Lightweight Glass Fiber-Reinforced Polymer Composite for Automotive Bumper Applications: A Review

. 2022 Dec 30 ; 15 (1) : . [epub] 20221230

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36616541

The enhancement of fuel economy and the emission of greenhouse gases are the key growing challenges around the globe that drive automobile manufacturers to produce lightweight vehicles. Additionally, the reduction in the weight of the vehicle could contribute to its recyclability and performance (for example crashworthiness and impact resistance). One of the strategies is to develop high-performance lightweight materials by the replacement of conventional materials such as steel and cast iron with lightweight materials. The lightweight composite which is commonly referred to as fiber-reinforced plastics (FRP) composite is one of the lightweight materials to achieve fuel efficiency and the reduction of CO2 emission. However, the damage of FRP composite under impact loading is one of the critical factors which affects its structural application. The bumper beam plays a key role in bearing sudden impact during a collision. Polymer composite materials have been abundantly used in a variety of applications such as transportation industries. The main thrust of the present paper deals with the use of high-strength glass fibers as the reinforcing member in the polymer composite to develop a car bumper beam. The mechanical performance and manufacturing techniques are discussed. Based on the literature studies, glass fiber-reinforced composite (GRP) provides more promise in the automotive industry compared to conventional materials such as car bumper beams.

Zobrazit více v PubMed

John A., Alex S. A review on the composite materials used for automotive bumper in passenger vehicles. Int. J. Eng. Manag. Res. 2014;4:98–101.

Isaac C., Oluwole O. Finite element comparative analysis of the crushing behaviour of square steel tubes. Int. J. Sci. Eng. Res. 2015;6:1650–1655.

Salehghaffari S., Tajdari M., Panahi M., Mokhtarnezhad F. Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading. Thin-Walled Struct. 2010;48:379–390. doi: 10.1016/j.tws.2010.01.012. DOI

Mazumdar S. Composites Manufacturing: Materials, Product, and Process Engineering. CRC Press; Boca Raton, FL, USA: 2001.

Mishra J., Panigrahi R. Mini-Review on structural performance of fiber reinforced geopolymer concrete. Int. J. Innov. Technol. Interdiscip. Sci. 2020;3:435–442.

Jeyanthi S., Paul ChandraKumar J., Rajesh Kumar N., Dhinakaran S., Hari Prasad K. An investigation on dynamic mechanical analysis and low velocity impact analysis of natural thermoplastic composite frontal beams. Int. J. Appl. Eng. Res. 2014;9:13709–13718.

Jeyanthi S., Rani J.J. Development of natural long fiber thermoplastic composites for automotive frontal beams. Indian J. Eng. Mater. Sci. 2014;21:580–584.

Kim J.-W., Kim H.-S., Lee D.-G. Manufacturing and characterization of glass fiber/polypropylene prepreg for automotive bumper beam. J. Comput. Theor. Nanosci. 2015;12:842–846. doi: 10.1166/jctn.2015.3814. DOI

Farokhi Nejad A., Bin Salim M.Y., Rahimian Koloor S.S., Petrik S., Yahya M.Y., Abu Hassan S., Mohd Shah M.K. Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review. Polymers. 2021;13:3400. doi: 10.3390/polym13193400. PubMed DOI PMC

Mlýnek J., Petrů M., Martinec T., Rahimian Koloor S.S. Fabrication of high-quality polymer composite frame by a new method of fiber winding process. Polymers. 2020;12:1037. doi: 10.3390/polym12051037. PubMed DOI PMC

Hou W., Xu X., Wang H., Tong L. Bending behavior of single hat-shaped composite T-joints under out-of-plane loading for lightweight automobile structures. J. Reinf. Plast. Compos. 2018;37:808–823. doi: 10.1177/0731684418764608. DOI

Mcauley J.W. Global sustainability and key needs in future automotive design. Environ. Sci. Technol. 2003;37:5414–5416. doi: 10.1021/es030521x. PubMed DOI

Muhammad A., Rahman M.R., Baini R., Bakri M.K.B. Advances in Sustainable Polymer Composites. Elsevier; Amsterdam, The Netherlands: 2021. Applications of sustainable polymer composites in automobile and aerospace industry; pp. 185–207.

D’Errico F., Ranza L. Guidelines for the market competitiveness of sustainable lightweight design by magnesium solution: A new Life Cycle Assessment integrated approach; Proceedings of the IMA‘s 72nd World Magnesium Conference; Vancouver, Canada. 17–19 May 2015; pp. 22–27.

Njuguna J. Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance. Woodhead Publishing; Sawston, UK: 2016.

Boria S., Belingardi G. Numerical investigation of energy absorbers in composite materials for automotive applications. Int. J. Crashworthiness. 2012;17:345–356. doi: 10.1080/13588265.2011.648516. DOI

Botkin M.E. Modelling and optimal design of a carbon fibre reinforced composite automotive roof. Eng. Comput. 2000;16:16–23. doi: 10.1007/s003660050033. DOI

Selver E., Potluri P., Soutis C., Hogg P. Healing potential of hybrid materials for structural composites. Compos. Struct. 2015;122:57–66. doi: 10.1016/j.compstruct.2014.11.027. DOI

Mansor M.A., Ahmad Z., Abdullah M.R. Crashworthiness capability of thin-walled fibre metal laminate tubes under axial crushing. Engineering Structures. Eng. Struct. 2022;252:113660. doi: 10.1016/j.engstruct.2021.113660. DOI

Pickering K. Properties and Performance of Natural-Fibre Composites. Elsevier; Amsterdam, The Netherlands: 2008.

United States Environemntal Protection Agency (EPA), Hightlights of Automotive Trends Report. [(accessed on 12 December 2022)]; Available online: https://www.epa.gov/automotive-trends/highlights-automotive-trends-report#Highlight2.

Xiong F., Wang D., Ma Z., Chen S., Lv T., Lu F. Structure-material integrated multi-objective lightweight design of the front end structure of automobile body. Struct. Multidiscip. Optim. 2018;57:829–847. doi: 10.1007/s00158-017-1778-1. DOI

Zuo W., Xu T., Zhang H., Xu T. Fast structural optimization with frequency constraints by genetic algorithm using adaptive eigenvalue reanalysis methods. Struct. Multidiscip. Optim. 2011;43:799–810. doi: 10.1007/s00158-010-0610-y. DOI

Zhang W., Xu J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022;221:110994. doi: 10.1016/j.matdes.2022.110994. DOI

Sarfraz M.S., Hong H., Kim S.S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Compos. Struct. 2021;266:113864. doi: 10.1016/j.compstruct.2021.113864. DOI

Osokoya O. An evaluation of polymer composites for car bumper beam. Int. J. Automot. Compos. 2017;3:44–60. doi: 10.1504/IJAUTOC.2017.086521. DOI

Kim H.-S., Kim J.-W., Seo J., Lee D.-G., Sim J.-K. Fabrication and Characterization Evaluation of Prepreg with Unidirectional Glass Fibers for use of Automobile Bumper Beams. J. Korean Soc. Manuf. Technol. Eng. 2013;22:806–811.

Koloor S., Karimzadeh A., Abdullah M., Petrů M., Yidris N., Sapuan S., Tamin M. Linear-Nonlinear Stiffness Responses of Carbon Fiber-Reinforced Polymer Composite Materials and Structures: A Numerical Study. Polymers. 2021;13:344. doi: 10.3390/polym13030344. PubMed DOI PMC

Todor M.-P., Kiss I. Systematic approach on materials selection in the automotive industry for making vehicles lighter, safer and more fuel-efficient. Appl. Eng. Lett. 2016;1:91–97.

Rajak D.K., Pagar D., Behera A., Menezes P.L. Advances in Engine Tribology. Springer; Berlin/Heidelberg, Germany: 2022. Role of Composite Materials in Automotive Sector: Potential Applications; pp. 193–217.

Mallick P.K. Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing; Sawston, UK: 2020.

Kurihara Y. Polymer matrix composite materials in automobile industries. Adv. Compos. Mater. 1995;4:209–219. doi: 10.1163/156855195X00023. DOI

Airale A., Ferraris A., Xu S., Sisca L., Massai P. Function integration concept design applied on CFRP cross leaf spring suspension. Int. J. Automot. Compos. 2017;3:276–293. doi: 10.1504/IJAUTOC.2017.091421. DOI

Selwyn T.S. Formation, characterization and suitability analysis of polymer matrix composite materials for automotive bumper. Mater. Today Proc. 2021;43:1197–1203. doi: 10.1016/j.matpr.2020.08.749. DOI

Harilaos V., Ignacio M. Polymer composites for automotive sustainability. SusChem. 2015:18–19.

Sreerama P., Rao K. Design and impact analysis on front bumper beam crash box for a sedan car using glass fiber reinforced polymer. Int J Comput. Sci Math Eng. 2016;3:1–6.

Hayder N.M., Mahmood I.A. Improving the Mechanical Properties of a Car Bumper by Using Glass Fiber Reinforced Composite Laminates and Nano-ceramic Filler. Iraqi J. Ind. Res. 2022;9:100–108. doi: 10.53523/ijoirVol9I2ID189. DOI

Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers. 2019;11:1667. doi: 10.3390/polym11101667. PubMed DOI PMC

Stickel J.M., Nagarajan M. Glass Fiber-Reinforced Composites: From Formulation to Application. Int. J. Appl. Glass Sci. 2012;3:122–136. doi: 10.1111/j.2041-1294.2012.00090.x. DOI

JyotiKalita J., Singh K.K. Tribological Properties of Different Synthetic Fiber Reinforced Polymer Matrix Composites-A review; Proceedings of the IOP Conference Series: Materials Science and Engineering; Telangana, India. 13–14 July 2018; p. 012134.

Olhan S., Khatkar V., Behera B. Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J. Mater. Sci. 2021;56:18867–18910. doi: 10.1007/s10853-021-06509-6. DOI

Bassani F., Leidl G., Wyder P. Encyclopedia of Condensed Matter Physics (6 Volume Set) MRS Bull. 2006;31:192–208.

Friedrich K., Almajid A.A. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Appl. Compos. Mater. 2013;20:107–128. doi: 10.1007/s10443-012-9258-7. DOI

Ferreira F.V., Francisco W., Menezes B.R., Brito F.S., Coutinho A.S., Cividanes L.S., Coutinho A.R., Thim G.P. Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl. Surf. Sci. 2016;389:921–929. doi: 10.1016/j.apsusc.2016.07.164. DOI

Burakowski L., Rezende M.C. Modificação da rugosidade de fibras de carbono por método químico para aplicação em compósitos poliméricos. Polímeros. 2001;11:51–57. doi: 10.1590/S0104-14282001000200006. DOI

Fatima B., Rathi G., Ahmad R., Chaudhry S.A. Composites for Environmental Engineering. Wiley; Hoboken, NJ, USA: 2019. Composites: Types, Method of Preparation and Application as An Emerging Tool for Environmental Remediation; pp. 1–31.

Van der Woude J. (EuCIA) Recycling, Status and Developments in Europe; Proceedings of the International Glass Fiber Symposium; Aachen, Germany. 29–30 October 2018.

Faruk O., Bledzki A.K., Fink H.-P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI

Madhusudhan T., Senthilkumar M., Athith D. Mechanical characteristics and tribological behaviour study on natural-glass fiber reinforced polymer hybrid composites: A review. Int. Res. J. Eng. Technol. 2016;3:2243–2246.

Khan M., Abbas Y., Fares G. Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines. J. King Saud Univ. Eng. Sci. 2017;29:339–347. doi: 10.1016/j.jksues.2017.03.006. DOI

Hapuarachchi T., Ren G., Fan M., Hogg P., Peijs T. Fire retardancy of natural fibre reinforced sheet moulding compound. Appl. Compos. Mater. 2007;14:251–264. doi: 10.1007/s10443-007-9044-0. DOI

Thakur V.K., Thakur M.K., Gupta R.K. Raw natural fiber–based polymer composites. Int. J. Polym. Anal. Charact. 2014;19:256–271. doi: 10.1080/1023666X.2014.880016. DOI

Gassan J., Gutowski V.S. Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos. Sci. Technol. 2000;60:2857–2863. doi: 10.1016/S0266-3538(00)00168-8. DOI

Hirai Y., Hamada H., Kim J.-K. Impact response of woven glass-fabric composites—I.: Effect of fibre surface treatment. Compos. Sci. Technol. 1998;58:91–104. doi: 10.1016/S0266-3538(97)00111-5. DOI

Wong K.J., Johar M., Koloor S.S.R., Petrů M., Tamin M.N. Moisture absorption effects on mode II delamination of carbon/epoxy composites. Polymers. 2020;12:2162. doi: 10.3390/polym12092162. PubMed DOI PMC

Reddy R.A., Yoganandam K., Mohanavel V. Effect of chemical treatment on natural fiber for use in fiber reinforced composites–Review. Mater. Today Proc. 2020;33:2996–2999. doi: 10.1016/j.matpr.2020.02.982. DOI

Santulli C. Impact properties of glass/plant fibre hybrid laminates. J. Mater. Sci. 2007;42:3699–3707. doi: 10.1007/s10853-006-0662-y. DOI

Chandgude S., Salunkhe S. In state of art: Mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components. Polym. Compos. 2021;42:2678–2703. doi: 10.1002/pc.26045. DOI

Grand View Research, Automotive Polymer Composites Market Size Report By Resin (Epoxy, Polyurethane, Polyamide, Polypropylene, Polyethylene), By Application, By Product, By End-Use, By Manufacturing, And Segment Forecasts, 2018–2025. Historical Range: 2014–2016. [(accessed on 12 December 2022)]. Available online: https://www.grandviewresearch.com/industry-analysis/automotive-polymer-composites-market.

Wang R.-M., Zheng S.-R., Zheng Y.-P.G. Polymer Matrix Composites and Technology. Elsevier; Amsterdam, The Netherlands: 2011.

Costas M., Morin D., Langseth M., Romera L., Díaz J. Axial crushing of aluminum extrusions filled with PET foam and GFRP. An experimental investigation. Thin-Walled Struct. 2016;99:45–57. doi: 10.1016/j.tws.2015.11.003. DOI

Aktay L., Toksoy A.K., Güden M. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: Experimental and numerical analysis. Mater. Des. 2006;27:556–565. doi: 10.1016/j.matdes.2004.12.019. DOI

Boria S., Scattina A., Belingardi G. Axial crushing of metal-composite hybrid tubes: Experimental analysis. Procedia Struct. Integr. 2018;8:102–117. doi: 10.1016/j.prostr.2017.12.012. DOI

Fang H., Mao Y., Liu W., Zhu L., Zhang B. Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision. Compos. Struct. 2016;158:187–198. doi: 10.1016/j.compstruct.2016.09.013. DOI

Garcia-Gonzalez D., Rodriguez-Millan M., Rusinek A., Arias A. Low temperature effect on impact energy absorption capability of PEEK composites. Compos. Struct. 2015;134:440–449. doi: 10.1016/j.compstruct.2015.08.090. DOI

Malcom A., Aronson M., Deshpande V., Wadley H. Compressive response of glass fiber composite sandwich structures. Compos. Part A Appl. Sci. Manuf. 2013;54:88–97. doi: 10.1016/j.compositesa.2013.07.007. DOI

Campilho R.D. Natural Fiber Composites. CRC Press; Boca Raton, FL, USA: 2015.

Mahesh V., Joladarashi S., Kulkarni S.M. A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def. Technol. 2021;17:257–277. doi: 10.1016/j.dt.2020.04.002. DOI

Turner T., Robitaille F., Warrior N., Rudd C., Cooper E. Effect of resin formulation on crash energy absorbing composite structures made by RTM. Plast. Rubber Compos. 2002;31:49–57. doi: 10.1179/146580102225001436. DOI

Darvizeh A., Darvizeh M., Ansari R., Meshkinzar A. Effect of low density, low strength polyurethane foam on the energy absorption characteristics of circumferentially grooved thick-walled circular tubes. Thin-Walled Struct. 2013;71:81–90. doi: 10.1016/j.tws.2013.04.014. DOI

Chiu L.N., Falzon B.G., Ruan D., Xu S., Thomson R.S., Chen B., Yan W. Crush responses of composite cylinder under quasi-static and dynamic loading. Compos. Struct. 2015;131:90–98. doi: 10.1016/j.compstruct.2015.04.057. DOI

Zhou H., Xu P., Xie S., Feng Z., Wang D. Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs. Compos. Struct. 2018;185:524–536. doi: 10.1016/j.compstruct.2017.11.059. DOI

Niknejad A., Assaee H., Elahi S.A., Golriz A. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes–An experimental study. Compos. Struct. 2013;100:479–492. doi: 10.1016/j.compstruct.2013.01.009. DOI

Sinha R. Outlines of Polymer Technology: Manufacture of Polymers. PHI Learning Pvt. Ltd.; New Delhi, India: 2004.

Holbery J., Houston D. Natural-fiber-reinforced polymer composites in automotive applications. Jom. 2006;58:80–86. doi: 10.1007/s11837-006-0234-2. DOI

Sastri V.R. 3–Materials Used in Medical Devices. In: Sastri V.R., editor. Plastics in Medical Devices. 3rd ed. William Andrew Publishing; New York, NY, USA: 2021. pp. 41–64.

Kellersztein I., Dotan A. Chemical surface modification of wheat straw fibers for polypropylene reinforcement. Polym. Compos. 2016;37:2133–2141. doi: 10.1002/pc.23392. DOI

Khan M.Z., Srivastava S.K., Gupta M. Tensile and flexural properties of natural fiber reinforced polymer composites: A review. J. Reinf. Plast. Compos. 2018;37:1435–1455. doi: 10.1177/0731684418799528. DOI

Benzait Z., Trabzon L. A review of recent research on materials used in polymer–matrix composites for body armor application. J. Compos. Mater. 2018;52:3241–3263. doi: 10.1177/0021998318764002. DOI

Aymerich F., Dalla Via A., Quaresimin M. Energy absorption capability of nanomodified glass/epoxy laminates. Procedia Eng. 2011;10:780–785. doi: 10.1016/j.proeng.2011.04.129. DOI

Ramzan E., Ehsan E. Effect of various forms of glass fiber reinforcements on tensile properties of polyester matrix composite. Fac. Eng. Technol. 2009;16:33–39.

Mathew M., Padaki N.V., Rocha L., Gomes J., Alagirusamy R., Deopura B., Fangueiro R. Tribological properties of the directionally oriented warp knit GFRP composites. Wear. 2007;263:930–938. doi: 10.1016/j.wear.2006.12.001. DOI

Sajan S., Philip Selvaraj D. A review on polymer matrix composite materials and their applications. Mater. Today Proc. 2021;47:5493–5498. doi: 10.1016/j.matpr.2021.08.034. DOI

Sathishkumar T., Satheeshkumar S., Naveen J. Glass fiber-reinforced polymer composites–A review. J. Reinf. Plast. Compos. 2014;33:1258–1275. doi: 10.1177/0731684414530790. DOI

Luo H., Yan Y., Zhang T. Gradually failure simulation and energy absorption characteristics of GFRP composite tubes subjected to axial dynamic impact. Polym. Compos. 2019;40:1545–1555. doi: 10.1002/pc.24896. DOI

Virgillito E., Airale A., Ferraris A., Sisca L., Carello M. Specific Energy Absorption Evaluation on GFRP Laminate Plate by Optical, Thermographic and Tomographic Analysis. Exp. Tech. 2019;43:15–24. doi: 10.1007/s40799-018-0257-y. DOI

Marmol G., Ferreira D.P., Fangueiro R. Fiber Reinforced Composites. Elsevier; Amsterdam, The Netherlands: 2021. Automotive and construction applications of fiber reinforced composites; pp. 785–819.

Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021;262:113640. doi: 10.1016/j.compstruct.2021.113640. DOI

Zouggar K., Boukhoulda F., Haddag B., Nouari M. Numerical and experimental investigations of S-Glass/Polyester composite laminate plate under low energy impact. Compos. Part B Eng. 2016;89:169–186. doi: 10.1016/j.compositesb.2015.11.021. DOI

Chen Y. Polymer Composites for Electrical Engineering. Wiley; Hoboken, NJ, USA: 2021. Glass Fiber-Reinforced Polymer Composites for Power Equipment; pp. 377–417.

Morampudi P., Namala K.K., Gajjela Y.K., Barath M., Prudhvi G. Review on glass fiber reinforced polymer composites. Mater. Today Proc. 2021;43:314–319. doi: 10.1016/j.matpr.2020.11.669. DOI

Mlýnek J., Rahimian Koloor S.S., Martinec T., Petrů M. Fabrication of High-Quality Straight-Line Polymer Composite Frame with Different Radius Parts Using Fiber Winding Process. Polymers. 2021;13:497. doi: 10.3390/polym13040497. PubMed DOI PMC

Verma D., Sharma S. Green Biocomposites. Springer; Berlin/Heidelberg, Germany: 2017. Green biocomposites: A prospective utilization in automobile industry; pp. 167–191.

Advani S.G., Hsiao K.-T. Manufacturing Techniques for Polymer Matrix Composites (PMCs) Elsevier; Amsterdam, The Netherlands: 2012.

Gupta M., Srivastava R. Mechanical properties of hybrid fibers-reinforced polymer composite: A review. Polym. Plast. Technol. Eng. 2016;55:626–642. doi: 10.1080/03602559.2015.1098694. DOI

Sebe G., Cetin N.S., Hill C.A., Hughes M. RTM hemp fibre-reinforced polyester composites. Appl. Compos. Mater. 2000;7:341–349. doi: 10.1023/A:1026538107200. DOI

Richardson M., Zhang Z. Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos. Part A Appl. Sci. Manuf. 2000;31:1303–1310. doi: 10.1016/S1359-835X(00)00008-7. DOI

Farokhi Nejad A., Alipour R., Shokri Rad M., Yazid Yahya M., Rahimian Koloor S.S., Petrů M. Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading. Polymers. 2020;12:1312. doi: 10.3390/polym12061312. PubMed DOI PMC

Muhammad Nasiruddin S., Hambali A., Rosidah J., Widodo W., Ahmad M. A review of energy absorption of automotive bumper beam. Int. J. Appl. Eng. Res. 2017;12:238–245.

Cheon S.S., Lim T.S. Impact energy absorption characteristics of glass fiber hybrid composites. Compos. Struct. 1999;46:267–278. doi: 10.1016/S0263-8223(99)00064-1. DOI

Mouti Z., Westwood K., Long D., Njuguna J. An experimental investigation into localised low-velocity impact loading on glass fibre-reinforced polyamide automotive product. Compos. Struct. 2013;104:43–53. doi: 10.1016/j.compstruct.2013.03.014. DOI

Solaimurugan S., Velmurugan R. Crashworthiness of Glass/Polyester Composite Tubular Structures. Int. J. Veh. Struct. Syst. (IJVSS) 2015;7:118. doi: 10.4273/ijvss.7.3.06. DOI

Kathiresan M., Manisekar K., Manikandan V. Crashworthiness analysis of glass fibre/epoxy laminated thin walled composite conical frusta under axial compression. Compos. Struct. 2014;108:584–599. doi: 10.1016/j.compstruct.2013.09.060. DOI

Hu D., Zhang C., Ma X., Song B. Effect of fiber orientation on energy absorption characteristics of glass cloth/epoxy composite tubes under axial quasi-static and impact crushing condition. Compos. Part A Appl. Sci. Manuf. 2016;90:489–501. doi: 10.1016/j.compositesa.2016.08.017. DOI

Nia A.B., Nejad A.F., Xin L., Ayob A., Yahya M.Y. Energy absorption assessment of conical composite structures subjected to quasi-static loading through optimization based method. Mech. Ind. 2020;21:113. doi: 10.1051/meca/2019088. DOI

Zhang Z., Sun W., Zhao Y., Hou S. Crashworthiness of different composite tubes by experiments and simulations. Compos. Part B Eng. 2018;143:86–95. doi: 10.1016/j.compositesb.2018.01.021. DOI

Ghafari-Namini N., Ghasemnejad H. Effect of natural stitched composites on the crashworthiness of box structures. Mater. Des. 2012;39:484–494. doi: 10.1016/j.matdes.2012.03.025. DOI

Bakar M.S.A., Salit M.S., Yusoff M.Z.M., Zainudin E.S., Ya H.H. The crashworthiness performance of stacking sequence on filament wound hybrid composite energy absorption tube subjected to quasi-static compression load. J. Mater. Res. Technol. 2020;9:654–666. doi: 10.1016/j.jmrt.2019.11.006. DOI

Khan M.S., Abdul-Latif A., Koloor S.S.R., Petrů M., Tamin M.N. Representative cell analysis for damage-based failure model of polymer hexagonal honeycomb structure under the out-of-plane loadings. Polymers. 2020;13:52. doi: 10.3390/polym13010052. PubMed DOI PMC

Farokhi Nejad A., Rahimian Koloor S.S., Syed Hamzah S.M.S.A., Yahya M.Y. Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading. Polymers. 2021;13:3627. doi: 10.3390/polym13213627. PubMed DOI PMC

Khan M.S., Koloor S.S.R., Tamin M.N. Effects of cell aspect ratio and relative density on deformation response and failure of honeycomb core structure. Mater. Res. Express. 2020;7:015332. doi: 10.1088/2053-1591/ab6926. DOI

Tarlochan F., Ramesh S. Composite sandwich structures with nested inserts for energy absorption application. Compos. Struct. 2012;94:904–916. doi: 10.1016/j.compstruct.2011.10.010. DOI

Bouchet J., Jacquelin E., Hamelin P. Static and dynamic behavior of combined composite aluminium tube for automotive applications. Compos. Sci. Technol. 2000;60:1891–1900. doi: 10.1016/S0266-3538(00)00058-0. DOI

Tarlochan F., Ramesh S., Harpreet S. Advanced composite sandwich structure design for energy absorption applications: Blast protection and crashworthiness. Compos. Part B Eng. 2012;43:2198–2208. doi: 10.1016/j.compositesb.2012.02.025. DOI

Esnaola A., Ulacia I., Elguezabal B., Del Pozo De Dios E., Alba J., Gallego I. Design, manufacturing and evaluation of glass/polyester composite crash structures for lightweight vehicles. Int. J. Automot. Technol. 2016;17:1013–1022. doi: 10.1007/s12239-016-0099-5. DOI

Toksoy A.K. Ph.D. Thesis. Izmir Institute of Technology; Izmir, Turkey: 2009. Optimization of the Axial Crushing Behavior of Closed-Cell Aluminum Foam Filled Welded 1050 al Square-Cross Section Crashboxes.

Chatterjee V.A., Verma S.K., Bhattacharjee D., Biswas I., Neogi S. Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact. Compos. Struct. 2019;225:111148. doi: 10.1016/j.compstruct.2019.111148. DOI

Silva F., Njuguna J., Sachse S., Pielichowski K., Leszczynska A., Giacomelli M. The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures. Mater. Des. 2013;50:244–252. doi: 10.1016/j.matdes.2013.02.041. DOI

Sapuan S., Suddin N., Maleque M. A critical review of polymer-based composite automotive bumper systems. Polym. Polym. Compos. 2002;10:627–636. doi: 10.1177/096739110201000806. DOI

Zindani D., Maity S.R., Bhowmik S. A Decision-Making Approach for Material Selection of Polymeric Composite Bumper Beam. In: Kumar K., Davim J.P., editors. Composites and Advanced Materials for Industrial Applications. IGI Global; Hershey, PA, USA: 2018. pp. 112–128. DOI

Belingardi G., Beyene A., Koricho E., Martorana B. Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam. Compos. Struct. 2015;120:483–495. doi: 10.1016/j.compstruct.2014.10.007. DOI

Belingardi G., Beyene A.T., Koricho E., Martorana B. Dynamic Response and Failure of Composite Materials and Structures. Elsevier; Amsterdam, The Netherlands: 2017. Lightweight solutions for vehicle frontal bumper: Crash design and manufacturing issues; pp. 365–393.

Sapuan S., Maleque M., Hameedullah M., Suddin M., Ismail N. A note on the conceptual design of polymeric composite automotive bumper system. J. Mater. Process. Technol. 2005;159:145–151. doi: 10.1016/j.jmatprotec.2004.01.063. DOI

Alghamdi A. Smart frictional impact energy absorber. Int. J. Crashworthiness. 2000;5:169–178. doi: 10.1533/cras.2000.0132. DOI

Davoodi M., Sapuan S., Yunus R. Conceptual design of a polymer composite automotive bumper energy absorber. Mater. Des. 2008;29:1447–1452. doi: 10.1016/j.matdes.2007.07.011. DOI

Park D.-K. A development of simple analysis model on bumper barrier impact and new IIHS bumper impact using the dynamically equivalent beam approach. J. Mech. Sci. Technol. 2011;25:3107–3114. doi: 10.1007/s12206-011-0816-y. DOI

Deb A., Naravane A., Chirwa E. An offset rigid barrier-based test: Equivalence to the insurance institute for highway safety frontal offset impact safety test. Int. J. Crashworthiness. 2006;11:281–290. doi: 10.1533/ijcr.2005.0407. DOI

Mallick P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. CRC Press; Boca Raton, FL, USA: 2007.

Sapuan S. A computer-aided material selection for design of automotive safety critical components with novel materials. Malays. J. Comput. Sci. 1999;12:37–46.

Edwards K. Strategic substitution of new materials for old: Applications in automotive product development. Mater. Des. 2004;25:529–533. doi: 10.1016/j.matdes.2003.12.008. DOI

Mansor M.R., Sapuan S., Hambali A., Zainudin E., Nuraini A. Materials selection of hybrid bio-composites thermoset matrix for automotive bumper beam application using TOPSIS method. Adv. Environ. Biol. 2014;8:3138–3143.

Hambali A., Sapuan S., Ismail N., Nukman Y. Material selection of polymeric composite automotive bumper beam using analytical hierarchy process. J. Cent. South Univ. Technol. 2010;17:244–256. doi: 10.1007/s11771-010-0038-y. DOI

Sudin M.N., Harun M.R., Hamzah A.T., Anuar S. A prototype of KBS for material selection in bumper beam design. J. Sci. Technol. 2007;14:215–222.

Senthilnathan A.A., Mehta S.R., Kabir G. Bumper Beam Composite Material Selection using Fuzzy Multi-Criteria Analysis; Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications (DASA); Chiangrai, Thailand. 23–25 March 2022; pp. 243–247.

Zindani D., Maity S.R., Bhowmik S., Chakraborty S. A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis. Int. J. Mater. Res. 2017;108:345–354. doi: 10.3139/146.111489. DOI

Hosseinzadeh R., Shokrieh M.M., Lessard L.B. Parametric study of automotive composite bumper beams subjected to low-velocity impacts. Compos. Struct. 2005;68:419–427. doi: 10.1016/j.compstruct.2004.04.008. DOI

Zeng F., Xie H., Liu Q., Li F., Tan W. Design and optimization of a new composite bumper beam in high-speed frontal crashes. Struct. Multidiscip. Optim. 2016;53:115–122. doi: 10.1007/s00158-015-1312-2. DOI

Bohn B., Garcke J., Iza-Teran R., Paprotny A., Peherstorfer B., Schepsmeier U., Thole C.-A. Analysis of car crash simulation data with nonlinear machine learning methods. Procedia Comput. Sci. 2013;18:621–630. doi: 10.1016/j.procs.2013.05.226. DOI

Kim D.-H., Kim H.-G., Kim H.-S. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle. Compos. Struct. 2015;131:742–752. doi: 10.1016/j.compstruct.2015.06.028. DOI

Cheon S.S., Choi J.H., Lee D.G. Development of the composite bumper beam for passenger cars. Compos. Struct. 1995;32:491–499. doi: 10.1016/0263-8223(95)00078-X. DOI

Marzbanrad J., Alijanpour M., Kiasat M.S. Design and analysis of an automotive bumper beam in low-speed frontal crashes. Thin-Walled Struct. 2009;47:902–911. doi: 10.1016/j.tws.2009.02.007. DOI

Belingardi G., Beyene A.T., Koricho E.G. Geometrical optimization of bumper beam profile made of pultruded composite by numerical simulation. Compos. Struct. 2013;102:217–225. doi: 10.1016/j.compstruct.2013.02.013. DOI

Hirsch J. Aluminium in innovative light-weight car design. Mater. Trans. 2011;52:818–824. doi: 10.2320/matertrans.L-MZ201132. DOI

Hirsch J. Recent development in aluminium for automotive applications. Trans. Nonferrous Met. Soc. China. 2014;24:1995–2002. doi: 10.1016/S1003-6326(14)63305-7. DOI

Belingardi G., Koricho E.G., Martorana B. Implementation of composite and recyclable thermoplastic materials for automotive bumper subsystem. Int. J. Automot. Compos. 2014;1:67–89. doi: 10.1504/IJAUTOC.2014.064128. DOI

Richardson M., Wisheart M. Review of low-velocity impact properties of composite materials. Compos. Part A Appl. Sci. Manuf. 1996;27:1123–1131. doi: 10.1016/1359-835X(96)00074-7. DOI

Steenkamer D.A., Sullivan J.L. On the recyclability of a cyclic thermoplastic composite material. Compos. Part B Eng. 1998;29:745–752. doi: 10.1016/S1359-8368(98)00016-X. DOI

Clark C.L., Bals C.K., Layson M.A. Effects of Fiber and Property Orientation on “C” Shaped Cross Sections. SAE Technical Paper; Southfield, MI, USA: 1991. 0148-7191.

Prabhakaran S., Chinnarasu K., Kumar M.S. Design and fabrication of composite bumper for light passenger vehicles. Int. J. Mod. Eng. Res. 2012;2:2552–2556.

Shakirudeen Y.B., Felix A., Solomon A., Olayinka A.J. Application of Glass Fibre Reinforced Composite in the Production of Light Weight Car Bumper (A Case Study of the Mechanical Properties) Int. J. Eng. Res. Technol. 2017;6:575–579.

Dakina S.M. Using of fiber composite of polypropylene to manufacturing cars bumpers. Acad. Res. Int. 2012;3:111.

Witayakran S., Kongtud W., Boonyarit J., Smitthipong W., Chollakup R. Key Engineering Materials. Volume 751. Trans Tech Publications Ltd.; Wollerau, Switzerland: 2017. Development of oil palm empty fruit bunch fiber reinforced epoxy composites for bumper beam in automobile; pp. 779–784.

El Hajj N., Seif S., Zgheib N. Recycling of poly (propylene)-based car bumpers as carrier resin for short glass fiber composites. J. Mater. Cycles Waste Manag. 2021;23:288–300. doi: 10.1007/s10163-020-01128-w. DOI

Du B., Li Z., Bai H., Li Q., Zheng C., Liu J., Qiu F., Fan Z., Hu H., Chen L. Mechanical Property of Long Glass Fiber Reinforced Polypropylene Composite: From Material to Car Seat Frame and Bumper Beam. Polymers. 2022;14:1814. doi: 10.3390/polym14091814. PubMed DOI PMC

Duan S., Yang X., Tao Y., Mo F., Xiao Z., Wei K. Experimental and numerical investigation of Long Glass Fiber Reinforced Polypropylene composite and application in automobile components. Transport. 2018;33:1135–1143. doi: 10.3846/16484142.2017.1323231. DOI

Joo S.-J., Yu M.-H., Kim W.S., Lee J.-W., Kim H.-S. Design and manufacture of automotive composite front bumper assemble component considering interfacial bond characteristics between over-molded chopped glass fiber polypropylene and continuous glass fiber polypropylene composite. Compos. Struct. 2020;236:111849. doi: 10.1016/j.compstruct.2019.111849. DOI

Kim D.-H., Kang S.-Y., Kim H.-J., Kim H.-S. Strain rate dependent mechanical behavior of glass fiber reinforced polypropylene composites and its effect on the performance of automotive bumper beam structure. Compos. Part B Eng. 2019;166:483–496. doi: 10.1016/j.compositesb.2019.02.053. DOI

Li Y., Lin Z., Jiang A., Chen G. Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis. Mater. Des. 2004;25:579–585. doi: 10.1016/j.matdes.2004.02.018. DOI

Koricho E., Belingardi G., Tekalign A., Roncato D., Martorana B. Advanced Composite Materials for Automotive Applications. Wiley; West Sussex, UK: 2013. Crashworthiness Analysis of Composite and Thermoplastic Foam Structure for Automotive Bumper Subsystem; pp. 129–148.

Raj Kumar G., Balasubramaniyam S., Senthil Kumar M., Vijayanandh R., Raj Kumar R., Varun S. Crash analysis on the automotive vehicle bumper. Int. J. Eng. Adv. Technol. 2019;8:1602–1607.

Xue Y., Zhao H., Zhang Y., Gao Z., Zhai D., Li Q., Zhao G. Design and multi-objective optimization of the bumper beams prepared in long glass fiber-reinforced polypropylene. Polym. Compos. 2021;42:2933–2947. doi: 10.1002/pc.26026. DOI

Basith M.A., Reddy N.C., Uppalapati S., Jani S.P. Crash analysis of a passenger car bumper assembly to improve design for impact test. Mater. Today Proc. 2021;45:1684–1690. doi: 10.1016/j.matpr.2020.08.561. DOI

Campbell F.C. Chapter 11—Commercial Composite Processes: These Commercial Processes Produce Far More Parts than the High-performance Processes. In: Campbell F.C., editor. Manufacturing Processes for Advanced Composites. Elsevier Science; Amsterdam, The Netherlands: 2004. pp. 399–438. DOI

Mallick P.K. Chapter 5—Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures. In: Mallick P.K., editor. Materials, Design and Manufacturing for Lightweight Vehicles. 2nd ed. Woodhead Publishing; Sawston, UK: 2021. pp. 187–228. DOI

Mallick P. Materials, Design and Manufacturing for Lightweight Vehicles. Elsevier; Amsterdam, The Netherlands: 2021. Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures; pp. 187–228.

Thwe M.M., Liao K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003;63:375–387. doi: 10.1016/S0266-3538(02)00225-7. DOI

Fu S.-Y., Xu G., Mai Y.-W. On the elastic modulus of hybrid particle/short-fiber/polymer composites. Compos. Part B Eng. 2002;33:291–299. doi: 10.1016/S1359-8368(02)00013-6. DOI

Sreekala M., George J., Kumaran M., Thomas S. The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos. Sci. Technol. 2002;62:339–353. doi: 10.1016/S0266-3538(01)00219-6. DOI

Chen Y., Li T., Jia Z., Scarpa F., Yao C.-W., Wang L. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des. 2018;137:226–234. doi: 10.1016/j.matdes.2017.10.028. DOI

Andrew J.J., Arumugam V. Effect of patch hybridization on the tensile behavior of patch repaired glass/epoxy composite laminates using acoustic emission monitoring. Int. J. Adhes. Adhes. 2017;74:155–166. doi: 10.1016/j.ijadhadh.2017.01.014. DOI

Pegoretti A., Fabbri E., Migliaresi C., Pilati F. Intraply and interply hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: Tensile and impact properties. Polym. Int. 2004;53:1290–1297. doi: 10.1002/pi.1514. DOI

Andrew J.J., Arumugam V., Ramesh C., Poorani S., Santulli C. Quasi-static indentation properties of damaged glass/epoxy composite laminates repaired by the application of intra-ply hybrid patches. Polym. Test. 2017;61:132–145. doi: 10.1016/j.polymertesting.2017.05.014. DOI

Hung P.-y., Lau K.-t., Cheng L.-k., Leng J., Hui D. Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos. Part B Eng. 2018;133:86–90. doi: 10.1016/j.compositesb.2017.09.026. DOI

Dong C. Review of natural fibre-reinforced hybrid composites. J. Reinf. Plast. Compos. 2018;37:331–348. doi: 10.1177/0731684417745368. DOI

Sanjay M.R., Arpitha G., Yogesha B. Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: A review. Mater. Today Proc. 2015;2:2959–2967. doi: 10.1016/j.matpr.2015.07.264. DOI

Jawaid M., Khalil H.A. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011;86:1–18. doi: 10.1016/j.carbpol.2011.04.043. DOI

Rout J., Misra M., Tripathy S., Nayak S., Mohanty A. The influence of fibre treatment on the performance of coir-polyester composites. Compos. Sci. Technol. 2001;61:1303–1310. doi: 10.1016/S0266-3538(01)00021-5. DOI

Khalil H.A., Hanida S., Kang C., Fuaad N.N. Agro-hybrid composite: The effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. J. Reinf. Plast. Compos. 2007;26:203–218. doi: 10.1177/0731684407070027. DOI

Olorunnishola A., Adubi E. A comparative analysis of a blend of natural jute and glass fibers with synthetic glass fibers composites as car bumper materials. IOSR J. Mech. Civ. Eng. 2018;15:67–71.

Perumal C.I., Sarala R., Muthuraja R., Senthilraja R. A review on characteristic of polymer composites with natural fiber used as a reinforcement material. Int. J. Res. Appl. Sci. Eng. Technol. 2018;6:1213–1217. doi: 10.22214/ijraset.2018.1184. DOI

Davoodi M.M., Sapuan S.M., Ahmad D., Ali A., Khalina A., Jonoobi M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater. Des. 2010;31:4927–4932. doi: 10.1016/j.matdes.2010.05.021. DOI

Davoodi M.M., Sapuan S.M., Ali A., Ahmad D., Khalina A. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam. IOP Conf. Ser. Mater. Sci. Eng. 2010;11:012013. doi: 10.1088/1757-899X/11/1/012013. DOI

Mishra S., Mohanty A.K., Drzal L.T., Misra M., Parija S., Nayak S.K., Tripathy S.S. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos. Sci. Technol. 2003;63:1377–1385. doi: 10.1016/S0266-3538(03)00084-8. DOI

Arvind T.R., Dayal D.R.R., Krishna K.H., Survesh S. Mechanical characterization and comparison of glass fibre and glass fibre reinforced with aluminium alloy (GFRAA) for automotive application. Mater. Today Proc. 2021;46:1181–1186. doi: 10.1016/j.matpr.2021.02.062. DOI

David A.O., Chukwuemeka I.S., Osther E.E., Salihu G.N. Development and characterization of hybrid coconut/glass fibers reinforced low density polyethylene composites for bumper application. Metall. Mater. Eng. 2021;27:89–104. doi: 10.30544/453. DOI

Paramasivam C., Venugopal R. Design and development of glass/basalt fiber reinforced composite material for automobile applications. J. Ind. Text. 2022;51:1668S–1681S. doi: 10.1177/1528083720939575. DOI

Nachippan N.M., Alphonse M., Raja V.B., Palanikumar K., Kiran R.S.U., Krishna V.G. Numerical analysis of natural fiber reinforced composite bumper. Mater. Today Proc. 2021;46:3817–3823. doi: 10.1016/j.matpr.2021.02.045. DOI

Atiqah A., Maleque M., Jawaid M., Iqbal M. Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos. Part B Eng. 2014;56:68–73. doi: 10.1016/j.compositesb.2013.08.019. DOI

Kwon D.-J., Jang Y.-J., Choi H.H., Kim K., Kim G.-H., Kong J., Nam S.Y. Impacts of thermoplastics content on mechanical properties of continuous fiber-reinforced thermoplastic composites. Compos. Part B Eng. 2021;216:108859. doi: 10.1016/j.compositesb.2021.108859. DOI

Bakkal M., Savas M. Development of natural fiber reinforced laminated hybrid composites. Adv. Mater. Res. 2012;628:15–20. doi: 10.4028/www.scientific.net/AMR.628.15. DOI

Ramnath B.V., Kokan S.J., Raja R.N., Sathyanarayanan R., Elanchezhian C., Prasad A.R., Manickavasagam V. Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater. Des. 2013;51:357–366. doi: 10.1016/j.matdes.2013.03.102. DOI

Davoodi M.M., Sapuan S.M., Ahmad D., Aidy A., Khalina A., Jonoobi M. Effect of polybutylene terephthalate (PBT) on impact property improvement of hybrid kenaf/glass epoxy composite. Mater. Lett. 2012;67:5–7. doi: 10.1016/j.matlet.2011.08.101. DOI

Andrew J.J., Arumugam V., Saravanakumar K., Dhakal H.N., Santulli C. Compression after impact strength of repaired GFRP composite laminates under repeated impact loading. Compos. Struct. 2015;133:911–920. doi: 10.1016/j.compstruct.2015.08.022. DOI

Bandaru A.K., Patel S., Sachan Y., Alagirusamy R., Bhatnagar N., Ahmad S. Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites. Mater. Des. 2016;105:323–332. doi: 10.1016/j.matdes.2016.05.075. DOI

Low K.O., Johar M., Sung A.N., Mohd Nasir M.N., Rahimian Koloor S.S., Petrů M., Israr H.A., Wong K.J. Displacement rate effects on mixed-mode I/II delamination of laminated carbon/epoxy composites. Polym. Test. 2022;108:107512. doi: 10.1016/j.polymertesting.2022.107512. DOI

Azizan A., Johar M., Karam Singh S.S., Abdullah S., Koloor S.S.R., Petrů M., Wong K.J., Tamin M.N. An Extended Thickness-Dependent Moisture Absorption Model for Unidirectional Carbon/Epoxy Composites. Polymers. 2021;13:440. doi: 10.3390/polym13030440. PubMed DOI PMC

Joshani M., Koloor S., Abdullah R. Damage Mechanics Model for Fracture Process of Steel-concrete Composite Slabs. Appl. Mech. Mater. 2012;165:339–345. doi: 10.4028/www.scientific.net/AMM.165.339. DOI

Koloor S., Abdul-Latif A., Tamin M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011;462:726–731. doi: 10.4028/www.scientific.net/KEM.462-463.726. DOI

Safri S., Sultan M.T.H., Aminanda Y. Impact characterisation of Glass Fibre Reinforced Polymer (GFRP) type C-600 and E-800 using a drop weight machine. Appl. Mech. Mater. 2017;629:461–466. doi: 10.4028/www.scientific.net/AMM.629.461. DOI

Safri S., Sultan M., Cardona F. Impact damage evaluation of Glass-Fiber Reinforced Polymer (GFRP) using the drop test rig–an experimental based approach. ARPN J. Eng. Appl. Sci. 2015;10:9916–9928.

Hancox N. An Overview of the Impact Behaviour of Fibre-Reinforced Composites. Woodhead Publishing; Cambridge, UK: 2000.

Andrew J.J., Srinivasan S.M., Arockiarajan A., Dhakal H.N. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Compos. Struct. 2019;224:111007. doi: 10.1016/j.compstruct.2019.111007. DOI

Grytten F. Ph.D. Thesis. Norwegian University of Science and Technology; Trondheim, Norway: 2008. Low-Velocity Penetration of Aluminium Plates.

Alcock B., Cabrera N., Barkoula N.-M., Wang Z., Peijs T. The effect of temperature and strain rate on the impact performance of recyclable all-polypropylene composites. Compos. Part B Eng. 2008;39:537–547. doi: 10.1016/j.compositesb.2007.03.003. DOI

Naik N., Shrirao P., Reddy B. Ballistic impact behaviour of woven fabric composites: Formulation. Int. J. Impact Eng. 2006;32:1521–1552. doi: 10.1016/j.ijimpeng.2005.01.004. DOI

Agrawal S., Singh K.K., Sarkar P. Impact damage on fibre-reinforced polymer matrix composite–A review. J. Compos. Mater. 2014;48:317–332. doi: 10.1177/0021998312472217. DOI

Jefferson A.J., Arumugam V., Dhakal H.N. Repair of Polymer Composites: Methodology, Techniques, and Challenges. Woodhead Publishing; Sawston, UK: 2018.

Jefferson A.J., Srinivasan S.M., Arockiarajan A. Effect of multiphase fiber system and stacking sequence on low-velocity impact and residual tensile behavior of glass/epoxy composite laminates. Polym. Compos. 2019;40:1450–1462. doi: 10.1002/pc.24884. DOI

Andrew J.J., Srinivasan S.M., Arockiarajan A. Influence of patch lay-up configuration and hybridization on low velocity impact and post-impact tensile response of repaired glass fiber reinforced plastic composites. J. Compos. Mater. 2019;53:3–17. doi: 10.1177/0021998318779430. DOI

Low K.O., Johar M., Israr H.A., Gan K.W., Rahimian Koloor S.S., Petrů M., Wong K.J. Displacement Rate Effects on the Mode II Shear Delamination Behavior of Carbon Fiber/Epoxy Composites. Polymers. 2021;13:1881. doi: 10.3390/polym13111881. PubMed DOI PMC

Koloor S., Ayatollahi M., Tamin M. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI

Safri S.N.A., Sultan M.T.H., Jawaid M., Jayakrishna K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018;133:112–121. doi: 10.1016/j.compositesb.2017.09.008. DOI

Karimzadeh A., Ayatollahi M.R., Rahimian Koloor S.S., Bushroa A.R., Yahya M.Y., Tamin M.N. Assessment of compressive mechanical behavior of Bis-GMA polymer using hyperelastic models. Polymers. 2019;11:1571. doi: 10.3390/polym11101571. PubMed DOI PMC

Ragupathi P., Sivaram N., Vignesh G., Selvam M.D. Enhancement of impact strength of a car bumper using natural fiber composite made of jute. I-Manag. J. Mech. Eng. 2018;8:39. doi: 10.26634/jme.8.3.14737. DOI

ASTM International . Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International; West Conshohocken, PA, USA: 2010.

ASTM International . Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. ASTM International; West Conshohocken, PA, USA: 2008.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...