How Important Are Structural Variants for Speciation?

. 2021 Jul 17 ; 12 (7) : . [epub] 20210717

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34356100

Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species-and the underlying mechanism by which structural variants most often contribute to speciation-remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.

Zobrazit více v PubMed

Wu C.-I. The genic view of the process of speciation. J. Evol. Biol. 2001;14:851–865. doi: 10.1046/j.1420-9101.2001.00335.x. DOI

Coyne J.A., Orr H.A. Speciation. Volume 37. Sinauer; Sunderland, MA, USA: 2004.

Feder J.L., Xie X., Rull J., Velez S., Forbes A., Leung B., Dambroski H., Filchak K.E., Aluja M. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proc. Natl. Acad. Sci. USA. 2005;102:6573–6580. doi: 10.1073/pnas.0502099102. PubMed DOI PMC

Kulmuni J., Butlin R.K., Lucek K., Savolainen V., Westram A.M. Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190528. doi: 10.1098/rstb.2019.0528. PubMed DOI PMC

Ting C.-T., Tsaur S.-C., Sun S., Browne W., Chen Y.-C., Patel N., Wu C.-I. Gene duplication and speciation in Drosophila: Evidence from the Odysseus locus. Proc. Natl. Acad. Sci. USA. 2004;101:12232–12235. doi: 10.1073/pnas.0401975101. PubMed DOI PMC

Wittbrodt J., Adam D., Malitschek B., Mäueler W., Raulf F., Telling A., Robertson S.M., Schartl M. Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nat. Cell Biol. 1989;341:415–421. doi: 10.1038/341415a0. PubMed DOI

Wu C.-I., Ting C.-T. Genes and speciation. Nat. Rev. Genet. 2004;5:114–122. doi: 10.1038/nrg1269. PubMed DOI

Orr H.A., Masly J., Phadnis N. Speciation in Drosophila: From Phenotypes to Molecules. J. Hered. 2006;98:103–110. doi: 10.1093/jhered/esl060. PubMed DOI

Rieseberg L.H., Blackman B. Speciation genes in plants. Ann. Bot. 2010;106:439–455. doi: 10.1093/aob/mcq126. PubMed DOI PMC

Nosil P., Feder J.L., Gompert Z. How many genetic changes create new species? Science. 2021;371:777–779. doi: 10.1126/science.abf6671. PubMed DOI

Sudmant P.H., Rausch T., Gardner E.J., Handsaker E.R., Abyzov A., Huddleston J., Zhang Y., Ye K., Jun G., Fritz M.H.-Y., et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81. doi: 10.1038/nature15394. PubMed DOI PMC

Catanach A., Crowhurst R., Deng C., David C., Bernatchez L., Wellenreuther M. The genomic pool of standing structural variation outnumbers single nucleotide polymorphism by threefold in the marine teleost Chrysophrys auratus. Mol. Ecol. 2019;28:1210–1223. doi: 10.1111/mec.15051. PubMed DOI

Faria R., Chaube P., Morales H.E., Larsson T., Lemmon A.R., Lemmon E.M., Rafajlović M., Panova M., Ravinet M., Johannesson K., et al. Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Mol. Ecol. 2018;28:1375–1393. doi: 10.1111/mec.14972. PubMed DOI PMC

Noor M.A.F., Grams K.L., Bertucci L.A., Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA. 2001;98:12084–12088. doi: 10.1073/pnas.221274498. PubMed DOI PMC

Sturtevant A.H. A Case of Rearrangement of Genes in Drosophila. Proc. Natl. Acad. Sci. USA. 1921;7:235–237. doi: 10.1073/pnas.7.8.235. PubMed DOI PMC

Lewis E.B. The Theory and Application of a New Method of Detecting Chromosomal Rearrangements in Drosophila melanogaster. Am. Nat. 1954;88:225–239. doi: 10.1086/281833. DOI

White M., Key K., Andre M., Cheney J. Cytogenetics of the Viatica group of morabine grasshoppers II.Kangaroo Island populations. Aust. J. Zoöl. 1969;17:313–328. doi: 10.1071/ZO9690313. DOI

Creighton H.B., McClintock B. A Correlation of Cytological and Genetical Crossing-Over in Zea Mays. Proc. Natl. Acad. Sci. USA. 1931;17:492–497. doi: 10.1073/pnas.17.8.492. PubMed DOI PMC

Dobzhansky T.G. Genetics of the Evolutionary Process. Columbia University Press; New York, NY, USA: 1971.

Wallace E.M. A possible case of affinity in tomatoes. Heredity. 1960;14:275–283. doi: 10.1038/hdy.1960.31. DOI

Lewis H. Catastrophic Selection as a Factor in Speciation. Evolution. 1962;16:257–271. doi: 10.1111/j.1558-5646.1962.tb03218.x. DOI

Zeitouni B., Boeva V., Janoueix-Lerosey I., Loeillet S., Legoix-Né P., Nicolas A., Delattre O., Barillot E. SVDetect: A tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics. 2010;26:1895–1896. doi: 10.1093/bioinformatics/btq293. PubMed DOI PMC

Ma J., Amos C.I. Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis. PLoS ONE. 2012;7:e40224. doi: 10.1371/journal.pone.0040224. PubMed DOI PMC

De Coster W., De Rijk P., De Roeck A., De Pooter T., D’Hert S., Strazisar M., Sleegers K., Van Broeckhoven C. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res. 2019;29:1178–1187. doi: 10.1101/gr.244939.118. PubMed DOI PMC

Lucek K., Gompert Z., Nosil P. The role of structural genomic variants in population differentiation and ecotype formation in Timema cristinae walking sticks. Mol. Ecol. 2019;28:1224–1237. doi: 10.1111/mec.15016. PubMed DOI

Todesco M., Owens G.L., Bercovich N., Légaré J.-S., Soudi S., Burge D.O., Huang K., Ostevik K.L., Drummond E.B.M., Imerovski I., et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nat. Cell Biol. 2020;584:602–607. doi: 10.1038/s41586-020-2467-6. PubMed DOI

Ebert P., Audano P.A., Zhu Q., Rodriguez-Martin B., Porubsky D., Bonder M.J., Sulovari A., Ebler J., Zhou W., Mari R.S., et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science. 2021;372:eabf7117. doi: 10.1126/science.abf7117. PubMed DOI PMC

Joron M., Frezal L., Jones R., Chamberlain N.L., Lee S.F., Haag C., Whibley A., Becuwe M., Baxter S.W., Ferguson L., et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nat. Cell Biol. 2011;477:203–206. doi: 10.1038/nature10341. PubMed DOI PMC

Jay P., Chouteau M., Whibley A., Bastide H., Parrinello H., Llaurens V., Joron M. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat. Genet. 2021;53:288–293. doi: 10.1038/s41588-020-00771-1. PubMed DOI

Villoutreix R., de Carvalho C.F., Soria-Carrasco V., Lindtke D., De-La-Mora M., Muschick M., Feder J.L., Parchman T.L., Gompert Z., Nosil P. Large-scale mutation in the evolution of a gene complex for cryptic coloration. Science. 2020;369:460–466. doi: 10.1126/science.aaz4351. PubMed DOI

Jones F., Broad Institute Genome Sequencing Platform. Whole Genome Assembly Team. Grabherr M.G., Chan Y.F., Russell P., Mauceli E., Johnson J., Swofford R., Pirun M., et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nat. Cell Biol. 2012;484:55–61. doi: 10.1038/nature10944. PubMed DOI PMC

Lai Z., Nakazato T., Salmaso M., Burke J.M., Tang S., Knapp S.J., Rieseberg L.H. Extensive Chromosomal Repatterning and the Evolution of Sterility Barriers in Hybrid Sunflower Species. Genetics. 2005;171:291–303. doi: 10.1534/genetics.105.042242. PubMed DOI PMC

Hauffe H.C., Searle J. Chromosomal Heterozygosity and Fertility in House Mice (Mus musculus domesticus) From Northern Italy. Genetics. 1998;150:1143–1154. doi: 10.1093/genetics/150.3.1143. PubMed DOI PMC

Wang R.L., Hey J. The Speciation History of Drosophila Pseudoobscura and Close Relatives: Inferences from DNA Sequence Variation at the Period Locus. Genetics. 1996;144:1113–1126. doi: 10.1093/genetics/144.3.1113. PubMed DOI PMC

Piálek J., Hauffe H.C., Rodríguez-Clark K.M., Searle J.B. Raciation and speciation in house mice from the Alps: The role of chromosomes. Mol. Ecol. 2008;10:613–625. doi: 10.1046/j.1365-294x.2001.01209.x. PubMed DOI

Garagna S., Page J., Fernandez-Donoso R., Zuccotti M., Searle J.B. The Robertsonian phenomenon in the house mouse: Mutation, meiosis and speciation. Chromosoma. 2014;123:529–544. doi: 10.1007/s00412-014-0477-6. PubMed DOI

Jeffares D.C., Jolly C., Hoti M., Speed D., Shaw L., Rallis C., Balloux F., Dessimoz C., Bähler J., Sedlazeck F.J. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 2017;8:14061. doi: 10.1038/ncomms14061. PubMed DOI PMC

Abril V.V., Carnelossi E.A.G., González S., Duarte J.M.B. Elucidating the Evolution of the Red Brocket Deer Mazama Americana Complex (Artiodactyla; Cervidae) CGR. 2010;128:177–187. doi: 10.1159/000298819. PubMed DOI

Cursino M.S., Salviano M.B., Abril V.V., dos Santos Zanetti E., Duarte J.M.B. The Role of Chromosome Variation in the Speciation of the Red Brocket Deer Complex: The Study of Reproductive Isolation in Females. BMC Evol. Biol. 2014;14:40. doi: 10.1186/1471-2148-14-40. PubMed DOI PMC

Bracewell R.R., Bentz B.J., Sullivan B.T., Good J.M. Rapid Neo-Sex Chromosome Evolution and Incipient Speciation in a Major Forest Pest. Nat. Commun. 2017;8:1593. doi: 10.1038/s41467-017-01761-4. PubMed DOI PMC

Dowle E.J., Bracewell R.R., Pfrender M.E., Mock K.E., Bentz B.J., Ragland G.J. Reproductive Isolation and Environmental Adaptation Shape the Phylogeography of Mountain Pine Beetle (Dendroctonus Ponderosae) Mol. Ecol. 2017;26:6071–6084. doi: 10.1111/mec.14342. PubMed DOI

Ferree P.M., Barbash D.A. Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila. PLoS Biol. 2009;7:e1000234. doi: 10.1371/journal.pbio.1000234. PubMed DOI PMC

Fishman L., Stathos A., Beardsley P.M., Williams C.F., Hill J.P. Chromosomal Rearrangements and the genetics of reproductive barriers inmimulus(monkey flowerS) Evolution. 2013;67:2547–2560. doi: 10.1111/evo.12154. PubMed DOI

Ayala D., Guerrero R.F., Kirkpatrick M. Reproductive Isolation and Local Adaptation Quantified for a Chromosome Inversion in a Malaria Mosquito. Evolution. 2013;67:946–958. doi: 10.1111/j.1558-5646.2012.01836.x. PubMed DOI

Berdan E.L., Fuller R.C., Kozak G.M. Genomic Landscape of Reproductive Isolation in Lucania Killifish: The Role of Sex Loci and Salinity. J. Evol. Biol. 2021;34:157–174. doi: 10.1111/jeb.13725. PubMed DOI PMC

Nosil P., Villoutreix R., de Carvalho C.F., Farkas T.E., Soria-Carrasco V., Feder J.L., Crespi B.J., Gompert Z. Natural Selection and the Predictability of Evolution in Timema Stick Insects. Science. 2018;359:765–770. doi: 10.1126/science.aap9125. PubMed DOI

Hager E.R., Harringmeyer O.S., Wooldridge T.B., Theingi S., Gable J.T., McFadden S., Neugeboren B., Turner K.M., Hoekstra H.E. A Chromosomal Inversion Drives Evolution of Multiple Adaptive Traits in Deer Mice. bioRxiv. 2021 doi: 10.1101/2021.01.21.427490. DOI

Lowry D.B., Willis J.H. A Widespread Chromosomal Inversion Polymorphism Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation. PLoS Biol. 2010;8:e1000500. doi: 10.1371/journal.pbio.1000500. PubMed DOI PMC

Oneal E., Lowry D.B., Wright K.M., Zhu Z., Willis J.H. Divergent Population Structure and Climate Associations of a Chromosomal Inversion Polymorphism across the Mimulus Guttatus Species Complex. Mol. Ecol. 2014;23:2844–2860. doi: 10.1111/mec.12778. PubMed DOI PMC

Twyford A.D., Friedman J. Adaptive Divergence in the Monkey Flower Mimulus Guttatus Is Maintained by a Chromosomal Inversion: GENETICS OF ADAPTIVE DIVERGENCE IN MONKEY FLOWERS. Evolution. 2015;69:1476–1486. doi: 10.1111/evo.12663. PubMed DOI PMC

Feder J.L., Roethele J.B., Filchak K., Niedbalski J., Romero-Severson J. Evidence for Inversion Polymorphism Related to Sympatric Host Race Formation in the Apple Maggot Fly, Rhagoletis Pomonella. Genetics. 2003;163:939–953. doi: 10.1093/genetics/163.3.939. PubMed DOI PMC

Manoukis N., Powell J.R., Toure M.B., Sacko A., Edillo F.E., Coulibaly M.B., Traore S.F., Taylor C.E., Besansky N.J. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 2008;105:2940–2945. doi: 10.1073/pnas.0709806105. PubMed DOI PMC

Kirubakaran T.G., Grove H., Kent M.P., Sandve S.R., Baranski M., Nome T., De Rosa M.C., Righino B., Johansen T., Otterå H., et al. Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol. Ecol. 2016;25:2130–2143. doi: 10.1111/mec.13592. PubMed DOI

Hooper D.M., Griffith S.C., Price T.D. Sex Chromosome Inversions Enforce Reproductive Isolation across an Avian Hybrid Zone. Mol. Ecol. 2019;28:1246–1262. doi: 10.1111/mec.14874. PubMed DOI

Huang K., Andrew R.L., Owens G.L., Ostevik K.L., Rieseberg L.H. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol. Ecol. 2020;29:2535–2549. doi: 10.1111/mec.15428. PubMed DOI

Lohse K., Clarke M., Ritchie M.G., Etges W.J. Genome-Wide Tests for Introgression between Cactophilic Drosophila Implicate a Role of Inversions during Speciation. Evolution. 2015;69:1178–1190. doi: 10.1111/evo.12650. PubMed DOI PMC

Zuellig M.P., Sweigart A.L. Gene duplicates cause hybrid lethality between sympatric species of Mimulus. PLoS Genet. 2018;14:e1007130. doi: 10.1371/journal.pgen.1007130. PubMed DOI PMC

Bikard D., Patel D., Le Metté C., Giorgi V., Camilleri C., Bennett M., Loudet O. Divergent Evolution of Duplicate Genes Leads to Genetic Incompatibilities Within A. thaliana. Science. 2009;323:623–626. doi: 10.1126/science.1165917. PubMed DOI

Masly J., Jones C.D., Noor M., Locke J., Orr H.A. Gene Transposition as a Cause of Hybrid Sterility in Drosophila. Science. 2006;313:1448–1450. doi: 10.1126/science.1128721. PubMed DOI

Weissensteiner M.H., Bunikis I., Catalán A., Francoijs K.-J., Knief U., Heim W., Peona V., Pophaly S.D., Sedlazeck F., Suh A., et al. Discovery and population genomics of structural variation in a songbird genus. Nat. Commun. 2020;11:3403. doi: 10.1038/s41467-020-17195-4. PubMed DOI PMC

North H.L., Caminade P., Severac D., Belkhir K., Smadja C.M. The Role of Copy-Number Variation in the Reinforcement of Sexual Isolation between the Two European Subspecies of the House Mouse. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190540. doi: 10.1098/rstb.2019.0540. PubMed DOI PMC

Michael J.D., White W.H. VIII + 456 pp. illus. $27.50. Paleobiology. 1978;4:373–379. doi: 10.1017/s0094837300006072. DOI

Barton N., Bengtsson B.O. The barrier to genetic exchange between hybridising populations. Heredity. 1986;57:357–376. doi: 10.1038/hdy.1986.135. PubMed DOI

Coyne J.A., Meyers W., Crittenden A.P., Sniegowski P. The fertility effects of pericentric inversions in Drosophila mela-nogaster. Genetics. 1993;134:487–496. doi: 10.1093/genetics/134.2.487. PubMed DOI PMC

Homolka D., Ivánek R., Capkova J., Jansa P., Forejt J. Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res. 2007;17:1431–1437. doi: 10.1101/gr.6520107. PubMed DOI PMC

Delneri D., Colson I., Grammenoudi S., Roberts I.N., Louis E., Oliver S.G. Engineering evolution to study speciation in yeasts. Nat. Cell Biol. 2003;422:68–72. doi: 10.1038/nature01418. PubMed DOI

Rieseberg L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI

Orr H.A., Coyne J.A. The genetics of postzygotic isolation in the Drosophila virilis group. Genetics. 1989;121:527–537. doi: 10.1093/genetics/121.3.527. PubMed DOI PMC

Divina P., Storchová R., Gregorová S., Buckiová D., Kyselová V., Forejt J. Genetic analysis of X-linked hybrid sterility in the house mouse. Mamm. Genome. 2004;15:515–524. doi: 10.1007/s00335-004-2386-0. PubMed DOI

Masly J.P., Presgraves D.C. High-Resolution Genome-Wide Dissection of the Two Rules of Speciation in Drosophila. PLoS Biol. 2007;5:e243. doi: 10.1371/journal.pbio.0050243. PubMed DOI PMC

Good J.M., Dean M.D., Nachman M.W. A Complex Genetic Basis to X-Linked Hybrid Male Sterility Between Two Species of House Mice. Genetics. 2008;179:2213–2228. doi: 10.1534/genetics.107.085340. PubMed DOI PMC

Matsuda Y., Hirobe T., Chapman V.M. Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc. Natl. Acad. Sci. USA. 1991;88:4850–4854. doi: 10.1073/pnas.88.11.4850. PubMed DOI PMC

Presgraves D.C. Sex chromosomes and speciation in Drosophila. Trends Genet. 2008;24:336–343. doi: 10.1016/j.tig.2008.04.007. PubMed DOI PMC

Presgraves D.C. Evaluating genomic signatures of “the large X-effect” during complex speciation. Mol. Ecol. 2018;27:3822–3830. doi: 10.1111/mec.14777. PubMed DOI PMC

Janoušek V., Fischerová J., Mořkovský L., Reif J., Antczak M., Albrecht T., Reifová R. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity. 2019;122:622–635. doi: 10.1038/s41437-018-0161-3. PubMed DOI PMC

Lande R. Effective Deme Sizes During Long-Term Evolution Estimated from Rates of Chromosomal Rearrangement. Evolution. 1979;33:234. doi: 10.1111/j.1558-5646.1979.tb04678.x. PubMed DOI

Barton N.H. The fitness of hybrids between two chromosomal races of the grasshopper Podisma pedestris. Heredity. 1980;45:47–59. doi: 10.1038/hdy.1980.49. DOI

Baker R.J., Bickham J.W. Speciation by monobrachial centric fusions. Proc. Natl. Acad. Sci. USA. 1986;83:8245–8248. doi: 10.1073/pnas.83.21.8245. PubMed DOI PMC

Nachman M.W., Searle J. Why is the house mouse karyotype so variable? Trends Ecol. Evol. 1995;10:397–402. doi: 10.1016/S0169-5347(00)89155-7. PubMed DOI

Navarro A., Barton N.H. Accumulating postzygotic isolation genes in parapatry: A new twist on chromosomal speciation. Evolution. 2003;57:447–459. doi: 10.1111/j.0014-3820.2003.tb01537.x. PubMed DOI

Navarro A., Betran E., Barbadilla A., Ruiz A. Recombination and Gene Flux Caused by Gene Conversion and Crossing Over in Inversion Heterokaryotypes. Genetics. 1997;146:695–709. doi: 10.1093/genetics/146.2.695. PubMed DOI PMC

Butlin R.K. Recombination and speciation. Mol. Ecol. 2005;14:2621–2635. doi: 10.1111/j.1365-294X.2005.02617.x. PubMed DOI

Rieseberg L., Whitton J., Gardner K. Hybrid Zones and the Genetic Architecture of a Barrier to Gene Flow between Two Sunflower Species. Genetics. 1999;152:713–727. doi: 10.1093/genetics/152.2.713. PubMed DOI PMC

Machado C.A., Kliman R.M., Markert J.A., Hey J. Inferring the history of speciation from multilocus DNA sequence data: The case of Drosophila pseudoobscura and close relatives. Mol. Biol. Evol. 2002;19:472–488. doi: 10.1093/oxfordjournals.molbev.a004103. PubMed DOI

Noor M.A.F., Garfield D.A., Schaeffer S., Machado C.A. Divergence between the Drosophila pseudoobscura and D. persimilis Genome Sequences in Relation to Chromosomal Inversions. Genetics. 2007;177:1417–1428. doi: 10.1534/genetics.107.070672. PubMed DOI PMC

Kulathinal R.J., Stevison L., Noor M.A.F. The Genomics of Speciation in Drosophila: Diversity, Divergence, and Introgression Estimated Using Low-Coverage Genome Sequencing. PLoS Genet. 2009;5:e1000550. doi: 10.1371/journal.pgen.1000550. PubMed DOI PMC

Stevison L.S., Hoehn K.B., Noor M. Effects of Inversions on Within- and Between-Species Recombination and Divergence. Genome Biol. Evol. 2011;3:830–841. doi: 10.1093/gbe/evr081. PubMed DOI PMC

Wang J., Wurm Y., Nipitwattanaphon M., Riba-Grognuz O., Huang Y.-C., Shoemaker D., Keller L. A Y-like social chromosome causes alternative colony organization in fire ants. Nat. Cell Biol. 2013;493:664–668. doi: 10.1038/nature11832. PubMed DOI

Korunes K.L., Noor M.A.F. Pervasive gene conversion in chromosomal inversion heterozygotes. Mol. Ecol. 2018;28:1302–1315. doi: 10.1111/mec.14921. PubMed DOI PMC

Kirkpatrick M., Barton N. Chromosome Inversions, Local Adaptation and Speciation. Genetics. 2005;173:419–434. doi: 10.1534/genetics.105.047985. PubMed DOI PMC

Charlesworth B., Barton N.H. The Spread of an Inversion with Migration and Selection. Genetics. 2018;208:377–382. doi: 10.1534/genetics.117.300426. PubMed DOI PMC

Berg P.R., Star B., Pampoulie C., Sodeland M., Barth J., Knutsen H., Jakobsen K.S., Jentoft S. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. Sci. Rep. 2016;6:23246. doi: 10.1038/srep23246. PubMed DOI PMC

Michel A.P., Sim S., Powell T.H.Q., Taylor M.S., Nosil P., Feder J.L. Widespread genomic divergence during sympatric speciation. Proc. Natl. Acad. Sci. USA. 2010;107:9724–9729. doi: 10.1073/pnas.1000939107. PubMed DOI PMC

Hooper D.M., Price T.D. Chromosomal inversion differences correlate with range overlap in passerine birds. Nat. Ecol. Evol. 2017;1:1526–1534. doi: 10.1038/s41559-017-0284-6. PubMed DOI

Brown K.M., Burk L.M., Henagan L.M., Noor M.A.F. A test of the chromosomal rearrangement model of speciation in drosophila pseudoobscura. Evolution. 2004;58:1856–1860. doi: 10.1111/j.0014-3820.2004.tb00469.x. PubMed DOI

Kozak G.M., Wadsworth C.B., Kahne S., Bogdanowicz S.M., Harrison R.G., Coates B., Dopman E. A combination of sexual and ecological divergence contributes to rearrangement spread during initial stages of speciation. Mol. Ecol. 2017;26:2331–2347. doi: 10.1111/mec.14036. PubMed DOI

Lee C.-R., Wang B., Mojica J.P., Mandáková T., Prasad K.V.S.K., Goicoechea J.L., Perera N., Hellsten U., Hundley H.N., Johnson J., et al. Young inversion with multiple linked QTLs under selection in a hybrid zone. Nat. Ecol. Evol. 2017;1:1–13. doi: 10.1038/s41559-017-0119. PubMed DOI PMC

Coughlan J.M., Willis J.H. Dissecting the role of a large chromosomal inversion in life history divergence throughout the Mimulus guttatus species complex. Mol. Ecol. 2018;28:1343–1357. doi: 10.1111/mec.14804. PubMed DOI

Davey J.W., Barker S.L., Rastas P.M., Pinharanda A., Martin S.H., Durbin R., McMillan W.O., Merrill R.M., Jiggins C.D. No evidence for maintenance of a sympatric Heliconius species barrier by chromosomal inversions. Evol. Lett. 2017;1:138–154. doi: 10.1002/evl3.12. PubMed DOI PMC

Feder J.L., Nosil P. Chromosomal Inversions and species differences: When are genes affecting adaptive divergence and reproductive isolation expected to reside within inversions? Evolution. 2009;63:3061–3075. doi: 10.1111/j.1558-5646.2009.00786.x. PubMed DOI

Crown K.N., Miller D.E., Sekelsky J., Hawley R.S. Local Inversion Heterozygosity Alters Recombination throughout the Genome. Curr. Biol. 2018;28:2984–2990.e3. doi: 10.1016/j.cub.2018.07.004. PubMed DOI PMC

Haldane J.B.S. The Part Played by Recurrent Mutation in Evolution. Am. Nat. 1933;67:5–19. doi: 10.1086/280465. DOI

Force A., Lynch M., Pickett F.B., Amores A., Yan Y.-L., Postlethwait J. Preservation of Duplicate Genes by Complementary, Degenerative Mutations. Genetics. 1999;151:1531–1545. doi: 10.1093/genetics/151.4.1531. PubMed DOI PMC

Lynch M., Force A. The Probability of Duplicate Gene Preservation by Subfunctionalization. Genetics. 2000;154:459–473. doi: 10.1093/genetics/154.1.459. PubMed DOI PMC

Lynch M., O’Hely M., Walsh B., Force A. The Probability of Preservation of a Newly Arisen Gene Duplicate. Genetics. 2001;159:1789–1804. doi: 10.1093/genetics/159.4.1789. PubMed DOI PMC

Nadeau J.H., Sankoff D. Comparable Rates of Gene Loss and Functional Divergence After Genome Duplications Early in Vertebrate Evolution. Genetics. 1997;147:1259–1266. doi: 10.1093/genetics/147.3.1259. PubMed DOI PMC

Postlethwait J.H., Yan Y.-L., Gates M.A., Horne S., Amores A., Brownlie A., Donovan A., Egan E.S., Force A., Gong Z., et al. Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 1998;18:345–349. doi: 10.1038/ng0498-345. PubMed DOI

Duvaux L., Geissmann Q., Gharbi K., Zhou J.-J., Ferrari J., Smadja C.M., Butlin R.K. Dynamics of copy number variation in host races of the pea aphid. Mol. Biol. Evol. 2014;32:63–80. doi: 10.1093/molbev/msu266. PubMed DOI PMC

Mizuta Y., Harushima Y., Kurata N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proc. Natl. Acad. Sci. USA. 2010;107:20417–20422. doi: 10.1073/pnas.1003124107. PubMed DOI PMC

Kirkpatrick M. How and Why Chromosome Inversions Evolve. PLoS Biol. 2010;8:e1000501. doi: 10.1371/journal.pbio.1000501. PubMed DOI PMC

Guerrero R.F., Rousset F., Kirkpatrick M. Coalescent patterns for chromosomal inversions in divergent populations. Philos. Trans. R. Soc. B Biol. Science. 2012;367:430–438. doi: 10.1098/rstb.2011.0246. PubMed DOI PMC

Hof A.E.V., Campagne P., Rigden D., Yung C.J., Lingley J., Quail M.A., Hall N., Darby A., Saccheri I.J. The industrial melanism mutation in British peppered moths is a transposable element. Nat. Cell Biol. 2016;534:102–105. doi: 10.1038/nature17951. PubMed DOI

Chan Y.F., Marks M.E., Jones F., Villarreal G., Shapiro M.D., Brady S.D., Southwick A.M., Absher D.M., Grimwood J., Schmutz J., et al. Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer. Science. 2009;327:302–305. doi: 10.1126/science.1182213. PubMed DOI PMC

Comeault A.A., Flaxman S.M., Riesch R., Curran E., Soria-Carrasco V., Gompert Z., Farkas T.E., Muschick M., Parchman T.L., Schwander T., et al. Selection on a Genetic Polymorphism Counteracts Ecological Speciation in a Stick Insect. Curr. Biol. 2015;25:1975–1981. doi: 10.1016/j.cub.2015.05.058. PubMed DOI

Rundle H.D., Nosil P. Ecological speciation. Ecol. Lett. 2005;8:336–352. doi: 10.1111/j.1461-0248.2004.00715.x. DOI

Faria R., Navarro A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI

Futuyma D.J., Shapiro L.H., Harrison R.G. Hybrid Zones and the Evolutionary Process. Evolution. 1995;49:222. doi: 10.2307/2410309. DOI

Gompert Z., Buerkle C.A. A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol. Ecol. 2009;18:1207–1224. doi: 10.1111/j.1365-294X.2009.04098.x. PubMed DOI

Payseur B.A., Rieseberg L.H. A genomic perspective on hybridization and speciation. Mol. Ecol. 2016;25:2337–2360. doi: 10.1111/mec.13557. PubMed DOI PMC

Gompert Z., Mandeville E.G., Buerkle C.A. Analysis of Population Genomic Data from Hybrid Zones. Annu. Rev. Ecol. Evol. Syst. 2017;48:207–229. doi: 10.1146/annurev-ecolsys-110316-022652. DOI

Mahmoud M., Gobet N., Cruz-Dávalos D.I., Mounier N., Dessimoz C., Sedlazeck F.J. Structural variant calling: The long and the short of it. Genome Biol. 2019;20:1–14. doi: 10.1186/s13059-019-1828-7. PubMed DOI PMC

Lindtke D., Yeaman S. Identifying the loci of speciation: The challenge beyond genome scans. J. Evol. Biol. 2017;30:1478–1481. doi: 10.1111/jeb.13098. PubMed DOI

Zhao M., Wang Q., Wang Q., Jia P., Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: Features and perspectives. BMC Bioinform. 2013;14:S1. doi: 10.1186/1471-2105-14-S11-S1. PubMed DOI PMC

Wang J., Jiang J., Wang H., Kang H., Zhang Q., Liu J.-F. Enhancing Genome-Wide Copy Number Variation Identification by High Density Array CGH Using Diverse Resources of Pig Breeds. PLoS ONE. 2014;9:e87571. doi: 10.1371/journal.pone.0087571. PubMed DOI PMC

Li H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv. 20131303.3997

Li H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Sedlazeck F.J., Rescheneder P., Smolka M., Fang H., Nattestad M., von Haeseler A., Schatz M.C. Accurate Detection of Complex Structural Variations Using Single Molecule Sequencing. Nat Methods. 2018;15:461–468. doi: 10.1038/s41592-018-0001-7. PubMed DOI PMC

Heller D., Vingron M. SVIM: Structural Variant Identification Using Mapped Long Reads. Bioinformatics. 2019;35:2907–2915. doi: 10.1093/bioinformatics/btz041. PubMed DOI PMC

Kiełbasa S.M., Wan R., Sato K., Horton P., Frith M.C. Adaptive Seeds Tame Genomic Sequence Comparison. Genome Res. 2011;21:487–493. doi: 10.1101/gr.113985.110. PubMed DOI PMC

Tham C.Y., Tirado-Magallanes R., Goh Y., Fullwood M.J., Koh B.T.H., Wang W., Ng C.H., Chng W.J., Thiery A., Tenen D.G., et al. NanoVar: Accurate Characterization of Patients’ Genomic Structural Variants Using Low-Depth Nanopore Sequencing. Genome Biol. 2020;21:56. doi: 10.1186/s13059-020-01968-7. PubMed DOI PMC

Cretu Stancu M., van Roosmalen M.J., Renkens I., Nieboer M.M., Middelkamp S., de Ligt J., Pregno G., Giachino D., Mandrile G., Espejo Valle-Inclan J., et al. Mapping and Phasing of Structural Variation in Patient Genomes Using Nanopore Sequencing. Nat. Commun. 2017;8:1326. doi: 10.1038/s41467-017-01343-4. PubMed DOI PMC

Chaisson M.J., Tesler G. Mapping Single Molecule Sequencing Reads Using Basic Local Alignment with Successive Refinement (BLASR): Application and Theory. BMC Bioinform. 2012;13:238. doi: 10.1186/1471-2105-13-238. PubMed DOI PMC

English A.C., Salerno W.J., Reid J.G. PBHoney: Identifying Genomic Variants via Long-Read Discordance and Interrupted Mapping. BMC Bioinform. 2014;15:180. doi: 10.1186/1471-2105-15-180. PubMed DOI PMC

Huddleston J., Chaisson M.J.P., Steinberg K.M., Warren W., Hoekzema K., Gordon D., Graves-Lindsay T.A., Munson K.M., Kronenberg Z.N., Vives L., et al. Discovery and Genotyping of Structural Variation from Long-Read Haploid Genome Sequence Data. Genome Res. 2017;27:677–685. doi: 10.1101/gr.214007.116. PubMed DOI PMC

Jiang T., Liu Y., Jiang Y., Li J., Gao Y., Cui Z., Liu Y., Liu B., Wang Y. Long-Read-Based Human Genomic Structural Variation Detection with CuteSV. Genome Biol. 2020;21:189. doi: 10.1186/s13059-020-02107-y. PubMed DOI PMC

PacificBiosciences/Pbmm2. Pacific Biosciences of California, Inc.; Menlo Park, CA, USA: 2021.

Layer R.M., Chiang C., Quinlan A.R., Hall I.M. LUMPY: A Probabilistic Framework for Structural Variant Discovery. Genome Biol. 2014;15:R84. doi: 10.1186/gb-2014-15-6-r84. PubMed DOI PMC

Rausch T., Zichner T., Schlattl A., Stütz A.M., Benes V., Korbel J.O. DELLY: Structural Variant Discovery by Integrated Paired-End and Split-Read Analysis. Bioinformatics. 2012;28:i333–i339. doi: 10.1093/bioinformatics/bts378. PubMed DOI PMC

Ye K., Schulz M.H., Long Q., Apweiler R., Ning Z. Pindel: A Pattern Growth Approach to Detect Break Points of Large Deletions and Medium Sized Insertions from Paired-End Short Reads. Bioinformatics. 2009;25:2865–2871. doi: 10.1093/bioinformatics/btp394. PubMed DOI PMC

Li H., Ruan J., Durbin R. Mapping Short DNA Sequencing Reads and Calling Variants Using Mapping Quality Scores. Genome Res. 2008;18:1851–1858. doi: 10.1101/gr.078212.108. PubMed DOI PMC

Li H., Durbin R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

NovoAlign. Novocraft Technologies Sdn Bhd; Selangor, Malaysia: 2021.

Homer N., Merriman B., Nelson S.F. BFAST: An Alignment Tool for Large Scale Genome Resequencing. PLoS ONE. 2009;4:e7767. doi: 10.1371/journal.pone.0007767. PubMed DOI PMC

Chen K., Wallis J.W., McLellan M.D., Larson D.E., Kalicki J.M., Pohl C.S., McGrath S.D., Wendl M.C., Zhang Q., Locke D.P., et al. BreakDancer: An Algorithm for High-Resolution Mapping of Genomic Structural Variation. Nat. Methods. 2009;6:677–681. doi: 10.1038/nmeth.1363. PubMed DOI PMC

Lunter G., Goodson M. Stampy: A Statistical Algorithm for Sensitive and Fast Mapping of Illumina Sequence Reads. Genome Res. 2011;21:936–939. doi: 10.1101/gr.111120.110. PubMed DOI PMC

SMALT—Wellcome Sanger Institute. [(accessed on 16 July 2021)]; Available online: https://www.sanger.ac.uk/tool/smalt-0/

Gan X., Stegle O., Behr J., Steffen J.G., Drewe P., Hildebrand K.L., Lyngsoe R., Schultheiss S.J., Osborne E.J., Sreedharan V.T., et al. Multiple Reference Genomes and Transcriptomes for Arabidopsis Thaliana. Nature. 2011;477:419–423. doi: 10.1038/nature10414. PubMed DOI PMC

Rimmer A., Phan H., Mathieson I., Iqbal Z., Twigg S.R.F., WGS500 Consortium. Wilkie A.O.M., McVean G., Lunter G. Integrating Mapping-, Assembly- and Haplotype-Based Approaches for Calling Variants in Clinical Sequencing Applications. Nat. Genet. 2014;46:912–918. doi: 10.1038/ng.3036. PubMed DOI PMC

Hopkins D.P., Tyukmaeva V.I., Gompert Z., Feder J., Nosil P. Functional Genomics Offers New Tests of Speciation Hypotheses. Trends Ecol. Evol. 2020;35:968–971. doi: 10.1016/j.tree.2020.08.001. PubMed DOI PMC

Bush G.L., Case S.M., Wilson A.C., Patton J.L. Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sci. USA. 1977;74:3942–3946. doi: 10.1073/pnas.74.9.3942. PubMed DOI PMC

Leaché A.D., Banbury B.L., Linkem C.W., De Oca A.N.-M. Phylogenomics of a rapid radiation: Is chromosomal evolution linked to increased diversification in north american spiny lizards (Genus Sceloporus)? BMC Evol. Biol. 2016;16:1–16. doi: 10.1186/s12862-016-0628-x. PubMed DOI PMC

De Vos J.M., Augustijnen H., Bätscher L., Lucek K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190539. doi: 10.1098/rstb.2019.0539. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...