Crashworthiness Assessment of Carbon/Glass Epoxy Hybrid Composite Tubes Subjected to Axial Loads

. 2022 Sep 29 ; 14 (19) : . [epub] 20220929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36236031

The crashworthiness of composite tubes is widely examined for various types of FRP composites. However, the use of hybrid composites potentially enhances the material characteristics under impact loading. In this regard, this study used a combination of unidirectional glass-carbon fibre reinforced epoxy resin as the hybrid composite tube fabricated by the pultrusion method. Five tubes with different length aspect ratios were fabricated and tested, in which the results demonstrate "how structural energy absorption affects by increasing the length of tubes". Crash force efficiency was used as the criterion to show that the selected L/D are acceptable of crash resistance with 95% efficiency. Different chamfering shapes as the trigger mechanism were applied to the tubes and the triggering effect was examined to understand the impact capacity of different tubes. A finite element model was developed to evaluate different crashworthiness indicators of the test. The results were validated through a good agreement between experimental and numerical simulations. The experimental and numerical results show that hybrid glass/carbon tubes accomplish an average 25.34 kJ/kg specific energy absorption, average 1.43 kJ energy absorption, average 32.43 kN maximum peak load, and average 96.67% crash force efficiency under quasi-static axial loading. The results show that selecting the optimum trigger mechanism causes progressive collapse and increases the specific energy absorption by more than 35%.

Zobrazit více v PubMed

Dionisius F., Istiyanto J., Sumarsono D.A., Prayogo G., Baskoro A.S., Malawat M. Modeling of Crashworthiness criteria based on Variation of Hole as Crush Initiator in Thin-Walled Square. Int. J. Automot. Mech. Eng. 2022;19:9487–9497. doi: 10.15282/ijame.19.1.2022.12.0731. DOI

Sever N.K. Hybrid Steel Sheet Trends for Automotive Stampings. Int. J. Automot. Technol. 2021;22:1153–1158. doi: 10.1007/s12239-021-0102-7. DOI

Badgujar T.Y., Bobade S.A. Manufacturing and Industrial Engineering. CRC Press; Boca Raton, FL, USA: 2021. Advances in Sheet Metal Stamping Technology: A Case of Design and Manufacturing of a Car Door Inner Panel Using a Tailor Welded Blank; pp. 175–190.

DiGiovanni C., Kalashami A.G., Goodwin F., Biro E., Zhou N. Occurrence of sub-critical heat affected zone liquid metal embrittlement in joining of advanced high strength steel. J. Mater. Process. Technol. 2021;288:116917. doi: 10.1016/j.jmatprotec.2020.116917. DOI

Liu W., Peng T., Kishita Y., Umeda Y., Tang R., Tang W., Hu L. Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology. Appl. Energy. 2021;304:117814. doi: 10.1016/j.apenergy.2021.117814. DOI

Farokhi Nejad A., Bin Salim M.Y., Rahimian Koloor S.S., Petrik S., Yahya M.Y., Abu Hassan S., Mohd Shah M.K. Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review. Polymers. 2021;13:3400. doi: 10.3390/polym13193400. PubMed DOI PMC

Luo H., Zhang D., He Z., Li X., Li Z. Experimental investigation of the quasi-static and dynamic axial crushing behavior of carbon/glass epoxy hybrid composite tubes. Mater. Today Commun. 2021;26:101941. doi: 10.1016/j.mtcomm.2020.101941. DOI

Huang J., Wang X. Numerical and experimental investigations on the axial crushing response of composite tubes. Compos. Struct. 2009;91:222–228. doi: 10.1016/j.compstruct.2009.05.006. DOI

Zhang P., Wang Y., Zhang X. Energy absorption and impact resistance of sandwich composite alloy structures under dynamic impact. J. Alloy. Compd. 2020;831:154771. doi: 10.1016/j.jallcom.2020.154771. DOI

Zhang C., Tan K. Low-velocity impact response and compression after impact behavior of tubular composite sandwich structures. Compos. Part B Eng. 2020;193:108026. doi: 10.1016/j.compositesb.2020.108026. DOI

Abdullah N., Sani M., Salwani M., Husain N. A review on crashworthiness studies of crash box structure. Thin-Walled Struct. 2020;153:106795. doi: 10.1016/j.tws.2020.106795. DOI

Sun G., Chen D., Zhu G., Li Q. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Struct. 2022;172:108760. doi: 10.1016/j.tws.2021.108760. DOI

Yang H., Lei H., Lu G., Zhang Z., Li X., Liu Y. Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. Compos. Part B Eng. 2020;198:108217. doi: 10.1016/j.compositesb.2020.108217. DOI

Abdi B., Koloor S., Abdullah M., Amran A., Yahya M.Y. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229–231:766–770.

Saba A.M., Khan A.H., Akhtar M.N., Khan N.A., Koloor S.S.R., Petrů M., Radwan N. Strength and flexural behavior of steel fiber and silica fume incorporated self-compacting concrete. J. Mater. Res. Technol. 2021;12:1380–1390. doi: 10.1016/j.jmrt.2021.03.066. DOI

Swolfs Y., Gorbatikh L., Verpoest I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014;67:181–200. doi: 10.1016/j.compositesa.2014.08.027. DOI

Fernando D., Teng J., Gattas J., Heitzmann M. Hybrid fibre-reinforced polymer–timber thin-walled structural members. Adv. Struct. Eng. 2018;21:1409–1417. doi: 10.1177/1369433217739709. DOI

Sathishkumar T., Naveen J.a., Satheeshkumar S. Hybrid fiber reinforced polymer composites–a review. J. Reinf. Plast. Compos. 2014;33:454–471. doi: 10.1177/0731684413516393. DOI

Liu T., Wu X., Sun B., Fan W., Han W., Yi H. Investigations of defect effect on dynamic compressive failure of 3D circular braided composite tubes with numerical simulation method. Thin-Walled Struct. 2021;160:107381. doi: 10.1016/j.tws.2020.107381. DOI

Abdallah M.H., Braimah A. Numerical design optimization of the fiber orientation of glass/phenolic composite tubes based on tensile and radial compression tests. Compos. Struct. 2022;280:114898. doi: 10.1016/j.compstruct.2021.114898. DOI

Li C., Yin X., Wang Y., Zhang L., Zhang Z., Liu Y., Xian G. Mechanical property evolution and service life prediction of pultruded carbon/glass hybrid rod exposed in harsh oil-well condition. Compos. Struct. 2020;246:112418. doi: 10.1016/j.compstruct.2020.112418. DOI

Pan Y., Yan D. Study on the durability of GFRP bars and carbon/glass hybrid fiber reinforced polymer (HFRP) bars aged in alkaline solution. Compos. Struct. 2021;261:113285. doi: 10.1016/j.compstruct.2020.113285. DOI

Claus J., Santos R.A., Gorbatikh L., Swolfs Y. Effect of matrix and fibre type on the impact resistance of woven composites. Compos. Part B Eng. 2020;183:107736. doi: 10.1016/j.compositesb.2019.107736. DOI

Naito K. Interfacial mechanical properties of carbon/glass hybrid thermoplastic epoxy composite rods. Compos. Struct. 2021;257:113129. doi: 10.1016/j.compstruct.2020.113129. DOI

San Ha N., Lu G. Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics. Thin-Walled Struct. 2020;157:106995.

Ren Y., Ran T., Nie L., Jiang H. Energy-absorption assessments of perforated CFRP tube induced by inward-splaying trigger with different trigger radius. Thin-Walled Struct. 2021;167:108236. doi: 10.1016/j.tws.2021.108236. DOI

Supian A., Sapuan S., Zuhri M., Zainudin E., Ya H.H. Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review. Def. Technol. 2018;14:291–305. doi: 10.1016/j.dt.2018.04.004. DOI

Fazita M.N., Khalil H.A., Izzati A.N.A., Rizal S. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier; Amsterdam, The Netherlands: 2019. Effects of strain rate on failure mechanisms and energy absorption in polymer composites; pp. 51–78.

Ren Y., Jiang H., Liu Z. Evaluation of double-and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes. Int. J. Mech. Sci. 2019;157:1–12. doi: 10.1016/j.ijmecsci.2019.04.024. DOI

Sivagurunathan R., Way S.L.T., Sivagurunathan L., Yaakob M.Y. Effects of triggering mechanisms on the crashworthiness characteristics of square woven jute/epoxy composite tubes. J. Reinf. Plast. Compos. 2018;37:824–840. doi: 10.1177/0731684418763218. DOI

Farokhi Nejad A., Alipour R., Shokri Rad M., Yazid Yahya M., Rahimian Koloor S.S., Petrů M. Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading. Polymers. 2020;12:1312. doi: 10.3390/polym12061312. PubMed DOI PMC

Betts D., Sadeghian P., Fam A. Experimental and analytical investigations of the flexural behavior of hollow ± 55° filament wound GFRP tubes. Thin-Walled Struct. 2021;159:107246. doi: 10.1016/j.tws.2020.107246. DOI

Shalian H.R., Alaee M.H., Eskandari Jam J., Heydari Beni M., Eskandari Shahraki M., Asiaban N. Design and Fabrication of a Composite Energy Absorber. ADMT J. 2020;13:1–12.

Tong Y., Xu Y. Improvement of crash energy absorption of 2D braided composite tubes through an innovative chamfer external triggers. Int. J. Impact Eng. 2018;111:11–20. doi: 10.1016/j.ijimpeng.2017.08.002. DOI

Gao X., Sun B., Gu B. Damage mechanisms of 3-D rectangular braided composite under multiple impact compressions. Aerospace Science and Technology. 2018;82:46–60. doi: 10.1016/j.ast.2018.08.031. DOI

Chambe J.-E., Bouvet C., Dorival O., Ferrero J.-F. Energy absorption capacity of composite thin-wall circular tubes under axial crushing with different trigger initiations. J. Compos. Mater. 2020;54:1281–1304. doi: 10.1177/0021998319877221. DOI

Koloor S., Abdul-Latif A., Tamin M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011;462–463:726–731.

Kashyzadeh K.R., Rahimian Koloor S.S., Omidi Bidgoli M., Petrů M., Amiri Asfarjani A. An optimum fatigue design of polymer composite compressed natural gas tank using hybrid finite element-response surface methods. Polymers. 2021;13:483. doi: 10.3390/polym13040483. PubMed DOI PMC

Jebellat E., Baniassadi M., Moshki A., Wang K., Baghani M. Numerical investigation of smart auxetic three-dimensional meta-structures based on shape memory polymers via topology optimization. J. Intell. Mater. Syst. Struct. 2020;31:1838–1852. doi: 10.1177/1045389X20935569. DOI

Jamshidian M., Boddeti N., Rosen D.W., Weeger O. Multiscale modelling of soft lattice metamaterials: Micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour. Int. J. Mech. Sci. 2020;188:105956. doi: 10.1016/j.ijmecsci.2020.105956. DOI

Farokhi Nejad A., Rahimian Koloor S.S., Syed Hamzah S.M.S.A., Yahya M.Y. Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading. Polymers. 2021;13:3627. doi: 10.3390/polym13213627. PubMed DOI PMC

Nia A.B., Nejad A.F., Xin L., Ayob A., Yahya M.Y. Energy absorption assessment of conical composite structures subjected to quasi-static loading through optimization based method. Mech. Ind. 2020;21:113. doi: 10.1051/meca/2019088. DOI

Bhat R., Mohan N., Sharma S., Pratap A., Keni A.P., Sodani D. Mechanical testing and microstructure characterization of glass fiber reinforced isophthalic polyester composites. J. Mater. Res. Technol. 2019;8:3653–3661. doi: 10.1016/j.jmrt.2019.06.003. DOI

Rad M.S., Hatami H., Alipouri R., Nejad A.F., Omidinasab F. Determination of energy absorption in different cellular auxetic structures. Mech. Ind. 2019;20:302.

Peirovi S., Pourasghar M., Nejad A.F., Hassan M. A study on the different finite element approaches for laser cutting of aluminum alloy sheet. Int. J. Adv. Manuf. Technol. 2017;93:1399–1413. doi: 10.1007/s00170-017-0599-0. DOI

Nejad A.F., Chiandussi G., Solimine V., Serra A. Estimation of the synchronization time of a transmission system through multi body dynamic analysis. Int. J. Mech. Eng. Robot. Res. 2017;6:232–236. doi: 10.18178/ijmerr.6.3.232-236. DOI

Quanjin M., Salim M., Rejab M., Bernhardi O.-E., Nasution A.Y. Quasi-static crushing response of square hybrid carbon/aramid tube for automotive crash box application. Mater. Today Proc. 2020;27:683–690. doi: 10.1016/j.matpr.2019.10.161. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...