Karyotype differentiation and male meiosis in European clades of the spider genus Pholcus (Araneae, Pholcidae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36760487
PubMed Central
PMC9836407
DOI
10.3897/compcytogen.v16i4.85059
PII: 85059
Knihovny.cz E-zdroje
- Klíčová slova
- NOR, Synspermiata, haplogyne, inversion, rDNA, sex chromosome, speciation,
- Publikační typ
- časopisecké články MeSH
Haplogyne araneomorphs are a diverse spider clade. Their karyotypes are usually predominated by biarmed (i.e., metacentric and submetacentric) chromosomes and have a specific sex chromosome system, X1X2Y. These features are probably ancestral for haplogynes. Nucleolus organizer regions (NORs) spread frequently from autosomes to sex chromosomes in these spiders. This study focuses on pholcids (Pholcidae), a highly diverse haplogyne family. Despite considerable recent progress in pholcid cytogenetics, knowledge on many clades remains insufficient including the most species-rich pholcid genus, Pholcus Walckenaer, 1805. To characterize the karyotype differentiation of Pholcus in Europe, we compared karyotypes, sex chromosomes, NORs, and male meiosis of seven species [P.alticeps Spassky, 1932; P.creticus Senglet, 1971; P.dentatus Wunderlich, 1995; P.fuerteventurensis Wunderlich, 1992; P.phalangioides (Fuesslin, 1775); P.opilionoides (Schrank, 1781); P.silvai Wunderlich, 1995] representing the dominant species groups in this region. The species studied show several features ancestral for Pholcus, namely the 2n♂ = 25, the X1X2Y system, and a karyotype predominated by biarmed chromosomes. Most taxa have a large acrocentric NOR-bearing pair, which evolved from a biarmed pair by a pericentric inversion. In some lineages, the acrocentric pair reverted to biarmed. Closely related species often differ in the morphology of some chromosome pairs, probably resulting from pericentric inversions and/or translocations. Such rearrangements have been implicated in the formation of reproductive barriers. While the X1 and Y chromosomes retain their ancestral metacentric morphology, the X2 chromosome shows a derived (acrocentric or subtelocentric) morphology. Pairing of this element is usually modified during male meiosis. NOR patterns are very diverse. The ancestral karyotype of Pholcus contained five or six terminal NORs including three X chromosome-linked loci. The number of NORs has been frequently reduced during evolution. In the Macaronesian clade, there is only a single NOR-bearing pair. Sex chromosome-linked NORs are lost in Madeiran species and in P.creticus. Our study revealed two cytotypes in the synanthropic species P.phalangioides (Madeiran and Czech), which differ by their NOR pattern and chromosome morphology. In the Czech cytotype, the large acrocentric pair was transformed into a biarmed pair by pericentric inversion.
Zobrazit více v PubMed
Araujo D, Schneider MC, Paula-Neto E, Cella DM. (2012) Sex chromosomes and meiosis in spiders: a review. In: Swan A. (Ed.) Meiosis: molecular mechanisms and cytogenetic diversity.IntechOpen, Rijeka, 87–108. 10.5772/31612 DOI
Araujo D, Schneider MC, Zacaro AA, de Oliveira EG, Martins R, Brescovit AD. (2020) Venomous Loxosceles species (Araneae, Haplogynae, Sicariidae) from Brazil: 2n♂ = 23 and X1X2Y sex chromosome system as shared characteristics. Zoological Sciences 37: 128–139. 10.2108/zs190128 PubMed DOI
Ávila Herrera IM, Carabajal Paladino LZ, Musilová J, Palacios Vargas JG, Forman M, Král J. (2016) Evolution of karyotype and sex chromosomes in two families of haplogyne spiders, Filistatidae and Plectreuridae. Proceedings of the 21st International Chromosome Conference, Foz do Iguaçu (Brazil), July 2016. Cytogenetic and Genome Research 148: 104.
Ávila Herrera IM, Král J, Pastuchová M, Forman M, Musilová J, Kořínková T, Šťáhlavský F, Zrzavá M, Nguyen P, Just P, Haddad CR, Hiřman M, Koubová M, Sadílek D, Huber BA. (2021) Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecology and Evolution 21: e93. 10.1186/s12862-021-01828-3 PubMed DOI PMC
Ayala F, Coluzzi M. (2005) Chromosome speciation: humans, Drosophila, and mosquitoes. Proceedings of the National Academy of Sciences 102(Suppl. 1): 6535–6542. 10.1073/pnas.0501847102 PubMed DOI PMC
Dimitrov D, Ribera C. (2007) The genus Pholcus (Araneae, Pholcidae) in the Canary Islands. Zoological Journal of the Linnean Society 151(1): 59–114. 10.1111/j.1096-3642.2007.00316.x DOI
Dimitrov D, Arnedo MA, Ribera C. (2008) Colonization and diversification of the spider genus Pholcus Walckenaer, 1805 (Araneae, Pholcidae) in the Macaronesian archipelagos: evidence for long-term occupancy yet rapid recent speciation. Molecular Phylogenetis and Evolution 48(2): 596–614. 10.1016/j.ympev.2008.04.027 PubMed DOI
Dolejš P, Kořínková T, Musilová J, Opatová V, Kubcová L, Buchar J, Král J. (2011) Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). European Journal of Entomology 108: 1–16. 10.14411/eje.2011.001 DOI
Eberle J, Dimitrov D, Valdez-Mondragón A, Huber BA. (2018) Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18: e141. 10.1186/s12862-018-1244-8 PubMed DOI PMC
Forman M, Nguyen P, Hula V, Král J. (2013) Sex chromosome pairing and extensive NOR polymorphism in Wadicosafidelis (Araneae: Lycosidae). Cytogenetic and Genome Research 141(1): 43–49. 10.1159/000351041 PubMed DOI
Fuková I, Nguyen P, Marec F. (2005) Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48(6): 1083–1092. 10.1139/g05-063 PubMed DOI
Goldman AS, Lichten M. (1996) The efficiency of meiotic recombination between dispersed sequences in Saccharomycescerevisiae depends upon their chromosomal location. Genetics 144(1): 43–55. 10.1093/genetics/144.1.43 PubMed DOI PMC
Hooper DM, Griffith SC, Price TD. (2019) Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Molecular Ecology 28: 1246–1262. 10.1111/mec.14874 PubMed DOI
Huber BA. (2011) Revision and cladistic analysis of Pholcus and closely related taxa (Araneae, Pholcidae). Bonner Zoologische Monographien 58: 1–509.
Huber BA, Eberle J, Dimitrov D. (2018) The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys 789: 51–101. 10.3897/zookeys.789.22781 PubMed DOI PMC
Johnson NA, Lachance J. (2012) The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Annals of the New York Academy of Sciences 1256: E 1–22. 10.1111/j.1749-6632.2012.06748.x PubMed DOI PMC
Kejnovský E, Hobza R, Čermák T, Kubát Z, Vyskot B. (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102: 533–541. 10.1038/hdy.2009.17 PubMed DOI
Kitano J, Ross JA, Mori S, Kume M, Jones FC, Chan YF, Absher DM, Grimwood J, Schmutz J, Myers RM, Kingsley DM, Peichel CL. (2009) A role for a neo-sex chromosome in stickleback speciation. Nature 461: 1079–1083. 10.1038/nature08441 PubMed DOI PMC
Kořínková T, Král J. (2013) Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W. (Ed.) Spider ecophysiology.Springer, Berlin, 159–171. 10.1007/978-3-642-33989-9 DOI
Král J, Musilová J, Šťáhlavský F, Řezáč M, Akan Z, Edwards RL, Coyle FA, Almerje CR. (2006) Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Research 14: 859–880. 10.1007/s10577-006-1095-9 PubMed DOI
Král J, Kořínková T, Krkavcová L, Musilová J, Forman M, Ávila Herrera IM, Haddad CR, Vítková M, Henriques S, Palacios Vargas JG, Hedin M. (2013) Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society 109(2): 377–408. 10.1111/bij.12056 DOI
Král J, Forman M, Kořínková T, Reyes Lerma AC, Haddad CR, Musilová J, Řezáč M, Ávila Herrera IM, Thakur S, Dippenaar-Schoeman AS, Marec F, Horová L, Bureš P. (2019) Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Scientific Reports 9: e3001. 10.1038/s41598-019-39034-3 PubMed DOI PMC
Miller DA, Dev VG, Tantravahi R, Miller OJ. (1976) Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Experimental Cell Research 101: 235–243. 10.1016/0014-4827(76)90373-6 PubMed DOI
Mola LM, Papeschi AG. (2006) Holokinetic chromosomes at a glance. Journal of Basic and Applied Genetics 17(1): 17–33.
Paula-Neto E, Cella DM, Araujo D, Brescovit AD, Schneider MC. (2017) Comparative cytogenetic analysis among filistatid spiders (Araneomorphae: Haplogynae). Journal of Arachnology 45: 123–128. 10.1636/M14-69.1 DOI
Presgraves DC. (2008) Sex chromosomes and speciation in Drosophila. Trends in Genetics 24: 336–343. 10.1016/j.tig.2008.04.007 PubMed DOI PMC
Reyes Lerma AC, Šťáhlavský F, Seiter M, Carabajal Paladino LZ, Divišová K, Forman M, Sember A, Král J. (2021) Insights into the karyotype evolution of Charinidae, the early-diverging clade of whip spiders (Arachnida: Amblypygi). Animals 11(11): e3233. 10.3390/ani11113233 PubMed DOI PMC
Rieseberg LH. (2001) Chromosomal rearrangements and speciation. Trends in Ecology and Evolution 1(7): 351–358. 10.1016/S0169-5347(01)02187-5 PubMed DOI
Roy V, Monti-Dedieu L, Chaminade N, Siljak-Yakovlev S, Aulard S, Lemeunier F, Montchamp-Moreau C. (2005) Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster. Heredity 94: 388–395. 10.1038/sj.hdy.6800612 PubMed DOI
Sadílek D, Nguyen P, Halіl K, Kovařík F, Yağmur EA, Šťáhlavský F. (2015) Molecular cytogenetics of Androctonus scorpions: an oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae. Biological Journal of the Linnean Society 115(1): 69–76. 10.1111/bij.12488 DOI
Schartl M, Schmid M, Nanda I. (2016) Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125: 553–571. 10.1007/s00412-015-0569-y PubMed DOI
Sember A, Pappová M, Forman M, Nguyen P, Marec F, Dalíková M, Divišová K, Doležálková-Kaštánková M, Zrzavá M, Sadílek D, Hrubá B, Král J. (2020) Patterns of sex chromosome differentiation in spiders: insights from comparative genomic hybridisation. Genes 11(8): e849. 10.3390/genes11080849 PubMed DOI PMC
Shao L, Li S. (2018) Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Molecular Phylogenetics and Evolution 127: 146–155. 10.1016/j.ympev.2018.05.026 PubMed DOI
Sharma N, Parida BB. (1987) Study of chromosomes in spiders from Orissa. Pranikee 8: 71–76.
Šťáhlavský F, Forman M, Just P, Denič F, Haddad CR, Opatova V. (2020) Cytogenetics of entelegyne spiders (Arachnida, Araneae) from southern Africa. Comparative Cytogenetics 14(1): 107–138. 10.3897/CompCytogen.v14i1.48667 PubMed DOI PMC
Sumner TA. (2003) Chromosomes: Organization and function. Blackwell Science Ltd., Malden, 287 pp. 10.1002/9780470695975 DOI
Suzuki S. (1954) Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general considerations on chromosomal evolution. Journal of Science of the Hiroshima University, series B, division 1 15(2): 23–136.
The Spider Cytogenetic Database (2022) The spider cytogenetic database 2022. http://www.arthropodacytogenetics.bio.br/spiderdatabase/ [Accessed on 23.10.2022]
Wang X, Cui S, Yang Z, Wang J, Wang Y. (1997) On karyotype of the Pholcusaffinis (Araneida: Pholcidae). Acta Arachnologica Sinica 1: 19–22.
Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, Almeida-Silva L, Alvarez-Padilla F, Arnedo MA, Benavides Silva LR, Benjamin SP, Bond JE, Grismado CJ, Hasan E, Hedin M, Izquierdo MA, Labarque FM, Ledford J, Lopardo L, Maddison WP, Miller JA, Piacentini LN, Platnick NI, Polotow D, Silva-Dávila D, Scharff N, Szűts T, Ubick D, Vink CJ, Wood HM, Zhang J. (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33: 574–616. 10.1111/cla.12182 PubMed DOI
World Spider Catalog (2022) World spider catalog version 23.0. Natural History Museum, Bern 2022. http://wsc.nmbe.ch [Accessed on 23.10.2022]