Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34771183
PubMed Central
PMC8588075
DOI
10.3390/polym13213627
PII: polym13213627
Knihovny.cz E-zdroje
- Klíčová slova
- composite panel, energy absorption, finite element model, low impact loading, pin-reinforced sandwich panel,
- Publikační typ
- časopisecké články MeSH
As a light structure, composite sandwich panels are distinguished by their significant bending stiffness that is rapidly used in the manufacture of aircraft bodies. This study focuses on the mechanical behaviour of through-thickness polymer, pin-reinforced foam core sandwich panels subjected to indentation and low impact loading. Experimental and computational approaches are used to study the global and internal behaviour of the sandwich panel. The samples for experimental testing were made from glass/polyester laminates as the face sheets and polyurethane foam as the foam core. To further reinforce the samples against bending, different sizes of polymeric pins were implemented on the sandwich panels. The sandwich panel was fabricated using the vacuum infusion process. Using the experimental data, a finite element model of the sample was generated in LS-DYNA software, and the effect of pin size and loading rate were examined. Results of the simulation were validated through a proper prediction compared to the test data. The results of the study show that using polymeric pins, the flexural strength of the panel significantly increased under impact loading. In addition, the impact resistance of the pin-reinforced foam core panel increased up to 20%. Moreover, the size of pins has a significant influence on the flexural behaviour while the sample was under a moderate strain rate. To design an optimum pin-reinforced sandwich panel a "design of experiment model" was generated to predict energy absorption and the maximum peak load of proposed sandwich panels. The best design of the panel is recommended with 1.8 mm face sheet thickness and 5 mm pins diameter.
Centre for Advanced Composite Materials Universiti Teknologi Malaysia Johor Bahru 81310 Malaysia
Department of Mechanical and Aerospace Engineering Politecnico di Torino 10129 Turin Italy
Department of Solid Mechanics AMICI R and D Group Tehran 1474585745 Iran
Zobrazit více v PubMed
Pereira A.B., Fernandes F.A.O. Sandwich Panels Bond with Advanced Adhesive Films. J. Compos. Sci. 2019;3:79. doi: 10.3390/jcs3030079. DOI
Rahimian Koloor S.S., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Abdi B., Azwan S., Abdullah M., Ayob A., Yahya Y., Xin L. Flatwise compression and flexural behavior of foam core and polymer pin-reinforced foam core composite sandwich panels. Int. J. Mech. Sci. 2014;88:138–144. doi: 10.1016/j.ijmecsci.2014.08.004. DOI
Balıkoğlu F., Yıldız M., Demircioğlu T., Ataş A., Arslan N. Compressive and flexural behaviour of pin reinforced marine composite sandwich beams; Proceedings of the IV international EGE composite materials symposium (KOMPEGE 2018); Izmir, Turkey. 6–8 September 2018; pp. 272–285.
Chauhan S., Sahu S., Ansari M.Z. Effect of boundary support conditions on impact behavior of silicone pin-reinforced polymer sandwich composite structure. Polym. Compos. 2020;41:5104–5115. doi: 10.1002/pc.25778. DOI
Jayaram R., Nagarajan V., Kumar K.V. Low velocity impact and compression after impact behaviour of polyester pin-reinforced foam filled honeycomb sandwich panels. J. Sandw. Struct. Mater. 2021:1099636221998180. doi: 10.1177/1099636221998180. DOI
Peliński K., Smardzewski J. Bending behavior of lightweight wood-based sandwich beams with auxetic cellular core. Polymers. 2020;12:1723. doi: 10.3390/polym12081723. PubMed DOI PMC
Yang B., Wang Z., Zhou L., Zhang J., Tong L., Liang W. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet. Compos. Struct. 2015;132:1129–1140. doi: 10.1016/j.compstruct.2015.07.058. DOI
Abdi B., Azwan S., Abdullah M., Ayob A., Yahya Y. Comparison of foam core sandwich panel and through-thickness polymer pin–reinforced foam core sandwich panel subject to indentation and flatwise compression loadings. Polym. Compos. 2016;37:612–619. doi: 10.1002/pc.23218. DOI
Olsson R., Block T.B. Criteria for skin rupture and core shear cracking induced by impact on sandwich panels. Compos. Struct. 2015;125:81–87. doi: 10.1016/j.compstruct.2015.01.028. DOI
Abdi B., Koloor S., Abdullah M., Amran A., Yahya M.Y. Applied Mechanics and Materials. Trans Tech Publications Ltd.; Bäch, Switzerland: 2012. Effect of strain-rate on flexural behavior of composite sandwich panel; pp. 766–770.
Kaya G., Selver E. Impact resistance of Z-pin-reinforced sandwich composites. J. Compos. Mater. 2019;53:3681–3699. doi: 10.1177/0021998319845428. DOI
Raeisi S., Kadkhodapour J., Tovar A. Mechanical properties and energy absorbing capabilities of Z-pinned aluminum foam sandwich. Compos. Struct. 2019;214:34–46. doi: 10.1016/j.compstruct.2019.01.095. DOI
Santhanakrishnan R., Samlal S., Joseph Stanley A., Jayalatha J. Impact study on sandwich panels with and without stitching. Adv. Compos. Mater. 2018;27:163–182. doi: 10.1080/09243046.2017.1410376. DOI
Virakthi A., Kwon S., Lee S.W. A viable model for out-of-plane compressive and shear properties of Z-pin reinforced composite sandwich panels. J. Compos. Mater. 2018;52:3961–3972. doi: 10.1177/0021998318772159. DOI
Han F., Yan Y., Ma J. Experimental study and progressive failure analysis of stitched foam-core sandwich composites subjected to low-velocity impact. Polym. Compos. 2018;39:624–635. doi: 10.1002/pc.23976. DOI
Dimassi M.A., Herrmann A.S. Key Engineering Materials. Trans Tech Publications Ltd.; Bäch, Switzerland: 2017. Numerical Simulation of Low Velocity Impact on Pin-Reinforced Foam Core Sandwich Panel; pp. 673–680.
Al-Fatlawi A., Jármai K., Kovács G. Optimal Design of a Fiber-Reinforced Plastic Composite Sandwich Structure for the Base Plate of Aircraft Pallets In Order to Reduce Weight. Polymers. 2021;13:834. doi: 10.3390/polym13050834. PubMed DOI PMC
Khan M.S., Abdul-Latif A., Koloor S.S.R., Petrů M., Tamin M.N. Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings. Polymers. 2021;13:52. doi: 10.3390/polym13010052. PubMed DOI PMC
Liu Y., Li M., Lu X., Zhu X. Failure Mechanism and Strength Prediction Model of T-Joint of Composite Sandwich Structure. Metals. 2021;11:1197. doi: 10.3390/met11081197. DOI
Koloor S., Tamin M. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI
Dimassi M.A., Focke O., Brauner C., Herrmann A.S. Experimental study of the indentation behaviour of tied foam core sandwich structures; Proceedings of the 17th European Conference on Composite Materials; Munich, Germany. 26–30 June 2016.
Ng T.P., Koloor S., Djuansjah J., Kadir M.A. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Dhaliwal G.S., Newaz G.M. Flexural Response of Degraded Polyurethane Foam Core Sandwich Beam with Initial Crack between Facesheet and Core. Materials. 2020;13:5399. doi: 10.3390/ma13235399. PubMed DOI PMC
Chen C., Wang P., Legrand X. Effect of Core Architecture on Charpy Impact and Compression Properties of Tufted Sandwich Structural Composites. Polymers. 2021;13:1665. doi: 10.3390/polym13101665. PubMed DOI PMC
Sharei A., Safarabadi M., Mashhadi M.M., Solut R.S., Haghighi-Yazdi M. Experimental and numerical investigation of low velocity impact on hybrid short-fiber reinforced foam core sandwich panel. J. Compos. Mater. 2021:00219983211037388. doi: 10.1177/00219983211037388. DOI
Najafi M., Eslami-Farsani R. Design and characterization of a multilayered hybrid cored-sandwich panel stiffened by thin-walled lattice structure. Thin-Walled Struct. 2021;161:107514. doi: 10.1016/j.tws.2021.107514. DOI
Virakthi A.K.M. Doctoral Dissertation. University of Maryland; College Park, MD, USA: 2018. Z-Pinning Techniques and Modeling in Composite Laminates and X-Cor Sandwich Structures.
Nia A.B., Yahya M., Ayob A., Nejad A.F. Optimization of graded metallic foam subjected to impulsive loading through DOE approach; Proceedings of the 2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE); Budapest, Hungary. 10–13 July 2018; pp. 295–299.
Najarian F., Alipour R., Rad M.S., Nejad A.F., Razavykia A. Multi-objective optimization of converting process of auxetic foam using three different statistical methods. Measurement. 2018;119:108–116. doi: 10.1016/j.measurement.2018.01.064. DOI
Azwan S., Yahya Y., Abdi B., Ayob A. Loading Rate Effect on Flexural and Indentation Behaviour of Foam Core Composite Sandwich Panel. J. Teknol. 2014;71 doi: 10.11113/jt.v71.3737. DOI
Hallquist J.O. LS-DYNA keyword user’s manual. Livermore Softw. Technol. Corp. 2007;970:299–800.
Brekken K.A., Reyes A., Berstad T., Langseth M., Børvik T. Sandwich Panels with Polymeric Foam Cores Exposed to Blast Loading: An Experimental and Numerical Investigation. Appl. Sci. 2020;10:9061. doi: 10.3390/app10249061. DOI
Garg R., Babaei I., Paolino D.S., Vigna L., Cascone L., Calzolari A., Galizia G., Belingardi G. Predicting Composite Component Behavior Using Element Level Crashworthiness Tests, Finite Element Analysis and Automated Parametric Identification. Materials. 2020;13:4501. doi: 10.3390/ma13204501. PubMed DOI PMC
Farokhi Nejad A., Alipour R., Shokri Rad M., Yazid Yahya M., Rahimian Koloor S.S., Petrů M. Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading. Polymers. 2020;12:1312. doi: 10.3390/polym12061312. PubMed DOI PMC
Jiang L., Yang B., Xiao S., Yang G., Zhu T., Dong D. Simulation Study of Adhesive Material for Sandwich Panel under Edgewise Compression Condition. Materials. 2020;13:1391. doi: 10.3390/ma13061391. PubMed DOI PMC
Koloor S., Abdullah M., Tamin M., Ayatollahi M. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates. Compos. Sci. Technol. 2019;183:107779. doi: 10.1016/j.compscitech.2019.107779. DOI
Nejad A.F., Chiandussi G., Solimine V., Serra A. Estimation of the synchronization time of a transmission system through multi body dynamic analysis. Int. J. Mech. Eng. Robot. Res. 2017;6:232–236. doi: 10.18178/ijmerr.6.3.232-236. DOI