Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading

. 2021 Oct 21 ; 13 (21) : . [epub] 20211021

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34771183

As a light structure, composite sandwich panels are distinguished by their significant bending stiffness that is rapidly used in the manufacture of aircraft bodies. This study focuses on the mechanical behaviour of through-thickness polymer, pin-reinforced foam core sandwich panels subjected to indentation and low impact loading. Experimental and computational approaches are used to study the global and internal behaviour of the sandwich panel. The samples for experimental testing were made from glass/polyester laminates as the face sheets and polyurethane foam as the foam core. To further reinforce the samples against bending, different sizes of polymeric pins were implemented on the sandwich panels. The sandwich panel was fabricated using the vacuum infusion process. Using the experimental data, a finite element model of the sample was generated in LS-DYNA software, and the effect of pin size and loading rate were examined. Results of the simulation were validated through a proper prediction compared to the test data. The results of the study show that using polymeric pins, the flexural strength of the panel significantly increased under impact loading. In addition, the impact resistance of the pin-reinforced foam core panel increased up to 20%. Moreover, the size of pins has a significant influence on the flexural behaviour while the sample was under a moderate strain rate. To design an optimum pin-reinforced sandwich panel a "design of experiment model" was generated to predict energy absorption and the maximum peak load of proposed sandwich panels. The best design of the panel is recommended with 1.8 mm face sheet thickness and 5 mm pins diameter.

Zobrazit více v PubMed

Pereira A.B., Fernandes F.A.O. Sandwich Panels Bond with Advanced Adhesive Films. J. Compos. Sci. 2019;3:79. doi: 10.3390/jcs3030079. DOI

Rahimian Koloor S.S., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC

Abdi B., Azwan S., Abdullah M., Ayob A., Yahya Y., Xin L. Flatwise compression and flexural behavior of foam core and polymer pin-reinforced foam core composite sandwich panels. Int. J. Mech. Sci. 2014;88:138–144. doi: 10.1016/j.ijmecsci.2014.08.004. DOI

Balıkoğlu F., Yıldız M., Demircioğlu T., Ataş A., Arslan N. Compressive and flexural behaviour of pin reinforced marine composite sandwich beams; Proceedings of the IV international EGE composite materials symposium (KOMPEGE 2018); Izmir, Turkey. 6–8 September 2018; pp. 272–285.

Chauhan S., Sahu S., Ansari M.Z. Effect of boundary support conditions on impact behavior of silicone pin-reinforced polymer sandwich composite structure. Polym. Compos. 2020;41:5104–5115. doi: 10.1002/pc.25778. DOI

Jayaram R., Nagarajan V., Kumar K.V. Low velocity impact and compression after impact behaviour of polyester pin-reinforced foam filled honeycomb sandwich panels. J. Sandw. Struct. Mater. 2021:1099636221998180. doi: 10.1177/1099636221998180. DOI

Peliński K., Smardzewski J. Bending behavior of lightweight wood-based sandwich beams with auxetic cellular core. Polymers. 2020;12:1723. doi: 10.3390/polym12081723. PubMed DOI PMC

Yang B., Wang Z., Zhou L., Zhang J., Tong L., Liang W. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet. Compos. Struct. 2015;132:1129–1140. doi: 10.1016/j.compstruct.2015.07.058. DOI

Abdi B., Azwan S., Abdullah M., Ayob A., Yahya Y. Comparison of foam core sandwich panel and through-thickness polymer pin–reinforced foam core sandwich panel subject to indentation and flatwise compression loadings. Polym. Compos. 2016;37:612–619. doi: 10.1002/pc.23218. DOI

Olsson R., Block T.B. Criteria for skin rupture and core shear cracking induced by impact on sandwich panels. Compos. Struct. 2015;125:81–87. doi: 10.1016/j.compstruct.2015.01.028. DOI

Abdi B., Koloor S., Abdullah M., Amran A., Yahya M.Y. Applied Mechanics and Materials. Trans Tech Publications Ltd.; Bäch, Switzerland: 2012. Effect of strain-rate on flexural behavior of composite sandwich panel; pp. 766–770.

Kaya G., Selver E. Impact resistance of Z-pin-reinforced sandwich composites. J. Compos. Mater. 2019;53:3681–3699. doi: 10.1177/0021998319845428. DOI

Raeisi S., Kadkhodapour J., Tovar A. Mechanical properties and energy absorbing capabilities of Z-pinned aluminum foam sandwich. Compos. Struct. 2019;214:34–46. doi: 10.1016/j.compstruct.2019.01.095. DOI

Santhanakrishnan R., Samlal S., Joseph Stanley A., Jayalatha J. Impact study on sandwich panels with and without stitching. Adv. Compos. Mater. 2018;27:163–182. doi: 10.1080/09243046.2017.1410376. DOI

Virakthi A., Kwon S., Lee S.W. A viable model for out-of-plane compressive and shear properties of Z-pin reinforced composite sandwich panels. J. Compos. Mater. 2018;52:3961–3972. doi: 10.1177/0021998318772159. DOI

Han F., Yan Y., Ma J. Experimental study and progressive failure analysis of stitched foam-core sandwich composites subjected to low-velocity impact. Polym. Compos. 2018;39:624–635. doi: 10.1002/pc.23976. DOI

Dimassi M.A., Herrmann A.S. Key Engineering Materials. Trans Tech Publications Ltd.; Bäch, Switzerland: 2017. Numerical Simulation of Low Velocity Impact on Pin-Reinforced Foam Core Sandwich Panel; pp. 673–680.

Al-Fatlawi A., Jármai K., Kovács G. Optimal Design of a Fiber-Reinforced Plastic Composite Sandwich Structure for the Base Plate of Aircraft Pallets In Order to Reduce Weight. Polymers. 2021;13:834. doi: 10.3390/polym13050834. PubMed DOI PMC

Khan M.S., Abdul-Latif A., Koloor S.S.R., Petrů M., Tamin M.N. Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings. Polymers. 2021;13:52. doi: 10.3390/polym13010052. PubMed DOI PMC

Liu Y., Li M., Lu X., Zhu X. Failure Mechanism and Strength Prediction Model of T-Joint of Composite Sandwich Structure. Metals. 2021;11:1197. doi: 10.3390/met11081197. DOI

Koloor S., Tamin M. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI

Dimassi M.A., Focke O., Brauner C., Herrmann A.S. Experimental study of the indentation behaviour of tied foam core sandwich structures; Proceedings of the 17th European Conference on Composite Materials; Munich, Germany. 26–30 June 2016.

Ng T.P., Koloor S., Djuansjah J., Kadir M.A. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI

Dhaliwal G.S., Newaz G.M. Flexural Response of Degraded Polyurethane Foam Core Sandwich Beam with Initial Crack between Facesheet and Core. Materials. 2020;13:5399. doi: 10.3390/ma13235399. PubMed DOI PMC

Chen C., Wang P., Legrand X. Effect of Core Architecture on Charpy Impact and Compression Properties of Tufted Sandwich Structural Composites. Polymers. 2021;13:1665. doi: 10.3390/polym13101665. PubMed DOI PMC

Sharei A., Safarabadi M., Mashhadi M.M., Solut R.S., Haghighi-Yazdi M. Experimental and numerical investigation of low velocity impact on hybrid short-fiber reinforced foam core sandwich panel. J. Compos. Mater. 2021:00219983211037388. doi: 10.1177/00219983211037388. DOI

Najafi M., Eslami-Farsani R. Design and characterization of a multilayered hybrid cored-sandwich panel stiffened by thin-walled lattice structure. Thin-Walled Struct. 2021;161:107514. doi: 10.1016/j.tws.2021.107514. DOI

Virakthi A.K.M. Doctoral Dissertation. University of Maryland; College Park, MD, USA: 2018. Z-Pinning Techniques and Modeling in Composite Laminates and X-Cor Sandwich Structures.

Nia A.B., Yahya M., Ayob A., Nejad A.F. Optimization of graded metallic foam subjected to impulsive loading through DOE approach; Proceedings of the 2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE); Budapest, Hungary. 10–13 July 2018; pp. 295–299.

Najarian F., Alipour R., Rad M.S., Nejad A.F., Razavykia A. Multi-objective optimization of converting process of auxetic foam using three different statistical methods. Measurement. 2018;119:108–116. doi: 10.1016/j.measurement.2018.01.064. DOI

Azwan S., Yahya Y., Abdi B., Ayob A. Loading Rate Effect on Flexural and Indentation Behaviour of Foam Core Composite Sandwich Panel. J. Teknol. 2014;71 doi: 10.11113/jt.v71.3737. DOI

Hallquist J.O. LS-DYNA keyword user’s manual. Livermore Softw. Technol. Corp. 2007;970:299–800.

Brekken K.A., Reyes A., Berstad T., Langseth M., Børvik T. Sandwich Panels with Polymeric Foam Cores Exposed to Blast Loading: An Experimental and Numerical Investigation. Appl. Sci. 2020;10:9061. doi: 10.3390/app10249061. DOI

Garg R., Babaei I., Paolino D.S., Vigna L., Cascone L., Calzolari A., Galizia G., Belingardi G. Predicting Composite Component Behavior Using Element Level Crashworthiness Tests, Finite Element Analysis and Automated Parametric Identification. Materials. 2020;13:4501. doi: 10.3390/ma13204501. PubMed DOI PMC

Farokhi Nejad A., Alipour R., Shokri Rad M., Yazid Yahya M., Rahimian Koloor S.S., Petrů M. Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading. Polymers. 2020;12:1312. doi: 10.3390/polym12061312. PubMed DOI PMC

Jiang L., Yang B., Xiao S., Yang G., Zhu T., Dong D. Simulation Study of Adhesive Material for Sandwich Panel under Edgewise Compression Condition. Materials. 2020;13:1391. doi: 10.3390/ma13061391. PubMed DOI PMC

Koloor S., Abdullah M., Tamin M., Ayatollahi M. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates. Compos. Sci. Technol. 2019;183:107779. doi: 10.1016/j.compscitech.2019.107779. DOI

Nejad A.F., Chiandussi G., Solimine V., Serra A. Estimation of the synchronization time of a transmission system through multi body dynamic analysis. Int. J. Mech. Eng. Robot. Res. 2017;6:232–236. doi: 10.18178/ijmerr.6.3.232-236. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lightweight Glass Fiber-Reinforced Polymer Composite for Automotive Bumper Applications: A Review

. 2022 Dec 30 ; 15 (1) : . [epub] 20221230

Crashworthiness Assessment of Carbon/Glass Epoxy Hybrid Composite Tubes Subjected to Axial Loads

. 2022 Sep 29 ; 14 (19) : . [epub] 20220929

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...