Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30816146
PubMed Central
PMC6395618
DOI
10.1038/s41598-019-39034-3
PII: 10.1038/s41598-019-39034-3
Knihovny.cz E-zdroje
- MeSH
- genom * MeSH
- karyotyp * MeSH
- meióza MeSH
- molekulární evoluce * MeSH
- pavouci genetika MeSH
- polyploidie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spiders are an ancient and extremely diverse animal order. They show a considerable diversity of genome sizes, karyotypes and sex chromosomes, which makes them promising models to analyse the evolution of these traits. Our study is focused on the evolution of the genome and chromosomes in haplogyne spiders with holokinetic chromosomes. Although holokinetic chromosomes in spiders were discovered a long time ago, information on their distribution and evolution in these arthropods is very limited. Here we show that holokinetic chromosomes are an autapomorphy of the superfamily Dysderoidea. According to our hypothesis, the karyotype of ancestral Dysderoidea comprised three autosome pairs and a single X chromosome. The subsequent evolution has frequently included inverted meiosis of the sex chromosome and an increase of 2n. We demonstrate that caponiids, a sister clade to Dysderoidea, have enormous genomes and high diploid and sex chromosome numbers. This pattern suggests a polyploid event in the ancestors of caponiids. Holokinetic chromosomes could have arisen by subsequent multiple chromosome fusions and a considerable reduction of the genome size. We propose that spider sex chromosomes probably do not pose a major barrier to polyploidy due to specific mechanisms that promote the integration of sex chromosome copies into the genome.
Zobrazit více v PubMed
Schwager EE, et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15:62. doi: 10.1186/s12915-017-0399-x. PubMed DOI PMC
Maddison WP. XXXY sex chromosomes in males of the jumping spider genus Pellenes (Araneae: Salticidae) Chromosoma. 1982;5:23–37. doi: 10.1007/BF00344592. DOI
Rowell DM. Complex sex-linked fusion heterozygosity in the Australian huntsman spider Delena cancerides (Araneae: Sparassidae) Chromosoma. 1985;93:169–176. doi: 10.1007/BF00293165. DOI
Král J. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res. 2007;15:863–879. doi: 10.1007/s10577-007-1169-3. PubMed DOI
Araujo, D., Schneider, M. C., Paula-Neto, E. & Cella, D. M. Sex chromosomes and meiosis in spiders: a review [Swan, A. (ed.)] Meiosis molecular mechanisms and cytogenetic diversity 87–108 (In Tech, 2012).
Kořínková, T. & Král, J. Karyotypes, sex chromosomes, and meiotic division in spiders [Nentwig, W. (ed.)] Spider ecophysiology 159–171 (Springer-Verlag, 2013).
Diaz MO, Saez FA. Karyotypes of South-American Araneida. Mem. Inst. Butantan (São Paulo). 1966;33:153–154.
Bureš, P., Zedek, F. & Marková, M. Holocentric chromosomes [Wendel, J., Greilhuber, J., Doležel, J., Leitch, I. J. (eds)] Plant genome diversity, vol. 2. Physical structure of plant genomes 187–208 (Springer Verlag, 2013).
Král, J. Holokinetic (holocentric) chromosomes. Biologické listy. 59, 191–217 (1994) (in Czech, with English summary).
Král J, et al. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders. Chromosome Res. 2006;14:859–880. doi: 10.1007/s10577-006-1095-9. PubMed DOI
Norton, R. A., Kethley, J. B., Johnston, D. E. & OConnor, B. M. Phylogenetic perspectives on genetic systems and reproductive modes of mites [Wrensch, D. L., Ebbert M. A. (eds)] Evolution and diversity of sex ratio in insects and mites 8–99 (Chapman and Hall, 1993).
Schneider, M. C., Mattos, V. F. & Cella, D. M. The scorpion cytogenetic database, www.arthropodacytogenetics.bio.br/scorpiondatabase (21.11.2018).
Mola LM, Papeschi AG. Holokinetic chromosomes at glance. J. Basic Appl. Genet. 2006;17:17–33.
Nokkala S, Kuznetsova VG, Maryańska-Nadachowska A, Nokkala C. Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosome Res. 2004;12(7):733–739. doi: 10.1023/B:CHRO.0000045797.74375.70. PubMed DOI
Marques A, Pedrosa-Harand A. Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma. 2016;125:669–681. doi: 10.1007/s00412-016-0612-7. PubMed DOI
Viera, A., Page, J. & Rufas J. S. Inverted meiosis: the true bugs as a model to study [Benavente, R., Volff, J-N. (eds)] Meiosis. Genome dynamics5, 137–156 (Karger, 2009). PubMed
Schvarzstein M, Wignall SM, Villeneuve AM. Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes. Genes Dev. 2010;24:219–228. doi: 10.1101/gad.1863610. PubMed DOI PMC
World spider catalog, version 18.0. Natural History Museum Bern, http://wsc.nmbe.ch (21.11.2018).
Wheeler WC, et al. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 2017;33:574–616. doi: 10.1111/cla.12182. PubMed DOI
Penney, D. & Selden, P. A. Fossil spiders: the evolutionary history of a mega-diverse order (Siri Scientific Press, 2011).
Izquierdo MA, Labarque FM. Description of the female of Orsolobus pucara Forster & Platnick 1985, with comments on the functional morphology of the female genitalia in Dysderoidea (Araneae: Dysderoidea: Orsolobidae) J. Arachnol. 2010;38:511–520. doi: 10.1636/A09-071.1. DOI
Fernández R, et al. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Curr. Biol. 2018;28:1489–1497. doi: 10.1016/j.cub.2018.03.064. PubMed DOI
Šmarda P, et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. USA. 2014;111:4096–4102. doi: 10.1073/pnas.1321152111. PubMed DOI PMC
Benavente R, Wettstein R. Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage. Chromosoma. 1980;77:69–81. doi: 10.1007/BF00292042. PubMed DOI
Benavente R. Holocentric chromosomes of arachnids: presence of kinetochore plates during meiotic divisions. Genetica. 1982;59:23–27. doi: 10.1007/BF00130811. DOI
Rodríguez Gil SG, Mola LM, Papeschi AG, Scioscia CL. Cytogenetic heterogeneity in common haplogyne spiders from Argentina (Arachnida, Araneae) J. Arachnol. 2002;30:47–56. doi: 10.1636/0161-8202(2002)030[0047:CHICHS]2.0.CO;2. DOI
Diaz MO, Maynard R, Brum-Zorrilla N. Diffuse centromere and chromosome polymorphism in haplogyne spiders of the families Dysderidae and Segestriidae. Cytogenet. Genome Res. 2010;128:131–138. doi: 10.1159/000296273. PubMed DOI
Řezáč M, Král J, Pekár S. The spider genus Dysdera (Araneae, Dysderidae) in central Europe: revision and natural history. J. Arachnol. 2007;35:432–462. doi: 10.1636/H06-38.1. DOI
Araujo, D., Schneider, M.C., Paula-Neto, E. & Cella, D.M. The spider cytogenetic database, www.arthropodacytogenetics.bio.br/spiderdatabase (21.11.2018).
Suzuki S. Cytological studies in spiders III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. J. Sci. Hiroshima Univ. 1954;15:23–136.
Řezáč M, et al. Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae: Dysderidae): sibling species with sympatric distributions. Invertebr. Syst. 2018;32:10–54. doi: 10.1071/IS16071. DOI
Bogdanov YF. Inverted meiosis and its place in the evolution of sexual reproduction pathways. Russ. J. Genet. 2016;52:473–490. doi: 10.1134/S1022795416050033. PubMed DOI
Lukhtanov VA, et al. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc. Natl. Acad. Sci. USA. 2018;115:9610–9619. doi: 10.1073/pnas.1802610115. PubMed DOI PMC
Gregory TR, Shorthouse DP. Genome sizes of spiders. J. Hered. 2003;94(4):285–290. doi: 10.1093/jhered/esg070. PubMed DOI
Glémin S, Clément Y, David J, Ressayre A. GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis. Trends Genet. 2014;30(7):263–270. doi: 10.1016/j.tig.2014.05.002. PubMed DOI
Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014;68:2412–2420. PubMed
Gregory, T. R. Animal genome size database, http://www.genomesize.com (21.11.2018).
Král J, et al. Evolution of the karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae) Biol. J. Linn. Soc. 2013;109:377–408. doi: 10.1111/bij.12056. DOI
Lomazi RL, Araujo D, Sousa Carvalho L, Schneider MC. Small pholcids (Araneae: Synspermiata) with big surprises: the lowest diploid number in spiders with monocentric chromosomes. J. Arachnol. 2018;46(1):45–49. doi: 10.1636/JoA-S-17-033R2.1. DOI
White, M. J. D. Animal cytology and evolution, 3rd ed. (Cambridge University Press, 1973).
Ávila Herrera IM, et al. Evolution of karyotype and sex chromosomes in two families of haplogyne spiders, Filistatidae and Plectreuridae. Cytogenet. Genome Res. 2016;148:104.
Paula-Neto E, Cella DM, Araujo D, Brescovit AD, Schneider MC. Comparative cytogenetic analysis among filistatid spiders (Araneomorphae: Haplogynae) J. Arachnol. 2017;45:123–128. doi: 10.1636/M14-69.1. DOI
Beukeboom, L. & Perrin, N. The evolution of sex determination (Oxford University Press, 2014).
Postiglioni A, Brum-Zorilla N. Karyological studies on Uruguayan spiders II. Sex chromosomes in spiders of the genus Lycosa (Araneae-Lycosidae) Genetica. 1981;56:47–53. doi: 10.1007/BF00126929. DOI
Král J, Kořínková T, Forman M, Krkavcová L. Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenet. Genome Res. 2011;133:43–66. doi: 10.1159/000323497. PubMed DOI
Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015;35:119–125. doi: 10.1016/j.gde.2015.11.003. PubMed DOI
Dolejš P, et al. Karyotypes of central European spiders of the genera Arctosa, Tricca and Xerolycosa (Araneae: Lycosidae) Eur. J. Entomol. 2011;108:1–16. doi: 10.14411/eje.2011.001. DOI
Hanrahan SJ, Johnston JS. New genome size estimates of 134 species of arthropods. Chromosome Res. 2011;19:809–823. doi: 10.1007/s10577-011-9231-6. PubMed DOI
Otto, F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA [Crissman, H. A., Darzynkiewicz, Z. (eds)] Methods in cell biology, Vol. 33. Flow cytometry 105–110 (Academic Press, 1990). PubMed
Veselý P, Bureš P, Šmarda P, Pavlíček T. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann. Bot. 2012;109:65–75. doi: 10.1093/aob/mcr267. PubMed DOI PMC
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plantarum. 1992;85:625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x. DOI
Barow M, Meister A. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry. 2002;47:1–7. doi: 10.1002/cyto.10030. PubMed DOI
Šmarda P, et al. Genome size and GC content evolution in Festuca: ancestral expansion and subsequent reduction. Ann. Bot. 2008;101:421–433. doi: 10.1093/aob/mcm307. PubMed DOI PMC
Gray MR. Morphology and relationships within the spider family Filistatidae (Araneae: Araneomorphae) Rec. West Aust. Mus. 1995;Suppl. 52:79–89.
Sánchez-Ruiz A, Brescovit AD. A revision of the Neotropical spider genus Nops MacLeay (Araneae: Caponiidae) with the first phylogenetic hypothesis for the Nopinae genera. Zootaxa. 2018;4427(1):1–121. doi: 10.11646/zootaxa.4427.1.1. PubMed DOI
Sharma PP, et al. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 2014;31:2963–2984. doi: 10.1093/molbev/msu235. PubMed DOI
Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture
Cytogenetics of entelegyne spiders (Arachnida, Araneae) from southern Africa