Advances in Understanding the Karyotype Evolution of Tetrapulmonata and Two Other Arachnid Taxa, Ricinulei and Solifugae
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA 19142
the Ministry of Education, Youth, and Sports of the Czech Republic
SVV 260568
the Ministry of Education, Youth, and Sports of the Czech Republic
206/08/0813
the Czech Science Foundation
16-10298S
the Czech Science Foundation
DEB 0640245
U.S. National Science Foundation
DEB 0640219
U.S. National Science Foundation
DEB 2003382
U.S. National Science Foundation
financial support without project
the Chilean National Commission for Scientific and Technological Research
CZ.1.05/4.1.00/16.0347
the European Regional Development Fund and the state budget of the Czech Republic
CZ.2.16/3.1.00/21515
the European Regional Development Fund and the state budget of the Czech Republic
RI grant LM2015062
Czech-BioImaging
PubMed
40004536
PubMed Central
PMC11855311
DOI
10.3390/genes16020207
PII: genes16020207
Knihovny.cz E-zdroje
- Klíčová slova
- Ricinulei, heterochromatin, holocentric, nucleolus organizer region, polyploidy, sex chromosome, solifuge, somatic pairing, spider, telomere,
- MeSH
- fylogeneze * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- molekulární evoluce * MeSH
- organizátor jadérka genetika MeSH
- pavoukovci * genetika klasifikace MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND/OBJECTIVES: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these arachnid orders was almost unknown prior to the present study. METHODS: Chromosomes were investigated using methods of standard (Giemsa-stained preparations, banding techniques) and molecular cytogenetics (fluorescence in situ hybridization, comparative genomic hybridization). RESULTS AND CONCLUSIONS: New data for 38 species, combined with previously published data, suggest that ancestral arachnids possessed low to moderate 2n (22-40), monocentric chromosomes, one nucleolus organizer region (NOR), low levels of heterochromatin and recombinations, and no or homomorphic sex chromosomes. Karyotypes of Pedipalpi and Solifugae diversified via centric fusions, pericentric inversions, and changes in the pattern of NORs and, in solifuges, also through tandem fusions. Some solifuges display an enormous amount of constitutive heterochromatin and high NOR number. It is hypothesized that the common ancestor of amblypygids, thelyphonids, and spiders exhibited a homomorphic XY system, and that telomeric heterochromatin and NORs were involved in the evolution of amblypygid sex chromosomes. The new findings support the Cephalosomata clade (acariforms, palpigrades, and solifuges). Hypotheses concerning the origin of acariform holocentric chromosomes are presented. Unlike current phylogenetic hypotheses, the results suggest a sister relationship between Schizomida and a clade comprising other tetrapulmonates as well as a polyploidization in the common ancestor of the clade comprising Araneae, Amblypygi, and Thelyphonida.
Department of Zoology and Entomology University of Pretoria Pretoria 0083 South Africa
Department of Zoology Denver Museum of Nature and Science 2001 Colorado Blvd Denver CO 80205 USA
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Prague Czech Republic
Ditsong National Museum of Natural History 432 Paul Kruger Street Pretoria 0001 South Africa
Institute of Animal Physiology and Genetics AS CR Rumburská 89 277 21 Liběchov Czech Republic
Na Perštýně 2 110 00 Prague Czech Republic
Senckenberg Research Institute Arachnology Mertonstrasse 17 21 60325 Frankfurt Germany
Zobrazit více v PubMed
Ontano A.Z., Steiner H.G., Sharma P.P. How many long branch orders occur in Chelicerata? Opposing effects of Palpigradi and Opilioacariformes on phylogenetic stability. Mol. Phylogenet. Evol. 2022;168:107378. doi: 10.1016/j.ympev.2021.107378. PubMed DOI
Harvey M.S. The neglected cousins: What do we know about the smaller arachnid orders? J. Arachnol. 2002;30:357–372. doi: 10.1636/0161-8202(2002)030[0357:TNCWDW]2.0.CO;2. DOI
Garwood R.J., Dunlop J. Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders. PeerJ. 2014;2:e641. doi: 10.7717/peerj.641. PubMed DOI PMC
Wheeler W.C., Hayashi C.Y. The phylogeny of the extant chelicerate orders. Cladistics. 1998;14:173–192. doi: 10.1111/j.1096-0031.1998.tb00331.x. PubMed DOI
Giribet G., Edgecombe G.D., Wheeler W.C., Babbitt C. Phylogeny of the Arachnida and Opiliones: A combined approach using morphological and molecular sequence data. Cladistics. 2002;18:5–70. PubMed
Regier J.C., Shultz J.W., Zwick A., Hussey A., Ball B., Wetzer R., Martin J.W., Cunningham C.W. Arthropod relationships revealed by phylogenomic analysis of nuclear protein coding sequences. Nature. 2010;463:1079–1083. doi: 10.1038/nature08742. PubMed DOI
Arabi J., Judein M.L.I., Deharveng L., Lourenço W.R., Cruaund C., Hussain A. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): Detecting new mitogenomic rearrangements. J. Mol. Evol. 2012;74:81–95. doi: 10.1007/s00239-012-9490-7. PubMed DOI
Sharma P.P., Kaluziak S.T., Pérez-Porro A.R., González V.L., Hormiga G., Wheeler W.C., Giribet G. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 2014;31:2963–2984. doi: 10.1093/molbev/msu235. PubMed DOI
Lozano-Fernandez J., Tanner A.R., Giacomelli M., Carton R., Vinther J., Edgecombe G.D., Pisani D. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat. Commun. 2019;10:2295. doi: 10.1038/s41467-019-10244-7. PubMed DOI PMC
Ballesteros J.A., Sharma P.P. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst. Biol. 2019;68:896–917. doi: 10.1093/sysbio/syz011. PubMed DOI
Howard R.J., Edgecombe G.D., Legg D.A., Pisani D., Lozano-Fernandez J. Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks. Org. Divers. Evol. 2019;19:71–86. doi: 10.1007/s13127-019-00390-7. DOI
Ban X.C., Shao Z.K., Wu L.J., Sun J.T., Xue X.F. Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics. 2022;38:452–464. doi: 10.1111/cla.12504. PubMed DOI
Deakin J.E., Pootter S., O’Neill R., Ruiz-Herrera A., Cioffi M.B., Eldridge M.D.B., Fukui K., Marshall Graves J.A., Griffin D., Grutzner F., et al. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019;10:627. doi: 10.3390/genes10080627. PubMed DOI PMC
Araujo D., Schneider M.C., Paula-Neto E., Cella D.M. The Spider Cytogenetic Database, Version 13.0. [(accessed on 12 December 2024)]. Available online: http://www.arthropodacytogenetics.bio.br/spiderdatabase.
Norton R.A., Kethley J.B., Johnston D.E., OConnor B.M. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch D.L., Ebbert M.A., editors. Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman & Hall; New York, NY, USA: 1993. pp. 8–99.
Tsurusaki N., Svojanovská H., Schöenhofer A., Šťáhlavský F. The Harvestmen Cytogenetic Database, Version 9.1. [(accessed on 12 December 2024)]. Available online: http://arthropodacytogenetics.bio.br/harvestmendatabase.
Schneider M.C., Mattos V.F., Cella D.M. The Scorpion Cytogenetic Database, Version 12. [(accessed on 12 December 2024)]. Available online: http://www.arthropodacytogenetics.bio.br/scorpiondatabase.
Šťáhlavský F. The Pseudoscorpion Cytogenetic Database, Version 10.6. [(accessed on 12 December 2024)]. Available online: http://www.arthropodacytogenetics.bio.br/pseudoscorpiondatabase.
Harvey M.S. Catalogue of the Smaller Arachnid Orders of the World: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing; Clayton, Australia: 2003.
Wheeler W.C., Coddington J.A., Crowley L.M., Dimitrov D., Goloboff P.A., Griswold C.E., Hormiga G., Prendini L., Ramírez M.J., Sierwald P., et al. The spider tree of life: Phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 2017;33:574–616. doi: 10.1111/cla.12182. PubMed DOI
World Spider Catalog Version 25. Natural History Museum Bern. [(accessed on 19 August 2024)]. Available online: http://wsc.nmbe.ch.
Moreno-González J.A., Gutierrez-Estrada M., Prendini L. Systematic revision of the whip spider family Paracharontidae (Arachnida: Amblypygi) with description of a new troglobitic genus and species from Colombia. Am. Mus. Novitates. 2023;4000:1–36. doi: 10.1206/4000.1. DOI
World Amblypygi Catalog Natural History Museum Bern. 2022. [(accessed on 19 August 2024)]. Available online: http://wac.nmbe.ch.
De Miranda G.S., Kulkarni S.S., Tagliatela J., Baker C.M., Giupponi A.P.L., Labarque F.M., Gavish-Regev E., Rix M.G., Carvalho L.S., Fusari L.M., et al. The rediscovery of a relict unlocks the first global phylogeny of whip spiders (Amblypygi) Syst. Biol. 2024;73:495–505. doi: 10.1093/sysbio/syae021. PubMed DOI
World Schizomida Catalog Natural History Museum Bern. 2022. [(accessed on 19 August 2024)]. Available online: http://wac.nmbe.ch.
World Uropygi Catalog Natural History Museum Bern. 2022. [(accessed on 19 August 2024)]. Available online: http://wac.nmbe.ch.
Clouse R.M., Branstetter M.G., Buenavente P., Crowley L.M., Czekanski-Moir J., General D.E.M., Giribet G., Harvey M.S., Janies D.A., Mohagan A.B., et al. First global molecular phylogeny and biogeographical analysis of two arachnid orders (Schizomida and Uropygi) supports a tropical Pangean origin and mid-Cretaceous diversification. J. Biogeogr. 2017;44:2660–2672. doi: 10.1111/jbi.13076. DOI
Pepato A.R., da Rocha C.A.F., Dunlop J.A. Phylogenetic position of the acariform mites: Sensitivity to homology assessment under total evidence. BMC Evol. Biol. 2010;10:235. doi: 10.1186/1471-2148-10-235. PubMed DOI PMC
Weygoldt P., Paulus H.F. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. Z. Zool. Syst. Evol. 1979;17:177–200. doi: 10.1111/j.1439-0469.1979.tb00699.x. DOI
Petrunkevitch A.I. Arachnida. In: Moore R.C., editor. Treatise on Invertebrate Palaeontology, Part P. Arthropoda 2. Geological Society of America & University of Kansas Press; Lawrence, KS, USA: 1955. pp. 42–162.
Van der Hammen L. An Introduction to Comparative Arachnology. SPB Academic Publishing; Hague, The Netherlands: 1989.
Shultz J.W. Muscular anatomy of a whipspider, Phrynus longipes (Amblypygi), and its evolutionary significance. Zool. J. Linn. Soc. 1999;126:81–116. doi: 10.1111/j.1096-3642.1999.tb00608.x. DOI
Shultz J.W. A phylogenetic analysis of the arachnid orders based on morphological characters. Zool. J. Linn. Soc. 2007;150:221–265. doi: 10.1111/j.1096-3642.2007.00284.x. DOI
Shear W.A., Selden P.A., Rolfe W.D.I., Bonamo P.M., Grierson J.D. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida) Am. Mus. Novit. 1987;2901:1–74.
Bu Y., Gao Y., Nunes Godeiro N. The first complete mitochondrial genome of the micro-whip-scorpion Schizomus zhensis (Arachnida: Schizomida) and phylogenetic analysis. Mitochondrial DNA B Resour. 2022;7:709–711. doi: 10.1080/23802359.2022.2067499. PubMed DOI PMC
Selden P.A., Shear W.A., Bonamo P.M. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology. 1991;34:241–281.
Dunlop J.A. Evidence for a sister group relationship between Ricinulei and Trigonotarbida. Bull. Brit. Arachnol. Soc. 1996;10:193–204.
World Ricinulei Catalog Natural History Museum Bern. 2022. [(accessed on 19 August 2024)]. Available online: http://wac.nmbe.ch.
Murienne J., Benavides L.R., Prendini L., Hormiga G., Giribet G. Forest refugia in Western and Central Africa as ‘museums’ of Mesozoic biodiversity. Biol. Lett. 2013;9:20120932. doi: 10.1098/rsbl.2012.0932. PubMed DOI PMC
Fernández R., Giribet G. Unnoticed in the tropics: Phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida) R. Soc. Open Sci. 2015;2:150065. doi: 10.1098/rsos.150065. PubMed DOI PMC
Benavides L.R., Daniels S.R., Giribet G. Understanding the real magnitude of the arachnid order Ricinulei through deep Sanger sequencing across its distribution range and phylogenomics, with the formalization of the first species from the Lesser Antilles. J. Zool. Syst. Evol. Res. 2021;59:1850–1873. doi: 10.1111/jzs.12546. DOI
Sato S., Derkarabetian S., Valdez-Mondragón A., Pérez-González A., Benavides L.R., Daniels S.R., Giribet G. Under the hood: Phylogenomics of hooded tick spiders (Arachnida, Ricinulei) uncovers discordance between morphology and molecules. Mol. Phylogenet. Evol. 2024;193:108026. doi: 10.1016/j.ympev.2024.108026. PubMed DOI
Schwager E.E., Sharma P.P., Clarke T., Leite D.J., Wierschin T., Pechmann M., Akiyama-Oda Y., Esposito L., Bechsgaard J., Bilde T., et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15:62. doi: 10.1186/s12915-017-0399-x. PubMed DOI PMC
Nolan E.D., Santibáñez-López C.E., Sharma P.P. Developmental gene expression as a phylogenetic data class: Support for the monophyly of Arachnopulmonata. Dev. Genes Evol. 2020;230:137–153. doi: 10.1007/s00427-019-00644-6. PubMed DOI
Harper A., Baudouin Gonzalez L., Schönauer A., Janssen R., Seiter M., Holzem M., Arif S., McGregor A.P., Sumner-Rooney L. Widespread retention of ohnologs in key developmental gene families following whole-genome duplication in arachnopulmonates. G3. 2021;11:jkab299. doi: 10.1093/g3journal/jkab299. PubMed DOI PMC
Ontano A.Z., Gainett G., Aharon S., Ballesteros J.A., Benavides L.R., Corbett K.F., Gavish-Regev E., Harvey M.S., Monsma S., Santibáñez-López C.E., et al. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol. Biol. Evol. 2021;38:2446–2467. doi: 10.1093/molbev/msab038. PubMed DOI PMC
Ballesteros J.A., Santibáñez López C.E., Kováč L., Gavish-Regev E., Sharma P.P. Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi. Proc. R. Soc. B. 2019;286:2426. doi: 10.1098/rspb.2019.2426. PubMed DOI PMC
Kulkarni S.S., Yamasaki T., Thi Hong Phung L., Karuaera N., Daniels S.R., Gavish-Regev E., Sharma P.P. Phylogenomic data reveal three new families of poorly studied Solifugae (camel spiders) Mol. Phylogenet. Evol. 2024;191:107989. doi: 10.1016/j.ympev.2023.107989. PubMed DOI
Dunlop J.A., Krüger J., Alberti G. The sejugal furrow in camel spiders and acariform mites. Arachnol. Mitt. 2012;43:8–15. doi: 10.5431/aramit4303. DOI
Dabert M., Witalinski W., Kazmierski A., Olszanowski Z., Dabert J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 2010;56:222–241. doi: 10.1016/j.ympev.2009.12.020. PubMed DOI
Ballesteros J.A., Santibáñez-López C.E., Baker C.M., Benavides L.R., Cunha T.J., Gainett G., Ontano A.Z., Setton E.V.W., Arango C.P., Gavish-Regev E., et al. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol. Biol. Evol. 2022;39:msac021. doi: 10.1093/molbev/msac021. PubMed DOI PMC
Kulkarni S.S., Steiner H.G., Garcia E.L., Iuri H., Jones R.R., Ballesteros J.A., Gainett G., Graham M.R., Harms D., Lyle R., et al. Neglected no longer: Phylogenomic resolution of higher level relationships in Solifugae. iScience. 2023;26:107684. doi: 10.1016/j.isci.2023.107684. PubMed DOI PMC
Král J., Forman M., Kořínková T., Reyes Lerma A.C., Haddad C.R., Musilová J., Řezáč M., Ávila Herrera I.M., Thakur S., Dippenaar-Schoeman A.S., et al. Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Sci. Rep. 2019;9:3001. doi: 10.1038/s41598-019-39034-3. PubMed DOI PMC
Kořínková T., Král J. Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W., editor. Spider Ecophysiology. Springer-Verlag; Berlin/Heidelberg, Germany: 2013. pp. 159–171.
Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Ávila Herrera I.M., Haddad C.R., Vítková M., Henriques S., Palacios Vargas J.G., et al. Evolution of the karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae) Biol. J. Linn. Soc. 2013;109:377–408. doi: 10.1111/bij.12056. DOI
Král J. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res. 2007;15:863–879. doi: 10.1007/s10577-007-1169-3. PubMed DOI
Král J., Kořínková T., Forman M., Krkavcová L. Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenet. Genome Res. 2011;133:43–66. doi: 10.1159/000323497. PubMed DOI
Sember A., Pappová M., Forman M., Nguyen P., Marec F., Dalíková M., Divišová K., Doležálková-Kaštánková M., Zrzavá M., Sadílek D., et al. Patterns of sex chromosome differentiation in spiders: Insights from comparative genomic hybridisation. Genes. 2020;11:849. doi: 10.3390/genes11080849. PubMed DOI PMC
Forman M., Nguyen P., Hula V., Král J. Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae) Cytogenet. Genome Res. 2013;141:43–49. doi: 10.1159/000351041. PubMed DOI
Seiter M., Reyes Lerma A.C., Král J., Sember A., Divišová K., Palacios-Vargas J.G., Colmenares P., Loria S.F., Prendini L. Cryptic diversity in the whip spider genus Paraphrynus (Amblypygi: Phrynidae): Integrating morphology, karyotype and DNA. Arthropod Syst. Phylogeny. 2020;78:265–285.
Paula-Neto E., Araujo D., Carvalho L.S., Cella D.M., Schneider M.C. Chromosomal characteristics of a Brazilian whip spider (Amblypygi) and evolutionary relationships with other arachnid orders. Genet. Mol. Res. 2013;12:3726–3734. doi: 10.4238/2013.September.19.3. PubMed DOI
Reyes Lerma A.C., Šťáhlavský F., Seiter M., Carabajal Paladino L.Z., Divišová K., Forman M., Sember A., Král J. Insights into the karyotype evolution of Charinidae, the early-diverging clade of whip spiders (Arachnida: Amblypygi) Animals. 2021;11:3233. doi: 10.3390/ani11113233. PubMed DOI PMC
Millot J., Tuzet O. La spermatogenèse chez les Pédipalpes. Bull. Biol. Fr. Belg. 1934;68:77–83.
Kasturi Bai A.R., Parthasarathy M.D. The chromosomes of Thelyphonus indicus Stoliczka. Proc. Indian Acad. Sci. B. 1957;24:9–22.
Jayarama K.S., Gowda L.S. Karyological and meiotic studies in whipscorpion Thelyphonus sepiaris Butler. Cytologia. 1994;59:87–91. doi: 10.1508/cytologia.59.87. DOI
Santos-Costa R.C., Carvalho L.S., Schneider M.C. The first cytogenetic description in Schizomida, a micro-diverse arachnid order. 21st International Chromosome Conference. Cytogenet. Genome Res. 2016;148:91.
Vítková M., Král J., Traut W., Zrzavý J., Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res. 2005;13:145–156. doi: 10.1007/s10577-005-7721-0. PubMed DOI
Warren E. The genital system of Hypoctonus formosus (Butler) Ann. Natal Mus. 1939;9:307–344.
Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera) Chromosoma. 1976;58:275–284. doi: 10.1007/BF00292094. PubMed DOI
Dolejš P., Kořínková T., Musilová J., Opatová V., Kubcová L., Buchar J., Král J. Karyotypes of central European spiders of the genera Arctiosa, Tricca, and Xerolycosa (Araneae: Lycosidae) Eur. J. Entomol. 2011;108:1–16. doi: 10.14411/eje.2011.001. DOI
Král J., Kováč Ľ., Šťáhlavský F., Lonský P., Ľuptáčik P. The first karyotype study in palpigrades, a primitive order of arachnids (Arachnida: Palpigradi) Genetica. 2008;134:79–87. doi: 10.1007/s10709-007-9221-y. PubMed DOI
Sola L., Rossi A.R., Iaselli V., Rasch E.M., Monaco P.J. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet. Cell Genet. 1992;60:229–235. doi: 10.1159/000133346. PubMed DOI
Ávila Herrera I.M., Král J., Pastuchová M., Forman M., Musilová J., Kořínková T., Šťáhlavský F., Zrzavá M., Nguyen P., Just P., et al. Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): Implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecol. Evol. 2021;21:75. PubMed PMC
Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Mediouni J., Fuková I., Frydrychová R., Dhouibi M.H., Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI
Traut W., Eickhoff U., Schorch J.C. Identification and analysis of sex chromosomes by comparative genomic hybridization (CGH) Methods Cell Sci. 2001;23:157–163. doi: 10.1023/A:1013138925996. PubMed DOI
Graham D.E. The isolation of high molecular weight DNA from whole organisms of large tissue masses. Anal. Biochem. 1978;85:609–613. doi: 10.1016/0003-2697(78)90262-2. PubMed DOI
Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Levan A.K., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Oliver J.H., Jr. Cytogenetics of mites and ticks. Annu. Rev. Entomol. 1977;22:407–429. doi: 10.1146/annurev.en.22.010177.002203. PubMed DOI
Tsurusaki N. Chapter 6. Cytogenetics. In: Pinto da Rocha R., Machado G., Giribet G., editors. The Harvestmen: The Biology of Opiliones. Harvard University Press; Cambridge, MA, USA: 2007. pp. 266–279.
Šťáhlavský F., Král J., Harvey M.S., Haddad C.R. A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones) Eur. J. Entomol. 2006;103:277–289. doi: 10.14411/eje.2006.036. DOI
Schneider M.C., Zacaro A.A., Pinto-da-Rocha R., Candido D.M., Cella D.M. A comparative cytogenetic analysis of 2 Bothriuridae species and overview of the chromosome data of Scorpiones. J. Hered. 2009;100:545–555. doi: 10.1093/jhered/esp023. PubMed DOI
Stávale L.M., Schneider M.C., Brescovit A.D., Cella D.M. Chromosomal characteristics and karyotype evolution of Oxyopidae spiders (Araneae, Entelegynae) Genet. Mol. Res. 2011;10:752–763. doi: 10.4238/vol10-2gmr1084. PubMed DOI
De Miranda G.S., Giupponi A.P.L., Scharff N., Prendini L. Phylogeny and biogeography of the pantropical whip spider family Charinidae (Arachnida: Amblypygi) Zool. J. Linn. Soc. 2022;194:136–180. doi: 10.1093/zoolinnean/zlaa101. DOI
Suzuki S. Cytological studies in spiders III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. J. Sci. Hiroshima Univ. B. 1954;15:23–136.
Král J., Dulíková L., Kořínková T., Musilová J., Vítková M., Hedin M., Henriques S.S., Haddad C.R. Evolution of the karyotype and sex chromosome systems in mesothelid and mygalomorph spiders. In: Żabka M., editor. Book of Abstracts, 18th International Congress of Arachnology. University of Podlasie & International Society of Arachnology; Siedlce, Poland: 2010. pp. 227–229.
Rowland J.M., Cooke J.A.L. Systematics of the arachnid order Uropygida (=Thelyphonida) J. Arachnol. 1973;1:55–71.
Liu Y., Yi C., Fan C., Liu Q., Liu S., Shen L., Zhang K., Huang Y., Liu C., Wang Y., et al. Pan-centromere reveals widespread centromere repositioning of soybean genomes. Proc. Natl. Acad. Sci. USA. 2023;120:e2310177120. doi: 10.1073/pnas.2310177120. PubMed DOI PMC
Noor M.A., Grams K.L., Bertucci L.A., Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA. 2001;98:12084–12088. doi: 10.1073/pnas.221274498. PubMed DOI PMC
Hoffmann A.A., Riesenberg L.H. Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 2008;39:21–42. doi: 10.1146/annurev.ecolsys.39.110707.173532. PubMed DOI PMC
Rieseberg L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI
Lu M., He X. Centromere repositioning causes inversion of meiosis and generates a reproductive barrier. Proc. Natl. Acad. Sci. USA. 2019;116:21580–21591. doi: 10.1073/pnas.1911745116. PubMed DOI PMC
John B. Meiosis. Cambridge University Press; Cambridge, MA, USA: 1990.
Lukaszewski A.J.D., Kopecky G. Inversions of chromosome arms 4AL and 2BS in wheat invert the patterns of chiasma distribution. Chromosoma. 2012;121:201–208. doi: 10.1007/s00412-011-0354-5. PubMed DOI
King M. Species Evolution: The Role of Chromosome Change. Cambridge University Press; Cambridge, MA, USA: 1993.
Zhang L., Reifová R., Halenková Z., Gompert Z. How important are structural variants for speciation? Genes. 2021;12:1084. doi: 10.3390/genes12071084. PubMed DOI PMC
Lysak M.A. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions. Plant Cell. 2022;34:2475–2491. doi: 10.1093/plcell/koac116. PubMed DOI PMC
Warren E. Spermatogenesis in spiders and the chromosome hypothesis of heredity. Nature. 1926;117:82–83. doi: 10.1038/117082b0. DOI
Hale D.W., Greenbaum I.F. Synapsis of a chromosomal pair heterozygous for a pericentric inversion and the presence of a heterochromatic short arm. Cytogenet. Cell Genet. 1988;48:55–57. doi: 10.1159/000132586. PubMed DOI
Sharma T., Garg G.S. Constitutive heterochromatin and karyotype variation in Indian pygmy mouse, Mus dunni. Genet. Res. 1975;25:189–191. doi: 10.1017/S0016672300015585. PubMed DOI
Prakhongcheep O., Chaiprasertsri N., Terada S., Hirai Y., Srikulnath K., Hirai H., Koga A. Heterochromatin blocks constituting the entire short arms of acrocentric chromosomes of Azara’s owl monkey: Formation processes inferred from chromosomal locations. DNA Res. 2013;20:461–470. doi: 10.1093/dnares/dst023. PubMed DOI PMC
Masta S.E., Klann A.E., Podsiadlowski L. A comparison of the mitochondrial genomes from two families of Solifugae (Arthropoda: Chelicerata): Eremobatidae and Ammotrechidae. Gene. 2008;417:35–42. doi: 10.1016/j.gene.2008.03.011. PubMed DOI
Cushing P.E., Graham M.R., Prendini L., Brookhart J.O. A multilocus molecular phylogeny of the endemic North American camel spider family Eremobatidae (Arachnida: Solifugae) Mol. Phylogenet. Evol. 2015;92:280–293. doi: 10.1016/j.ympev.2015.07.001. PubMed DOI
Golic M.M., Golic K.G. A quantitative measure of the mitotic pairing of alleles in Drosophila melanogaster and the influence of structural heterozygosity. Genetics. 1996;143:385–400. doi: 10.1093/genetics/143.1.385. PubMed DOI PMC
Tsurusaki N. Geographic variation of the number of B-chromosomes in Metagagrella tenuipes (Opiliones, Phalangiidae, Gagrellinae) Mem. Queensl. Mus. 1993;33:659–665.
Gunn S.J., Hilburn L.R. Differential staining of tick chromosomes: Techniques for C-banding and silver-staining and karyology of Rhipicephalus sanguineus (Latreille) J. Parasitol. 1989;75:239–245. doi: 10.2307/3282772. PubMed DOI
Gunn S.J., Hilburn L.R. Cytosystematics of five North American Amblyomma (Acarina: Ixodidae) species. J. Parasitol. 1995;81:25–29. doi: 10.2307/3284000. PubMed DOI
Adilardi R.S., Ojanguren-Affilastro A.A., Rodriguez-Gil S.G., Scioscia C.L., Mola L.M. Meiotic studies in Brachistosternus alienus (Scorpiones; Bothriuridae) J. Arachnol. 2013;41:222–226. doi: 10.1636/B12-77.1. DOI
Vitturi R., Colomba M.S., Caputo V., Sparacio I., Barbieri R. High heterochromatin content in somatic chromosomes of two unrelated species of Diplopoda (Myriapoda) Chromosome Res. 1997;5:407–412. doi: 10.1023/A:1018400510064. PubMed DOI
Lopes D.M., Fernandes A., Diniz D., Scudeler P.E.S., Foresti F., Campos L.A.D.O. Similarity of heterochromatic regions in the stingless bees (Hymenoptera: Meliponini) revealed by chromosome painting. Caryologia. 2014;67:222–226. doi: 10.1080/0144235X.2014.974349. DOI
Hughes S.E., Hawley R.S. Heterochromatin: A rapidly evolving species barrier. PLoS Biol. 2009;7:e1000233. doi: 10.1371/journal.pbio.1000233. PubMed DOI PMC
Ferree P.M., Barbash D.A. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol. 2009;7:e1000234. doi: 10.1371/journal.pbio.1000234. PubMed DOI PMC
Wolf K.W. How meiotic cells deal with non-exchange chromosomes. BioEssays. 1994;16:107–114. doi: 10.1002/bies.950160207. PubMed DOI
Gorlov I.P., Tsurusaki N. Morphology and meiotic/mitotic behavior of B chromosomes in a Japanese harvestman, Metagagrella tenuipes (Arachnida: Opiliones): No evidence for B accumulation mechanisms. Zool. Sci. 2000;17:349–355. PubMed
Oliveira R.M., Zacaro A.A., Gnaspin I.P., Cella D.M. Cytogenetics of three Brazilian Goniosoma species: A new record for diploid number in Laniatores (Opiliones, Gonyleptidae, Goniosomatinae) J. Arachnol. 2006;34:435–443. doi: 10.1636/S04-30.1. DOI
Schneider M.C., Zacaro A.A., Oliveira R.M., Gnaspini P., Cella D.M. Conventional and ultrastructural analyses of the chromosomes of Discocyrtus pectinifemur (Opiliones, Laniatores, Gonyleptidae) J. Zool. Syst. Evol. Res. 2008;47:203–207. doi: 10.1111/j.1439-0469.2008.00490.x. DOI
Svojanovská H., Nguyen P., Hiřman M., Tuf I.H., Wahab R.A., Haddad C.R., Šťáhlavský F. Karyotype evolution in harvestmen of the suborder Cyphophthalmi (Opiliones) Cytogenet. Genome Res. 2016;148:227–236. doi: 10.1159/000445863. PubMed DOI
Šťáhlavský F., Opatova V., Just P., Lotz L.N., Haddad C.R. Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa. Comp. Cytogen. 2018;12:41–59. doi: 10.3897/compcytogen.v12i1.21744. PubMed DOI PMC
Jindrová H., Hiřman M., Sadílek D., Bezděčka P., Št’áhlavský F. Distribution of 18S rDNA clusters in Central European harvestmen of the suborder Eupnoi (Arachnida: Opiliones) Eur. J. Entomol. 2020;117:282–288. doi: 10.14411/eje.2020.032. DOI
Gunn S.J., Hilburn L.R. Cytosystematics of five North American Dermacentor (Acari: Ixodidae) species. J. Med. Entomol. 1990;27:620–627. doi: 10.1093/jmedent/27.4.620. PubMed DOI
Meyer J.M., Kurtti T.J., Van Zee J.P., Hill C.A. Genome organization of major tandem repeats in the hard tick, Ixodes scapularis. Chromosome Res. 2010;18:357–370. doi: 10.1007/s10577-010-9120-4. PubMed DOI
Christophoryová J., Krajčovičová K., Šťáhlavský F., Španiel S., Opatova V. Integrative taxonomy approach reveals cryptic diversity within the phoretic pseudoscorpion genus Lamprochernes (Pseudoscorpiones: Chernetidae) Insects. 2023;14:122. doi: 10.3390/insects14020122. PubMed DOI PMC
Schneider M.C., Cella D.M. Karyotype conservation in 2 populations of the parthenogenetic scorpion Tityus serrulatus (Buthidae): rDNA and its associated heterochromatin are concentrated on only one chromosome. J. Hered. 2010;101:491–496. doi: 10.1093/jhered/esq004. PubMed DOI
Adilardi R.S., Ojanguren-Affilastro A.A., Mola L.M. Sex-linked chromosome heterozygosity in males of Tityus confluens (Buthidae): A clue about the presence of sex chromosomes in scorpions. PLoS ONE. 2016;11:e0164427. doi: 10.1371/journal.pone.0164427. PubMed DOI PMC
Almeida B.R.R., Milhomem-Paixão S.S.R., Noronha R.C.R., Nagamachi C.Y., Costa M.J.R.D., Pardal P.P.O., Coelho J.S., Pieczarka J.C. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae) BMC Genet. 2017;18:35. doi: 10.1186/s12863-017-0494-6. PubMed DOI PMC
Šťáhlavský F., Nguyen P., Sadílek D., Štundlová J., Just P., Haddad C.R., Koç H., Ranawana K.B., Stockmann M., Yağmur E.A., et al. Evolutionary dynamics of rDNA clusters on chromosomes of buthid scorpions (Chelicerata: Arachnida) Biol. J. Linn. Soc. 2020;131:547–565. doi: 10.1093/biolinnean/blaa118. DOI
Just P., Šťáhlavský F., Kovařík F., Štundlová J. Tracking the trends of karyotype differentiation in the phylogenetic context of Gint, a scorpion genus endemic to the Horn of Africa (Scorpiones: Buthidae) Zool. J. Linn. Soc. 2022;196:885–901. doi: 10.1093/zoolinnean/zlac049. DOI
Araujo D., Cella D.M., Brescovit A.D. Cytogenetic analysis of the neotropical spider Nephilengys cruentata (Araneomorphae, Tetragnathidae): Standard staining, NORs, C-bands and base-specific fluorochromes. Braz. J. Biol. 2005;65:193–202. doi: 10.1590/S1519-69842005000200002. PubMed DOI
Král J., Musilová J., Šťáhlavský F., Řezáč M., Akan Z., Edwards R.L., Coyle F.A., Almerje C.R. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders. Chromosome Res. 2006;14:859–880. doi: 10.1007/s10577-006-1095-9. PubMed DOI
Araujo D., Oliveira E.G., Giroti A.M., Mattos V.F., Paula-Neto E., Brescovit A.D., Schneider M.C., Cella D.M. Comparative cytogenetics of seven Ctenidae species (Araneae) Zool. Sci. 2014;31:83–88. doi: 10.2108/zsj.31.83. PubMed DOI
Oliveira R.M., de Jesus A.C., Brescovit A.D., Cella D.M. Chromosomes of Crossopriza lyoni (Blackwall 1867), intraindividual numerical chromosome variation in Physocyclus globosus (Taczanowski 1874), and the distribution pattern of NORs (Araneomorphae, Haplogynae, Pholcidae) J. Arachnol. 2007;35:293–306. doi: 10.1636/SH06-07.1. DOI
Šťáhlavský F., Forman M., Just P., Denič F., Haddad C.R., Opatova V. Cytogenetics of entelegyne spiders (Arachnida, Araneae) from southern Africa. Comp. Cytogenet. 2020;14:107–138. doi: 10.3897/CompCytogen.v14i1.48667. PubMed DOI PMC
Miller D.A., Dew V., Tantravahi R., Miller O. Supression of human nucleolar organizer activity in mouse human somatic hybrid cells. Exp. Cell Res. 1976;101:235–243. doi: 10.1016/0014-4827(76)90373-6. PubMed DOI
Dobigny G., Ozouf-Costaz C., Bonillo C., Volobouev V. Evolution of rRNA gene clusters and telomeric repeats during explosive genome repatterning in Taterillus X (Rodentia, Gerbillinae) Cytogenet. Genome Res. 2003;103:94–103. doi: 10.1159/000076296. PubMed DOI
Grzywacz B., Maryańska-Nadachowska A., Chobanov D.P., Karamysheva T., Warchałowska-Śliwa E. Comparative analysis of the location of rDNA in the Palaearctic bushcricket genus Isophya (Orthoptera: Tettigoniidae: Phaneropterinae) Eur. J. Entomol. 2011;108:509–517. doi: 10.14411/eje.2011.066. DOI
Frydrychová R., Mason J. Telomeres: Their structure and maintenance. In: Stuart D., editor. The Mechanisms of DNA Replication. InTech; Rijeka, Croatia: 2013. pp. 423–443.
Araujo D., Schneider M.C., Paula-Neto E., Cella D.M. Sex chromosomes and meiosis in spiders: A review. In: Swan A., editor. Meiosis—Molecular Mechanisms and Cytogenetic Diversity. InTech; Rijeka, Croatia: 2012. pp. 87–108.
Oliver J.H., Jr. Cytogenetics of ticks (Acari: Ixodoidea) II. Multiple sex chromosomes. Chromosoma. 1965;17:323–327. doi: 10.1007/BF00348791. PubMed DOI
Štundlová J., Hospodářská M., Lukšíková K., Voleníková A., Pavlica T., Altmanová M., Richter A., Reichard M., Dalíková M., Pelikánová Š., et al. Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res. 2022;30:309–333. doi: 10.1007/s10577-022-09707-3. PubMed DOI
Chung Voleníková A., Sahara K., Štundlová J., Dalíková M., Koutecký P., Grof-Tisza P., Simonsen T.J., Žurovec M., Provazníková I., Walters J.R., et al. Ghost W chromosomes and unique genome architecture in ghost moths of the family Hepialidae. bioRxiv. 2023:bioRxiv:09.03.556148.
Dunlop J.A., Penney D. Fossil Arachnids. Siri Scientific Press; Manchester, UK: 2012. Monograph Series Volume 2.
Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Phillips R.B., Ihssen P.E. Identification of sex chromosomes in lake trout (Salvelinus namaycush) Cytogenet. Cell Genet. 1985;39:14–18. doi: 10.1159/000132097. PubMed DOI
Kratochvíl L., Stöck M., Rovatsos M., Bullejos M., Herpin A., Jeffries D.L., Peichel C.L., Perrin N., Valenzuela N., Johnson Pokorná M. Expanding the classical paradigm: What we have learnt from vertebrates about sex chromosome evolution. Phil. Trans. R. Soc. B. 2021;376:20200097. doi: 10.1098/rstb.2020.0097. PubMed DOI PMC
Pigozzi M.I. Diverse stages of sex-chromosome differentiation in tinamid birds: Evidence from crossover analysis in Eudromia elegans and Crypturellus tataupa. Genetica. 2011;139:771–777. doi: 10.1007/s10709-011-9581-1. PubMed DOI
Matsunaga S. Junk DNA promotes sex chromosome evolution. Heredity. 2009;102:525–526. doi: 10.1038/hdy.2009.36. PubMed DOI
Cuevas C.C., Formas J.R. Heteromorphic sex chromosomes in Eupsophus insularis (Amphibia: Anura: Leptodactylidae) Chromosome Res. 1996;4:467–470. doi: 10.1007/BF02265054. PubMed DOI
Reed K.M., Phillips R.B. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Res. 1997;5:221–227. doi: 10.1023/A:1018411417816. PubMed DOI
Schmid M., Sims S.H., Haaf T., Macgregor H.C. Chromosome banding in Amphibia. X. 18S and 28S ribosomal RNA genes, nucleolus organizers and nucleoli in Gastrotheca riobambae. Chromosoma. 1986;94:139–145. doi: 10.1007/BF00286992. DOI
Schmid M., Ohta S., Steinlein C., Guttenbach M. Chromosome banding in Amphibia. XIX. Primitive ZW/ZZ sex chromosomes in Buergeria buergeri (Anura, Rhacophoridae) Cytogenet. Cell Genet. 1993;62:238–246. doi: 10.1159/000133486. PubMed DOI
Cioffi M.B., Bertollo L.A.C. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity. 2010;105:554–561. doi: 10.1038/hdy.2010.18. PubMed DOI
McKee B.D., Handel M.A. Sex chromosomes, recombination, and chromatin conformation. Chromosoma. 1993;102:71–80. doi: 10.1007/BF00356023. PubMed DOI
Šťáhlavský F., Boyer S.L., Harvey M.S., Giribet G. First cytogenetic study of a member of the harvestman family Pettalidae (Opiliones: Cyphophthalmi) Austr. J. Entomol. 2012;51:299–302. doi: 10.1111/j.1440-6055.2012.00870.x. DOI
Qumsiyeh M.B. Evolution of number and morphology of mammalian chromosomes. J. Hered. 1994;85:455–465. doi: 10.1093/oxfordjournals.jhered.a111501. PubMed DOI
Shultz J.W. Evolutionary morphology and phylogeny of Arachnida. Cladistics. 1990;6:1–38. doi: 10.1111/j.1096-0031.1990.tb00523.x. PubMed DOI
Alberti G., Peretti A.V. Fine structure of male genital system and sperm in Solifugae does not support a sister-group relationship with Pseudoscorpiones (Arachnida) J. Arachnol. 2002;30:268–274. doi: 10.1636/0161-8202(2002)030[0268:FSOMGS]2.0.CO;2. DOI
Sokolov I.I. The chromosome complex of mites and its importance for systematics and phylogeny. Trud. Leningr. Obshch. Estestvois, Otd. Zool. 1954;72:124–159. (In Russian)
Pepato A.R., Dos S., Costa S.G., Harvey M.S., Klimov P.B. One-way ticket to the blue: A large-scale, dated phylogeny revealed asymmetric land-to-water transitions in acariform mites (Acari: Acariformes) Mol. Phylogenet. Evol. 2022;177:107626. doi: 10.1016/j.ympev.2022.107626. PubMed DOI
Blackmon H., Hardy N.B., Ross L. The evolutionary dynamics of haplodiploidy: Genome architecture and haploid viability. Evolution. 2015;69:2971–2978. doi: 10.1111/evo.12792. PubMed DOI PMC
Helle W., Pijnacker L.P. Parthenogenesis, chromosomes and sex. In: Helle W., Sabelis M.S., editors. Spider Mites: Their Biology, Natural Enemies and Control. Volume 1a. Elsevier; Amsterdam, The Netherlands: 1985. pp. 129–139.
Gregory T.R. Animal Genome Size Database, Release 2.0. 2023. [(accessed on 28 August 2023)]. Available online: http://www.genomesize.com.
Král J. Holokinetic (holocentric) chromosomes. Biologické listy. 1994;59:191–217. (In Czech, with English summary)
Bureš P., Zedek F., Marková M. Holocentric chromosomes. In: Wendel J., Greilhuber J., Doležel J., Leitch I.J., editors. Plant Genome Diversity. Physical Structure of Plant Genomes. Volume 2. Springer Verlag; Berlin/Heidelberg, Germany: 2013. pp. 187–208.
Diaz M.O., Maynard R., Brum-Zorrilla N. Diffuse centromere and chromosome polymorphism in haplogyne spiders of the families Dysderidae and Segestriidae. Cytogenet. Genome Res. 2010;128:131–138. doi: 10.1159/000296273. PubMed DOI
Heinemann R.L., Hughes R.D. Reproduction, reproductive organs, and meiosis in the bisexual non-parthenogenetic mite Caloglyphus mycophagus, with reference to oocyte degeneration in virgins (Sarcoptiformes: Acaridae) J. Morphol. 1970;130:93–102. doi: 10.1002/jmor.1051300109. DOI
Gainett G., Sharma P.P. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo. 2020;11:18. doi: 10.1186/s13227-020-00163-w. PubMed DOI PMC
Kulkarni S.S., Klementz B.C., Sharma P.P. A chromosome-level genome of the giant vinegaroon Mastigoproctus giganteus exhibits the signature of pre-Silurian whole genome duplication. bioRxiv. 2024:bioRxiv:11.08.622695. doi: 10.1093/jhered/esae074. PubMed DOI
Telford M.J., Thomas R.H. Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc. Natl. Acad. Sci. USA. 1998;95:10671–10675. doi: 10.1073/pnas.95.18.10671. PubMed DOI PMC
Gainett G., Klementz B.C., Setton E.V.W., Simian C., Iuri H.A., Edgecombe G.D., Peretti A.V., Sharma P.P. A plurality of morphological characters need not equate with phylogenetic accuracy: A rare genomic change refutes the placement of Solifugae and Pseudoscorpiones in Haplocnemata. Evol. Dev. 2024;26:e12467. doi: 10.1111/ede.12467. PubMed DOI
Gunn S.J., Hilburn L.R. Parthenogenesis and karyotypic evolution in the Cayenne tick, model for the production of karyotypic changes through a parthenogenetic pathway. J. Med. Entomol. 1991;28:340–349. doi: 10.1093/jmedent/28.3.340. DOI
Oliver J.H., Jr., Tanaka K., Sawada M. Cytogenetics of ticks (Acari: Ixodoidea). 12. Chromosome and hybridization studies of bisexual and parthenogenetic Haemaphysalis longicornis races from Japan and Korea. Chromosoma. 1973;42:269–288. doi: 10.1007/BF00284775. PubMed DOI
Goroschenko Y.L. Karyotypes of argasid ticks of USSR fauna in connection with their taxonomy. Tsitologiya. 1962;4:1–15. (In Russian)
Ribeiro J.M., Alarcon-Chaidez F., Francischetti I.M., Mans B.J., Mather T.N., Valenzuela J.G., Wikel S.K. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI
Geraci N.S., Johnston J.S., Robinson J.P., Wikel S.K., Hill C.A. Variation in genome size of argasid and ixodid ticks. Insect Biochem. Mol. Biol. 2007;37:399–408. doi: 10.1016/j.ibmb.2006.12.007. PubMed DOI
Šťáhlavský F., Král J., Harvey M.S., Haddad C.R. The first cytogenetic characterization of atemnids: Pseudoscorpions with the highest chromosome numbers (Arachnida: Pseudoscorpiones) Cytogenet. Genome Res. 2012;137:22–30. doi: 10.1159/000339516. PubMed DOI
Beukeboom L., Perrin N. The Evolution of Sex Determination. Oxford University Press; Oxford, UK: 2014.
Comai L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005;6:836–846. doi: 10.1038/nrg1711. PubMed DOI
McGregor H.C. Introduction to Animal Cytogenetics. Chapman & Hall; London, UK: 1993.
Yant L., Hollister J.D., Wright K.M., Arnold B.J., Higgins J.D., Franklin F.C.H., Bomblies K. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr. Biol. 2013;23:2151–2156. doi: 10.1016/j.cub.2013.08.059. PubMed DOI PMC
Cifuentes M., Grandont L., Moore G., Chevre A.M., Jenczewski E. Genetic regulation of meiosis in polyploid species: New insights into an old question. New Phytol. 2010;186:29–36. doi: 10.1111/j.1469-8137.2009.03084.x. PubMed DOI
Kinn D.N. The life cycle and behaviour of Cercoleipus coelonotus (Acarina: Mesostigmata) Univ. Calif. Publ. Entomol. 1971;65:1–62.
Schneider M.C., Zacaro A.A., Pinto-da-Rocha R., Candido D.M., Cella D.M. Complex meiotic configuration of the holocentric chromosomes: The intriguing case of the scorpion Tityus bahiensis. Chromosome Res. 2009;17:883–898. doi: 10.1007/s10577-009-9076-4. PubMed DOI
Soleglad M.E., Fet V. High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni) Euscorpius. 2003;11:1–175. doi: 10.18590/euscorpius.2003.vol2003.iss11.1. DOI
Santibáñez-López C.E., Aharon S., Ballesteros J.A., Gainett G., Baker C.M., González-Santillán E., Harvey M.S., Hassan M.K., Abu Almaaty A.H., Aldeyarbi S.M., et al. Phylogenomics of scorpions reveal contemporaneous diversification of scorpion mammalian predators and mammal-active sodium channel toxins. Syst. Biol. 2022;71:1281–1289. doi: 10.1093/sysbio/syac021. PubMed DOI
Šťáhlavský F., Král J. Karyotype analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones) Hereditas. 2004;140:49–60. doi: 10.1111/j.1601-5223.2004.01783.x. PubMed DOI
Araujo D., Paula-Neto E., Brescovit A.D., Cella D.M., Schneider M.C. Chromosomal similarities between Nephilidae and Tetragnathidae indicate unique evolutionary traits among Araneoidea. Ital. J. Zool. 2015;82:513–520. doi: 10.1080/11250003.2015.1078418. DOI
Piza S.T. Notas sobre cromossômios de alguns escorpiões brasileiros. An. Esc. Super. Agric. Luiz Queiroz. 1947;62:169–176. doi: 10.1590/S0071-12761947000100006. DOI
Rodríguez-Gil S.G., Merani M.S., Scioscia C.L., Mola L.M. Cytogenetics in three species of Polybetes Simon 1897 from Argentina (Araneae, Sparassidae) I. Karyotype and chromosome banding pattern. J. Arachnol. 2007;35:227–237. doi: 10.1636/S05-69.1. DOI
Troiano G. Karyotype and male meiosis of four species of Roncus L. Koch, 1873 (Pseudoscorpionida, Neobisiidae) Boll. Zool. 1990;57:1–9. doi: 10.1080/11250009009355666. DOI
Paula-Neto E., Cella D.M., Araujo D., Brescovit A.D., Schneider M.C. Comparative cytogenetic analysis among filistatid spiders (Araneomorphae: Haplogynae) J. Arachnol. 2017;45:123–128. doi: 10.1636/M14-69.1. DOI
Mattos V.F., Cella D.M., Carvalho L.S., Candido D.M., Schneider M.C. High chromosome variability and the presence of multivalent associations in buthid scorpions. Chromosome Res. 2013;21:121–136. doi: 10.1007/s10577-013-9342-3. PubMed DOI