigs Built with Fingerprints, Markers, and FPC V4.7. Genome Research. 2000;10:1772–1787. doi: 10.1101/gr.GR-1375R. PubMed DOI PMC
Nelson W, Soderlund C. Integrating sequence with FPC fingerprint maps. Nucleic Acids Research. 2009;37:e36. doi: 10.1093/nar/gkp034. PubMed DOI PMC
Soderlund C, Bomhoff M, Nelson WM. SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Research. 2011;39:e68. doi: 10.1093/nar/gkr123. PubMed DOI PMC
Slotte T, et al. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet. 2013;45:831–835. doi: 10.1038/ng.2669. PubMed DOI
Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biology. 2004;5 doi: 10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics. 2011;43:491–498. doi: 10.1038/ng.806. PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013:1303.3997.
Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008;4:e1000212. doi: 10.1371/journal.pgen.1000212. PubMed DOI PMC
Mandáková T, Schranz ME, Sharbel TF, de Jong H, Lysak MA. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. The Plant Journal. 2015;82:785–793. doi: 10.1111/tpj.12849. PubMed DOI
Mandáková T, Lysak MA. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae) Plant Cell. 2008;20:2559–2570. doi: 10.1105/tpc.108.062166. PubMed DOI PMC
Lysak MA, Mandáková T. Analysis of plant meiotic chromosomes by chromosome painting. Humana Press; 2013. PubMed
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23:1289–1291. doi: 10.1093/bioinformatics/btm091. PubMed DOI
Rushworth CA, Song BH, Lee CR, Mitchell-Olds T. Boechera, a model system for ecological genomics. Molecular Ecology. 2011;20:4843–4857. doi: 10.1111/j.1365-294X.2011.05340.x. PubMed DOI PMC
Tuinstra RM, Ejeta G, Goldsbrough BP. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theoretical and Applied Genetics. 1997;95:1005–1011. doi: 10.1007/s001220050654. DOI
Scheiner SM. In: Design and analysis of ecological experiments. Scheiner SM, Gurevitch J, editors. Chapman and Hall; 2001. pp. 99–115.
Schurch N, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA (New York) 2016;22:839–851. PubMed PMC
Cande J, Andolfatto P, Prud’homme B, Stern DL, Gompel N. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship. PLoS ONE. 2012;7:e43888. doi: 10.1371/journal.pone.0043888. PubMed DOI PMC
R_Core_Team. R Foundation for Statistical Computing. Vienna, Austria: 2013.
Benjamini Y, Yekutieli D. Quantitative trait loci analysis using the false discovery rate. Genetics. 2005;171:783–790. PubMed PMC
Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC
Bouche F, Lobet G, Tocquin P, Perilleux C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research. 2016;44:D1167–D1171. doi: 10.1093/nar/gkv1054. PubMed DOI PMC
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:1–13. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC
Fumagalli M, Vieira FG, Linderoth T, Nielsen R. ngsTools: methods for population genetics analyses from next-generation sequencing data. Bioinformatics. 2014;30:1486–1487. doi: 10.1093/bioinformatics/btu041. PubMed DOI PMC
McKenna A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. PubMed PMC
Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709. PubMed PMC
Lee C, et al. Selection in a hybrid zone: evidence for linked QTLs in a young inversion. Nature Ecology and Evolution. 2016 in review. PubMed PMC
Clark RM, et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science. 2007;317:338–342. PubMed
Weir B, Cockerham C. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences. 1979;76:5269–5273. PubMed PMC
Nei M. Molecular Evolutionary Genetics. Columbia University Press; 1987.
Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–575. PubMed PMC
Browning BL, Browning SR. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics. 2013;194:459–471. doi: 10.1534/genetics.113.150029. PubMed DOI PMC
Long Q, et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nature Genetics. 2013;45:884–U218. doi: 10.1038/ng.2678. PubMed DOI PMC
How Important Are Structural Variants for Speciation?
Chromosomal Evolution and Apomixis in the Cruciferous Tribe Boechereae
Young inversion with multiple linked QTLs under selection in a hybrid zone