Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34641214
PubMed Central
PMC8512645
DOI
10.3390/polym13193400
PII: polym13193400
Knihovny.cz E-zdroje
- Klíčová slova
- failure mode and deformation, hybrid composite structure, impact loading, strain rate, synthetic composite,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As a high-demand material, polymer matrix composites are being used in many advanced industrial applications. Due to ecological issues in the past decade, some attention has been paid to the use of natural fibers. However, using only natural fibers is not desirable for advanced applications. Therefore, hybridization of natural and synthetic fibers appears to be a good solution for the next generation of polymeric composite structures. Composite structures are normally made for various harsh operational conditions, and studies on loading rate and strain-dependency are essential in the design stage of the structures. This review aimed to highlight the different materials' content of hybrid composites in the literature, while addressing the different methods of material characterization for various ranges of strain rates. In addition, this work covers the testing methods, possible failure, and damage mechanisms of hybrid and synthetic FRP composites. Some studies about different numerical models and analytical methods that are applicable for composite structures under different strain rates are described.
Centre for Advanced Composite Materials Universiti Teknologi Malaysia Johor Bahru 81310 Malaysia
Department of Mechanical and Aerospace Engineering Politecnico di Torino 10129 Turin Italy
Department of Solid Mechanics AMICI R and D Group Tehran 1474585745 Iran
Zobrazit více v PubMed
Jacob G.C., Starbuck J.M., Fellers J.F., Simunovic S., Boeman R.G. Strain rate effects on the mechanical properties of polymer composite materials. J. Appl. Polym. Sci. 2004;94:296–301. doi: 10.1002/app.20901. DOI
Fiore V., Di Bella G., Valenza A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011;32:2091–2099. doi: 10.1016/j.matdes.2010.11.043. DOI
Ahmed A., Wei L. The low-velocity impact damage resistance of the composite structures—A review. Rev. Adv. Mater. Sci. 2015;40:127–145.
De Azevedo A.R., Cruz A.S., Marvila M.T., Oliveira L.B.D., Monteiro S.N., Vieira C.M.F., Fediuk R., Timokhin R., Vatin N., Daironas M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers. 2021;13:2493. doi: 10.3390/polym13152493. PubMed DOI PMC
Espinach F.X. Advances in Natural Fibers and Polymers. Materials. 2021;14:2607. doi: 10.3390/ma14102607. PubMed DOI PMC
Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers. 2019;11:1667. doi: 10.3390/polym11101667. PubMed DOI PMC
Jiang X., Bai Y., Chen X., Liu W. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 2020;5:16–25. doi: 10.1016/j.jobab.2020.03.002. DOI
Karvanis K., Rusnáková S., Krejčí O., Žaludek M. Preparation, thermal analysis, and mechanical properties of basalt fiber/epoxy composites. Polymers. 2020;12:1785. doi: 10.3390/polym12081785. PubMed DOI PMC
Al-Maqdasi Z., Joffe R., Ouarga A., Emami N., Chouhan S.S., Landström A., Hajlane A. Conductive Regenerated Cellulose Fibers for Multi-Functional Composites: Mechanical and Structural Investigation. Materials. 2021;14:1746. doi: 10.3390/ma14071746. PubMed DOI PMC
Mochane M.J., Magagula S.I., Sefadi J.S., Mokhena T.C. A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS) Polymers. 2021;13:1200. doi: 10.3390/polym13081200. PubMed DOI PMC
Chen X., Yin J., Liu X., Xia A., Huang Z. Fabrication of Core-Shell Chopped Cf-Phenolic Resin Composite Powder for Laser Additive Manufacturing of Cf/SiC Composites. Polymers. 2021;13:463. doi: 10.3390/polym13030463. PubMed DOI PMC
Kiruthika A. A review on physico-mechanical properties of bast fibre reinforced polymer composites. J. Build. Eng. 2017;9:91–99. doi: 10.1016/j.jobe.2016.12.003. DOI
Ahmad F., Choi H.S., Park M.K. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 2015;300:10–24. doi: 10.1002/mame.201400089. DOI
Saba N., Paridah M., Abdan K., Ibrahim N.A. Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr. Build. Mater. 2016;124:133–138. doi: 10.1016/j.conbuildmat.2016.07.059. DOI
Gurunathan T., Mohanty S., Nayak S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015;77:1–25. doi: 10.1016/j.compositesa.2015.06.007. DOI
Pickering K.L., Efendy M.A., Le T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016;83:98–112. doi: 10.1016/j.compositesa.2015.08.038. DOI
Ali Z., Gao Y., Tang B., Wu X., Wang Y., Li M., Hou X., Li L., Jiang N., Yu J. Preparation, properties and mechanisms of carbon fiber/polymer composites for thermal management applications. Polymers. 2021;13:169. doi: 10.3390/polym13010169. PubMed DOI PMC
Mochane M., Mokhena T.C., Mokhothu T., Mtibe A., Sadiku E., Ray S.S., Ibrahim I., Daramola O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019;13:159–198. doi: 10.3144/expresspolymlett.2019.15. DOI
Zhang D., Sun Y., Chen L., Zhang S., Pan N. Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate. Mater. Des. (1980–2015) 2014;54:315–322. doi: 10.1016/j.matdes.2013.08.074. DOI
Bandaru A.K., Ahmad S., Bhatnagar N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos. Part A Appl. Sci. Manuf. 2017;97:151–165. doi: 10.1016/j.compositesa.2016.12.007. DOI
Yahaya R., Sapuan S., Jawaid M., Leman Z., Zainudin E. Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites. Mater. Des. 2014;63:775–782. doi: 10.1016/j.matdes.2014.07.010. DOI
Yahaya R., Sapuan S., Jawaid M., Leman Z., Zainudin E. Measurement of ballistic impact properties of woven kenaf-aramid hybrid composites. Measurement. 2016;77:335–343. doi: 10.1016/j.measurement.2015.09.016. DOI
Jha K., Samantaray B.B., Tamrakar P. A study on erosion and mechanical behavior of jute/e-glass hybrid composite. Mater. Today Proc. 2018;5:5601–5607. doi: 10.1016/j.matpr.2017.12.151. DOI
Yorseng K., Rangappa S.M., Pulikkalparambil H., Siengchin S., Parameswaranpillai J. Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: Morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Constr. Build. Mater. 2020;235:117464. doi: 10.1016/j.conbuildmat.2019.117464. DOI
Vickers N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017;27:R713–R715. doi: 10.1016/j.cub.2017.05.064. PubMed DOI
Anilkumar S., Arumugam K., Mutyala V.R., Ram K.K., Kumar T.K. Investigation on mechanical properties of natural fiber-polymer composite materials. Mater. Today Proc. 2021;45:6149–6153. doi: 10.1016/j.matpr.2020.10.466. DOI
Parkunam N., Navaneethakrishan G., Saravanan S., Sureshkumar B., Sathishkumar G. Mechanical characterization of hybrid laminates composites. Mater. Today Proc. 2020;21:15–18. doi: 10.1016/j.matpr.2019.05.297. DOI
Chakraborty S., Pisal A., Kothari V., Venkateswara Rao A. Synthesis and characterization of fibre reinforced silica aerogel blankets for thermal protection. Adv. Mater. Sci. Eng. 2016;2016 doi: 10.1155/2016/2495623. DOI
Rocha H., Lafont U., Semprimoschnig C. Environmental testing and characterization of fibre reinforced silica aerogel materials for Mars exploration. Acta Astronaut. 2019;165:9–16. doi: 10.1016/j.actaastro.2019.07.030. DOI
Lu Z., Yuan Z., Liu Q., Hu Z., Xie F., Zhu M. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites. Mater. Sci. Eng. A. 2015;625:278–287. doi: 10.1016/j.msea.2014.12.007. DOI
Wang Q., Zhao Y., Yan K., Lu S. Corrosion behavior of spray formed 7055 aluminum alloy joint welded by underwater friction stir welding. Mater. Des. 2015;68:97–103. doi: 10.1016/j.matdes.2014.12.019. DOI
Boopalan M., Niranjanaa M., Umapathy M. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. Part B Eng. 2013;51:54–57. doi: 10.1016/j.compositesb.2013.02.033. DOI
Cavalcanti D., Banea M., Neto J., Lima R., Da Silva L., Carbas R. Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos. Part B Eng. 2019;175:107149. doi: 10.1016/j.compositesb.2019.107149. DOI
Braga R., Magalhaes Jr P. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater. Sci. Eng. C. 2015;56:269–273. doi: 10.1016/j.msec.2015.06.031. PubMed DOI
Chee S.S., Jawaid M., Sultan M., Alothman O.Y., Abdullah L.C. Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polym. Test. 2019;79:106054. doi: 10.1016/j.polymertesting.2019.106054. DOI
Dunne R., Desai D., Sadiku R. Material characterization of blended sisal-kenaf composites with an ABS matrix. Appl. Acoust. 2017;125:184–193. doi: 10.1016/j.apacoust.2017.03.022. DOI
Thiagamani S.M.K., Krishnasamy S., Muthukumar C., Tengsuthiwat J., Nagarajan R., Siengchin S., Ismail S.O. Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences. Int. J. Biol. Macromol. 2019;140:637–646. doi: 10.1016/j.ijbiomac.2019.08.166. PubMed DOI
Pappu A., Pickering K.L., Thakur V.K. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crops Prod. 2019;137:260–269. doi: 10.1016/j.indcrop.2019.05.040. DOI
Zareei N., Geranmayeh A., Eslami-Farsani R. Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polym. Test. 2019;75:205–212. doi: 10.1016/j.polymertesting.2019.02.002. DOI
Samanta S., Muralidhar M., Sarkar S. Characterization of mechanical properties of hybrid bamboo/GFRP and jute/GFRP composites. Mater. Today Proc. 2015;2:1398–1405. doi: 10.1016/j.matpr.2015.07.059. DOI
Neher B., Bhuiyan M.M.R., Kabir H., Gafur M.A., Qadir M.R., Ahmed F. Thermal properties of palm fiber and palm fiber-reinforced ABS composite. J. Therm. Anal. Calorim. 2016;124:1281–1289. doi: 10.1007/s10973-016-5341-x. DOI
Safri S.N.A., Sultan M.T.H., Jawaid M., Jayakrishna K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018;133:112–121. doi: 10.1016/j.compositesb.2017.09.008. DOI
Ramnath B.V., Manickavasagam V., Elanchezhian C., Krishna C.V., Karthik S., Saravanan K. Determination of mechanical properties of intra-layer abaca-jute-glass fiber reinforced composite. Mater. Des. 2014;60:643–652. doi: 10.1016/j.matdes.2014.03.061. DOI
Maslinda A., Majid M.A., Ridzuan M., Afendi M., Gibson A. Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017;167:227–237. doi: 10.1016/j.compstruct.2017.02.023. DOI
Bisaria H., Gupta M., Shandilya P.A., Srivastava R. Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater. Today Proc. 2015;2:1193–1199. doi: 10.1016/j.matpr.2015.07.031. DOI
Sakthivel M., Vijayakumar S., Ramesh S. Production and characterization of luffa/coir reinforced polypropylene composite. Procedia Mater. Sci. 2014;5:739–745. doi: 10.1016/j.mspro.2014.07.323. DOI
Al-Oqla F.M., Sapuan S. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014;66:347–354. doi: 10.1016/j.jclepro.2013.10.050. DOI
Hao A., Zhao H., Chen J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos. Part B Eng. 2013;54:44–51. doi: 10.1016/j.compositesb.2013.04.065. DOI
Mashouf Roudsari G., Mohanty A.K., Misra M. Green approaches to engineer tough biobased epoxies: A review. ACS Sustain. Chem. Eng. 2017;5:9528–9541. doi: 10.1021/acssuschemeng.7b01422. DOI
Tan B.K., Ching Y.C., Poh S.C., Abdullah L.C., Gan S.N. A review of natural fiber reinforced poly (vinyl alcohol) based composites: Application and opportunity. Polymers. 2015;7:2205–2222. doi: 10.3390/polym7111509. DOI
El-Sabbagh A., Steuernagel L., Ring J., Toepfer O. Development of natural fiber/engineering plastics composites with flame retardance properties. AIP Conf. Proc. 2016;1779:030020.
Mansor M.R., Sapuan S., Zainudin E.S., Nuraini A., Hambali A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013;51:484–492. doi: 10.1016/j.matdes.2013.04.072. DOI
Fang Y., Wang Q., Guo C., Song Y., Cooper P.A. Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinyl chloride (PVC) composites. J. Anal. Appl. Pyrolysis. 2013;100:230–236. doi: 10.1016/j.jaap.2012.12.028. DOI
Turku I., Kärki T. Accelerated weathering of fire-retarded wood-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2016;81:305–312. doi: 10.1016/j.compositesa.2015.11.028. DOI
Makhlouf G., Hassan M., Nour M., Abdel-Monem Y.K., Abdelkhalik A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J. Therm. Anal. Calorim. 2017;130:1031–1041. doi: 10.1007/s10973-017-6418-x. DOI
Fei M.-E., Xie T., Liu W., Chen H., Qiu R. Surface grafting of bamboo fibers with 1, 2-epoxy-4-vinylcyclohexane for reinforcing unsaturated polyester. Cellulose. 2017;24:5505–5514. doi: 10.1007/s10570-017-1497-1. DOI
Lai S.-M., Kao Y.-H., Liu Y.-K., Chiu F.-C. Preparation and properties of luffa fiber-and kenaf fiber-filled poly (butylene succinate-co-lactate)/starch blend-based biocomposites. Polym. Test. 2016;50:191–199. doi: 10.1016/j.polymertesting.2016.01.015. DOI
Kwon H.-J., Sunthornvarabhas J., Park J.-W., Lee J.-H., Kim H.-J., Piyachomkwan K., Sriroth K., Cho D. Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Compos. Part B Eng. 2014;56:232–237. doi: 10.1016/j.compositesb.2013.08.003. DOI
Lu T., Liu S., Jiang M., Xu X., Wang Y., Wang Z., Gou J., Hui D., Zhou Z. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Compos. Part B Eng. 2014;62:191–197. doi: 10.1016/j.compositesb.2014.02.030. DOI
Brostow W., Datashvili T., Jiang P., Miller H. Recycled HDPE reinforced with sol-gel silica modified wood sawdust. Eur. Polym. J. 2016;76:28–39. doi: 10.1016/j.eurpolymj.2016.01.015. DOI
Schirp A., Su S. Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polym. Degrad. Stab. 2016;126:81–92. doi: 10.1016/j.polymdegradstab.2016.01.016. DOI
Idumah C.I., Hassan A. Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth. Met. 2016;212:91–104. doi: 10.1016/j.synthmet.2015.12.011. DOI
Chen P.-Y., Lian H.-Y., Shih Y.-F., Chen-Wei S.-M., Jeng R.-J. Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater. Chem. Phys. 2017;196:249–255. doi: 10.1016/j.matchemphys.2017.05.006. DOI
Wang Y.-N., Weng Y.-X., Wang L. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym. Test. 2014;36:119–125. doi: 10.1016/j.polymertesting.2014.04.001. DOI
Couture A., Lebrun G., Laperrière L. Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Compos. Struct. 2016;154:286–295. doi: 10.1016/j.compstruct.2016.07.069. DOI
Birnin-Yauri A.U., Ibrahim N.A., Zainuddin N., Abdan K., Then Y.Y., Chieng B.W. Effect of maleic anhydride-modified poly (lactic acid) on the properties of its hybrid fiber biocomposites. Polymers. 2017;9:165. doi: 10.3390/polym9050165. PubMed DOI PMC
Edhirej A., Sapuan S., Jawaid M., Zahari N.I. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. Int. J. Biol. Macromol. 2017;101:75–83. doi: 10.1016/j.ijbiomac.2017.03.045. PubMed DOI
Mohan K., Rajmohan T. Fabrication and characterization of MWCNT filled hybrid natural fiber composites. J. Nat. Fibers. 2017;14:864–874. doi: 10.1080/15440478.2017.1300115. DOI
Saba N., Paridah M., Abdan K., Ibrahim N. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Mater. Chem. Phys. 2016;184:64–71. doi: 10.1016/j.matchemphys.2016.09.026. DOI
Jumah T.A., Abood M.B. Evaluation of the intermediate layer of graphite bonded metal. Am. J. Mater. Sci. 2016;6:58–66.
Sapiai N., Jumahat A., Mahmud J. Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. J. Teknol. 2015;76 doi: 10.11113/jt.v76.5524. DOI
Kumara B., Vas J., Bhat S., Madhyastha N. A study on the vibration characteristics of bagasse-banana fibre hybrid composite. Int. J. Compos. Mater. 2017;7:150–154.
Nejad A.F., Chiandussi G., Solimine V., Serra A. Estimation of the synchronization time of a transmission system through multi body dynamic analysis. Int. J. Mech. Eng. Robot. Res. 2017;6:232–236. doi: 10.18178/ijmerr.6.3.232-236. DOI
Farokhi Nejad A., Chiandussi G., Solimine V., Serra A. Study of a synchronizer mechanism through multibody dynamic analysis. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019;233:1601–1613. doi: 10.1177/0954407018772238. DOI
Mlýnek J., Petrů M., Martinec T., Rahimian Koloor S.S. Fabrication of high-quality polymer composite frame by a new method of fiber winding process. Polymers. 2020;12:1037. doi: 10.3390/polym12051037. PubMed DOI PMC
Kumar C.S., Arumugam V., Dhakal H.N., John R. Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/epoxy composites. Compos. Struct. 2015;125:407–416. doi: 10.1016/j.compstruct.2015.01.037. DOI
Xia C., Yu J., Shi S.Q., Qiu Y., Cai L., Wu H.F., Ren H., Nie X., Zhang H. Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Compos. Part B Eng. 2017;114:121–127. doi: 10.1016/j.compositesb.2017.01.044. DOI
Koloor S., Tamin M. Effects of lamina damages on flexural stiffness of CFRP composites; Proceedings of the 8th Asian-Australasian Conference on Composite Materials; Kuala Lumpur, Malaysia. 6–8 November 2012.
Atiqah A., Maleque M., Jawaid M., Iqbal M. Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos. Part B Eng. 2014;56:68–73. doi: 10.1016/j.compositesb.2013.08.019. DOI
Xia C., Shi S.Q., Wu Y., Cai L. High pressure-assisted magnesium carbonate impregnated natural fiber-reinforced composites. Ind. Crops Prod. 2016;86:16–22. doi: 10.1016/j.indcrop.2016.03.023. DOI
Xia C., Zhang S., Ren H., Shi S.Q., Zhang H., Cai L., Li J. Scalable fabrication of natural-fiber reinforced composites with electromagnetic interference shielding properties by incorporating powdered activated carbon. Materials. 2016;9:10. doi: 10.3390/ma9010010. PubMed DOI PMC
Xia C., Ren H., Shi S.Q., Zhang H., Cheng J., Cai L., Chen K., Tan H.-S. Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering. Appl. Surf. Sci. 2016;362:335–340. doi: 10.1016/j.apsusc.2015.11.202. DOI
Xia C., Shi S.Q., Cai L., Hua J. Property enhancement of kenaf fiber composites by means of vacuum-assisted resin transfer molding (VARTM) Holzforschung. 2015;69:307–312. doi: 10.1515/hf-2014-0054. DOI
Dhakal H.N., Sarasini F., Santulli C., Tirillò J., Zhang Z., Arumugam V. Effect of basalt fibre hybridisation on post-impact mechanical behaviour of hemp fibre reinforced composites. Compos. Part A Appl. Sci. Manuf. 2015;75:54–67. doi: 10.1016/j.compositesa.2015.04.020. DOI
Ding Z., Shi S.Q., Zhang H., Cai L. Electromagnetic shielding properties of iron oxide impregnated kenaf bast fiberboard. Compos. Part B Eng. 2015;78:266–271. doi: 10.1016/j.compositesb.2015.03.044. DOI
Abdi B., Koloor S., Abdullah M., Amran A., Yahya M.Y. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229–231:766–770. doi: 10.4028/www.scientific.net/AMM.229-231.766. DOI
Naik N., Kavala V.R. High strain rate behavior of woven fabric composites under compressive loading. Mater. Sci. Eng. A. 2008;474:301–311. doi: 10.1016/j.msea.2007.05.032. DOI
Sun X., Zhao K., Li Y., Huang R., Ye Z., Zhang Y., Ma J. A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete. Constr. Build. Mater. 2018;158:657–669. doi: 10.1016/j.conbuildmat.2017.09.093. DOI
Farokhi Nejad A., Alipour R., Shokri Rad M., Yazid Yahya M., Rahimian Koloor S.S., Petrů M. Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading. Polymers. 2020;12:1312. doi: 10.3390/polym12061312. PubMed DOI PMC
Ramakrishnan K.R., Quino G., Hoffmann J., Petrinic N. Dynamic Behavior of Materials, Proceedings of the 2020 Annual Conference on Experimental and Applied Mechanics, Online, 14–17 September 2020. Volume 1. Springer; Berlin/Heidelberg, Germany: 2021. High Strain Rate Characterization and Impact Analysis of Fiber Reinforced Composites; pp. 95–99.
Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Sect. B. 1949;62:676. doi: 10.1088/0370-1301/62/11/302. DOI
Davies E., Hunter S. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J. Mech. Phys. Solids. 1963;11:155–179. doi: 10.1016/0022-5096(63)90050-4. DOI
Walley S., Field J., Pope R., Safford N. The rapid deformation behaviour of various polymers. J. Phys. III. 1991;1:1889–1925. doi: 10.1051/jp3:1991240. DOI
Walley S.M., Field J.E., Pope P., Safford N. A study of the rapid deformation behaviour of a range of polymers. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1989;328:1–33.
Walley S., Field J. Strain rate sensitivity of polymers in compression from low to high rates. DYMAT J. 1994;1:211–227.
Rae P., Dattelbaum D. The properties of poly (tetrafluoroethylene)(PTFE) in compression. Polymer. 2004;45:7615–7625. doi: 10.1016/j.polymer.2004.08.064. DOI
Brown E.N., Rae P.J., Orler E.B. The influence of temperature and strain rate on the constitutive and damage responses of polychlorotrifluoroethylene (PCTFE, Kel-F 81) Polymer. 2006;47:7506–7518. doi: 10.1016/j.polymer.2006.08.032. DOI
Brown E.N., Rae P.J., Orler E.B., Gray G.T., III, Dattelbaum D.M. The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE) Mater. Sci. Eng. C. 2006;26:1338–1343. doi: 10.1016/j.msec.2005.08.009. DOI
Brown E., Trujillo C., Gray G., III, Rae P., Bourne N. Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II-III transition. J. Appl. Phys. 2007;101:024916. doi: 10.1063/1.2424536. DOI
Rae P., Brown E. The properties of poly (tetrafluoroethylene)(PTFE) in tension. Polymer. 2005;46:8128–8140. doi: 10.1016/j.polymer.2005.06.120. DOI
Rae P.J., Brown E.N., Clements B.E., Dattelbaum D.M. Pressure-induced phase change in poly (tetrafluoroethylene) at modest impact velocities. J. Appl. Phys. 2005;98:063521. doi: 10.1063/1.2041845. DOI
Bourne N., Brown E., Millett J., Gray G., III Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene. J. Appl. Phys. 2008;103:074902. doi: 10.1063/1.2891249. DOI
Shergold O.A., Fleck N.A., Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Eng. 2006;32:1384–1402. doi: 10.1016/j.ijimpeng.2004.11.010. DOI
Tao W., Shen J., Chen Y., Liu J., Gao Y., Wu Y., Zhang L., Tsige M. Strain rate and temperature dependence of the mechanical properties of polymers: A universal time-temperature superposition principle. J. Chem. Phys. 2018;149:044105. doi: 10.1063/1.5031114. PubMed DOI
Federico C., Bouvard J.-L., Combeaud C., Billon N. Large strain/time dependent mechanical behaviour of PMMAs of different chain architectures. Application of time-temperature superposition principle. Polymer. 2018;139:177–187. doi: 10.1016/j.polymer.2018.02.021. DOI
Rohbeck N., Ramachandramoorthy R., Casari D., Schürch P., Edwards T.E., Schilinsky L., Philippe L., Schwiedrzik J., Michler J. Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography. Mater. Des. 2020;195:108977. doi: 10.1016/j.matdes.2020.108977. DOI
Lu Y., Chen S., Shao X. Shear modulus of ionomer interlayer: Effects of time, temperature and strain rate. Constr. Build. Mater. 2021;302:124224. doi: 10.1016/j.conbuildmat.2021.124224. DOI
Dorléans V., Delille R., Notta-Cuvier D., Lauro F., Michau E. Time-temperature superposition in viscoelasticity and viscoplasticity for thermoplastics. Polym. Test. 2021;101:107287. doi: 10.1016/j.polymertesting.2021.107287. DOI
Trivedia A., Siviour C. A novel modelling framework to predict the high rate response of soft materials: Application to (plasticised) poly (vinyl chloride) Mech. Time-Depend. Mater. 2020 doi: 10.1007/s11043-020-09450-4. DOI
Karimzadeh A., Ayatollahi M.R., Rahimian Koloor S.S., Bushroa A.R., Yahya M.Y., Tamin M.N. Assessment of compressive mechanical behavior of Bis-GMA polymer using hyperelastic models. Polymers. 2019;11:1571. doi: 10.3390/polym11101571. PubMed DOI PMC
Yang C., Kim Y., Ryu S., Gu G.X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 2020;189:108509. doi: 10.1016/j.matdes.2020.108509. DOI
Reyes G., Sharma U. Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact. Compos. Struct. 2010;92:523–531. doi: 10.1016/j.compstruct.2009.08.038. DOI
Kim E.-H., Rim M.-S., Lee I., Hwang T.-K. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Compos. Struct. 2013;95:123–134. doi: 10.1016/j.compstruct.2012.07.002. DOI
Rahimian Koloor S.S., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Ree T., Eyring H. Theory of non-newtonian flow. I. solid plastic system. J. Appl. Phys. 1955;26:793–800. doi: 10.1063/1.1722098. DOI
Verbeeten W.M., Lorenzo-Bañuelos M., Arribas-Subiñas P.J. Anisotropic rate-dependent mechanical behavior of poly (lactic acid) processed by material extrusion additive manufacturing. Addit. Manuf. 2020;31:100968. doi: 10.1016/j.addma.2019.100968. DOI
Bašić M. An Overview of Numerical Methods for Non-Newtonian Flows. University of Split; Split, Croatia: 2021.
Zhang D., Fei Q., Zhang P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor. Compos. Struct. 2017;168:633–645. doi: 10.1016/j.compstruct.2017.02.053. DOI
Koloor S., Ayatollahi M., Tamin M. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI
Zhou F., Zhang J., Song S., Yang D., Wang C. Effect of temperature on material properties of carbon fiber reinforced polymer (CFRP) tendons: Experiments and model assessment. Materials. 2019;12:1025. doi: 10.3390/ma12071025. PubMed DOI PMC
Abtew M.A., Boussu F., Bruniaux P., Loghin C., Cristian I. Ballistic impact mechanisms–a review on textiles and fibre-reinforced composites impact responses. Compos. Struct. 2019;223:110966. doi: 10.1016/j.compstruct.2019.110966. DOI
Vassilopoulos A.P. The history of fiber-reinforced polymer composite laminate fatigue. Int. J. Fatigue. 2020;134:105512. doi: 10.1016/j.ijfatigue.2020.105512. DOI
Koloor S., Khosravani M.R., Hamzah R., Tamin M. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Johar M., Wong K., Rashidi S., Tamin M. Effect of strain-rate and moisture content on the mechanical properties of adhesively bonded joints. J. Mech. Sci. Technol. 2020;34:1837–1845. doi: 10.1007/s12206-020-0404-0. DOI
Thomas R.J., Sorensen A.D. Review of strain rate effects for UHPC in tension. Constr. Build. Mater. 2017;153:846–856. doi: 10.1016/j.conbuildmat.2017.07.168. DOI
Mulliken A., Boyce M. Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int. J. Solids Struct. 2006;43:1331–1356. doi: 10.1016/j.ijsolstr.2005.04.016. DOI
Abed F., Mehaini Z., Oucif C., Abdul–Latif A., Baleh R. Quasi-static and dynamic response of GFRP and BFRP bars under compression. Compos. Part C Open Access. 2020;2:100034. doi: 10.1016/j.jcomc.2020.100034. DOI
Yang H., Lei H., Lu G., Zhang Z., Li X., Liu Y. Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. Compos. Part B Eng. 2020;198:108217. doi: 10.1016/j.compositesb.2020.108217. DOI
Farhood N.H., Abdul-Lateef W.E., Sultan K.F. Quasi-Static Indentation Behaviour of Carbon-Basalt Hybrid Cylindrical Composites. J. Mech. Eng. Res. Dev. 2021;44:189–197.
Sebaey T.A. Experimental Investigation into Quasi-Static Crushing of CFRP Composite Cylindrical Tubes after Thermal Aging; Proceedings of the 10th World Congress on Mechanical, Chemical, and Material Engineering (MCM’21); Virtual. 31 July–2 August 2021.
Bai Y.-L., Yan Z.-W., Ozbakkaloglu T., Han Q., Dai J.-G., Zhu D.-J. Quasi-static and dynamic tensile properties of large-rupture-strain (LRS) polyethylene terephthalate fiber bundle. Constr. Build. Mater. 2020;232:117241. doi: 10.1016/j.conbuildmat.2019.117241. DOI
Amorim L., Santos A., Nunes J., Dias G., Viana J. Quasi static mechanical study of vacuum bag infused bouligand inspired composites. Polym. Test. 2021;100:107261. doi: 10.1016/j.polymertesting.2021.107261. DOI
Yang H., Lei H., Lu G. Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading. Thin-Walled Struct. 2021;160:107380. doi: 10.1016/j.tws.2020.107380. DOI
Gupta A.K., Velmurugan R., Joshi M. Mechanical characterization of pseudoelastic shape memory alloy hybrid composites. ISSS J. Micro Smart Syst. 2017;6:149–160. doi: 10.1007/s41683-017-0016-9. DOI
Pitarresi G., Scalici T., Dellaira M., Catalanotti G. A methodology for the rapid characterization of Mode II delamination fatigue threshold in FRP composites. Eng. Fract. Mech. 2019;220:106629. doi: 10.1016/j.engfracmech.2019.106629. DOI
Xie H., Fang H., Li X., Wan L., Wu P., Yu Y. Low-velocity impact damage detection and characterization in composite sandwich panels using infrared thermography. Compos. Struct. 2021;269:114008. doi: 10.1016/j.compstruct.2021.114008. DOI
Viot P., Beani F., Lataillade J.-L. Polymeric foam behavior under dynamic compressive loading. J. Mater. Sci. 2005;40:5829–5837. doi: 10.1007/s10853-005-4998-5. DOI
Al-Maliky N., Parry D. A freely expanding ring technique for measuring the tensile properties of polymers. Meas. Sci. Technol. 1996;7:746. doi: 10.1088/0957-0233/7/5/004. DOI
Siviour C.R. High strain rate characterization of polymers. AIP Conf. Proc. 2017;1793:060029.
Chaurasia A., Mulik R.S., Parashar A. Polymer-based nanocomposites for impact loading: A review. Mech. Adv. Mater. Struct. 2021:1–26. doi: 10.1080/15376494.2021.1871688. DOI
Singh K.K. In-Plane Low Velocity Impact Behavior of GFRP Laminate. Mater. Sci. Forum. 2020;978:257–263.
Chellamuthu K., Vasanthanathan A. Experimental investigation of fibre reinforced plastics (frp) structure with coconut husk under low velocity impact. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.06.078. DOI
Mubin S., Syamsir A., Mohamad D. A Review on experimental and numerical studies of Glass Fibre Reinforced Polymer (GFRP) strips strengthened Reinforced Concrete (RC) slab subjected to low velocity impact. IOP Conf. Ser. Earth Environ. Sci. 2021;708:012075. doi: 10.1088/1755-1315/708/1/012075. DOI
Rawat P., Singh N.K., Singh K.K., Kumar A. Experimental and Numerical Approach to Investigate Damage Tolerance in FRP Composites Subjected to Transverse Low-Velocity Impact. Res. Dev. Mater. Sci. 2018;8:1–10. doi: 10.31031/RDMS.2018.08.000684. DOI
Patnaik G., Kaushik A., Rajput A., Prakash G., Velmurugan R. Ballistic performance of quasi-isotropic CFRP laminates under low velocity impact. J. Compos. Mater. 2021 doi: 10.1177/00219983211023869. DOI
Tirillò J., Ferrante L., Sarasini F., Lampani L., Barbero E., Sánchez-Sáez S., Valente T., Gaudenzi P. High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Compos. Struct. 2017;168:305–312. doi: 10.1016/j.compstruct.2017.02.039. DOI
ASTM International . D7136/D7136M Standard Test. Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International; West Conshohocken, PA, USA: 2015. ASTM D7136/D7136M Janvier 2015.
Shah S., Karuppanan S., Megat-Yusoff P., Sajid Z. Impact resistance and damage tolerance of fiber reinforced composites: A review. Compos. Struct. 2019;217:100–121. doi: 10.1016/j.compstruct.2019.03.021. DOI
Asija N., Chouhan H., Gebremeskel S.A., Bhatnagar N. High strain rate characterization of shear thickening fluids using Split Hopkinson Pressure Bar technique. Int. J. Impact Eng. 2017;110:365–370. doi: 10.1016/j.ijimpeng.2017.02.018. DOI
Xie Z., Duan Z., Guo Y., Li X., Zeng J. Behavior of fiber-reinforced polymer-confined high-strength concrete under Split-Hopkinson Pressure Bar (SHPB) impact compression. Appl. Sci. 2019;9:2830. doi: 10.3390/app9142830. DOI
Kang S.-Y., Kim D.-H., Kim D.-H., Kim H.-S. Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite. Compos. Res. 2018;31:221–226.
Guo Y.-C., Xiao S.-H., Zeng J.-J., Zheng Y., Li X., Liu F. Fiber reinforced polymer-confined concrete under high strain rate compression: Behavior and a unified dynamic strength model. Constr. Build. Mater. 2020;260:120460. doi: 10.1016/j.conbuildmat.2020.120460. DOI
Bassiri Nia A., Xin L., Yahya M.Y., Ayob A., Farokhi Nejad A., Rahimian Koloor S.S., Petrů M. Failure of glass fibre-reinforced polypropylene metal laminate subjected to close-range explosion. Polymers. 2020;12:2139. doi: 10.3390/polym12092139. PubMed DOI PMC
Al-Hajaj Z., Sy B.L., Bougherara H., Zdero R. Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix. Compos. Struct. 2019;208:346–356. doi: 10.1016/j.compstruct.2018.10.033. DOI
Huo X., Sun G., Zhang H., Lv X., Li Q. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core. Compos. Struct. 2019;223:110835. doi: 10.1016/j.compstruct.2019.04.007. DOI
Koloor S., Abdul-Latif A., Tamin M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011;462–463:726–731. doi: 10.4028/www.scientific.net/KEM.462-463.726. DOI
Di Boon Y., Joshi S.C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Mater. Today Commun. 2020;22:100830. doi: 10.1016/j.mtcomm.2019.100830. DOI
Gilat A., Goldberg R.K., Roberts G.D. Experimental study of strain-rate-dependent behavior of carbon/epoxy composite. Compos. Sci. Technol. 2002;62:1469–1476. doi: 10.1016/S0266-3538(02)00100-8. DOI
Koerber H., Kuhn P., Ploeckl M., Otero F., Gerbaud P.-W., Rolfes R., Camanho P.P. Experimental characterization and constitutive modeling of the non-linear stress-strain behavior of unidirectional carbon-epoxy under high strain rate loading. Adv. Model. Simul. Eng. Sci. 2018;5:1–24. doi: 10.1186/s40323-018-0111-x. DOI
Chihi M., Tarfaoui M., Qureshi Y., Bouraoui C., Benyahia H. Effect of carbon nanotubes on the in-plane dynamic behavior of a carbon/epoxy composite under high strain rate compression using SHPB. Smart Mater. Struct. 2020;29:085012. doi: 10.1088/1361-665X/ab83cd. DOI
Shokrieh M.M., Omidi M.J. Compressive response of glass-fiber reinforced polymeric composites to increasing compressive strain rates. Compos. Struct. 2009;89:517–523. doi: 10.1016/j.compstruct.2008.11.006. DOI
Peterson B.L., Pangborn R.N., Pantano C.G. Static and high strain rate response of a glass fiber reinforced thermoplastic. J. Compos. Mater. 1991;25:887–906. doi: 10.1177/002199839102500707. DOI
Chen W., Meng Q., Hao H., Cui J., Shi Y. Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet. Constr. Build. Mater. 2017;143:247–258. doi: 10.1016/j.conbuildmat.2017.03.074. DOI
El-Habak A. Mechanical behaviour of woven glass fibre-reinforced composites under impact compression load. Composites. 1991;22:129–134. doi: 10.1016/0010-4361(91)90671-3. DOI
Shokrieh M.M., Omidi M.J. Investigating the transverse behavior of Glass–Epoxy composites under intermediate strain rates. Compos. Struct. 2011;93:690–696. doi: 10.1016/j.compstruct.2010.08.010. DOI
Ray B. Effects of crosshead velocity and sub-zero temperature on mechanical behaviour of hygrothermally conditioned glass fibre reinforced epoxy composites. Mater. Sci. Eng. A. 2004;379:39–44. doi: 10.1016/j.msea.2003.11.031. DOI
Khan M.S., Simpson G., Gellert E. Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates. Compos. Part A Appl. Sci. Manuf. 2000;31:57–67. doi: 10.1016/S1359-835X(99)00051-2. DOI
Singh M.M., Kumar H., Kumar G.H., Sivaiah P., Nagesha K., Ajay K., Vijaya G. Determination of strength parameters of glass fibers reinforced composites for engineering applications. Silicon. 2020;12:1–11. doi: 10.1007/s12633-019-0078-3. DOI
Jefferson A.J., Srinivasan S.M., Arockiarajan A. Effect of multiphase fiber system and stacking sequence on low-velocity impact and residual tensile behavior of glass/epoxy composite laminates. Polym. Compos. 2019;40:1450–1462. doi: 10.1002/pc.24884. DOI
Kharazi A.Z., Fathi M.H., Manshaei M., Razavi S.M. In-vivo evaluation of a partially resorbable poly l-lactic acid/braided bioactive glass fibers reinforced composite for load bearing fracture fixation. J. Mater. Sci. Mater. Med. 2020;31:1–9. PubMed
Woldesenbet E., Vinson J.R. Specimen geometry effects on high-strain-rate testing of graphite/epoxy composites. AIAA J. 1999;37:1102–1106. doi: 10.2514/2.820. DOI
Hall I.W., Güden M. High strain rate testing of a unidirectionally reinforced graphite epoxy composite. J. Mater. Sci. Lett. 2001;20:897–899. doi: 10.1023/A:1010968514339. DOI
Baker A., Jones R., Callinan R. Damage tolerance of graphite/epoxy composites. Compos. Struct. 1985;4:15–44. doi: 10.1016/0263-8223(85)90018-2. DOI
Gillespie J., Jr., Carlsson L.A., Smiley A.J. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK. Compos. Sci. Technol. 1987;28:1–15. doi: 10.1016/0266-3538(87)90058-3. DOI
Welsh L., Harding J. Effect of strain rate on the tensile failure of woven reinforced polyester resin composites. J. Phys. Colloq. 1985;46:C5-405–C5-414. doi: 10.1051/jphyscol:1985551. DOI
Ray B. Freeze-Thaw response of glass-Polyester composites at different loading rates. J. Reinf. Plast. Compos. 2005;24:1771–1776. doi: 10.1177/0731684405052195. DOI
Cazeneuve C., Maile J. Study of the behaviour of carbon fibre composites under different deformation rates. J. Phys. Colloq. 2021;C5:551–556.
Quanjin M., Sahat I.M., Mat Rejab M.R., Abu Hassan S., Zhang B., Merzuki M.N. The energy-absorbing characteristics of filament wound hybrid carbon fiber-reinforced plastic/polylactic acid tubes with different infill pattern structures. J. Reinf. Plast. Compos. 2019;38:1067–1088. doi: 10.1177/0731684419868018. DOI
Mamalis A.G., Manolakos D., Ioannidis M., Papapostolou D. Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: Experimental. Compos. Struct. 2004;63:347–360. doi: 10.1016/S0263-8223(03)00183-1. DOI
Vural M., Ravichandran G. Transverse failure in thick S2-glass/epoxy fiber-reinforced composites. J. Compos. Mater. 2004;38:609–623. doi: 10.1177/0021998304042400. DOI
Bobba S., Leman Z., Zainuddin E., Sapuan S. Impact and internal pressure failure of E-glass and S-glass epoxy composite elbow pipe joints influenced by sea water. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021;235:116–123. doi: 10.1177/0954408920948177. DOI
Gao S.-L., Kim J.-K. Cooling rate influences in carbon fibre/PEEK composites. Part III: Impact damage performance. Compos. Part A Appl. Sci. Manuf. 2001;32:775–785. doi: 10.1016/S1359-835X(00)00189-5. DOI
Striewe J., Reuter C., Sauerland K.-H., Tröster T. Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Struct. 2018;123:501–508. doi: 10.1016/j.tws.2017.11.011. DOI
Zhang D., Sun Y., Chen L., Pan N. A comparative study on low-velocity impact response of fabric composite laminates. Mater. Des. 2013;50:750–756. doi: 10.1016/j.matdes.2013.03.044. DOI
Randjbaran E., Zahari R., Abdul Jalil N.A., Abang Abdul Majid D.L. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing. Sci. World J. 2014;2014 doi: 10.1155/2014/413753. PubMed DOI PMC
Thanomsilp C., Hogg P. Penetration impact resistance of hybrid composites based on commingled yarn fabrics. Compos. Sci. Technol. 2003;63:467–482. doi: 10.1016/S0266-3538(02)00233-6. DOI
Bakkal M., Savas M. Development of natural fiber reinforced laminated hybrid composites. Adv. Mater. Res. 2012;628:15–20. doi: 10.4028/www.scientific.net/AMR.628.15. DOI
Hameed A.M., Daway E.G. Mechanism of hybrid reinforcement and its effect on some properties of binary polymer blend. Eng. Technol. J. 2014;32:287–301.
Yan R., Wang R., Lou C.-W., Lin J.-H. Low-velocity impact and static behaviors of high-resilience thermal-bonding inter/intra-ply hybrid composites. Compos. Part B Eng. 2015;69:58–68. doi: 10.1016/j.compositesb.2014.09.021. DOI
Yahaya R., Sapuan S., Jawaid M., Leman Z., Zainudin E. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Mater. Des. 2015;67:173–179. doi: 10.1016/j.matdes.2014.11.024. DOI
Petrucci R., Santulli C., Puglia D., Nisini E., Sarasini F., Tirillò J., Torre L., Minak G., Kenny J. Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Compos. Part B Eng. 2015;69:507–515. doi: 10.1016/j.compositesb.2014.10.031. DOI
Muñoz R., Martínez-Hergueta F., Gálvez F., González C., LLorca J. Ballistic performance of hybrid 3D woven composites: Experiments and simulations. Compos. Struct. 2015;127:141–151. doi: 10.1016/j.compstruct.2015.03.021. DOI
Pandya K.S., Pothnis J.R., Ravikumar G., Naik N. Ballistic impact behavior of hybrid composites. Mater. Des. 2013;44:128–135. doi: 10.1016/j.matdes.2012.07.044. DOI
Muhammad Y.H., Ahmad S., Abu Bakar M.A., Mamun A.A., Heim H.P. Mechanical properties of hybrid glass/kenaf fibre-reinforced epoxy composite with matrix modification using liquid epoxidised natural rubber. J. Reinf. Plast. Compos. 2015;34:896–906. doi: 10.1177/0731684415584431. DOI
Sarasini F., Tirillò J., Ferrante L., Valente M., Valente T., Lampani L., Gaudenzi P., Cioffi S., Iannace S., Sorrentino L. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos. Part B Eng. 2014;59:204–220. doi: 10.1016/j.compositesb.2013.12.006. DOI
Flynn J., Amiri A., Ulven C. Hybridized carbon and flax fiber composites for tailored performance. Mater. Des. 2016;102:21–29. doi: 10.1016/j.matdes.2016.03.164. DOI
Bandaru A.K., Patel S., Sachan Y., Alagirusamy R., Bhatnagar N., Ahmad S. Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites. Mater. Des. 2016;105:323–332. doi: 10.1016/j.matdes.2016.05.075. DOI
Özben T. Impact behavior of hybrid composite plates dependent on curing and different stacking sequences. Mater. Test. 2016;58:442–447. doi: 10.3139/120.110877. DOI
Manjunath V., Udupa S. A study on hybrid composite using areca and eucalyptus fiber by using epoxy resin. J. Mech. Ind. Eng. Res. 2016;1:1–2.
Živković I., Fragassa C., Pavlović A., Brugo T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos. Part B Eng. 2017;111:148–164. doi: 10.1016/j.compositesb.2016.12.018. DOI
Joshani M., Koloor S., Abdullah R. Damage Mechanics Model for Fracture Process of Steel-concrete Composite Slabs. Appl. Mech. Mater. 2012;165:339–345. doi: 10.4028/www.scientific.net/AMM.165.339. DOI
Ng T.P., Koloor S., Djuansjah J., Kadir M.A. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Rahimian Koloor S.S., Karimzadeh A., Tamin M.N., Abd Shukor M.H. Effects of sample and indenter configurations of nanoindentation experiment on the mechanical behavior and properties of ductile materials. Metals. 2018;8:421. doi: 10.3390/met8060421. DOI
Nia A.B., Nejad A.F., Xin L., Ayob A., Yahya M.Y. Energy absorption assessment of conical composite structures subjected to quasi-static loading through optimization based method. Mech. Ind. 2020;21:113. doi: 10.1051/meca/2019088. DOI
Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971;5:58–80. doi: 10.1177/002199837100500106. DOI
Tsai S.W. Strength Characteristics of Composite Materials. Philco Corp.; Newport Beach, CA, USA: 1965.
Azzi V., Tsai S. Anisotropic strength of composites. Exp. Mech. 1965;5:283–288. doi: 10.1007/BF02326292. DOI
Chamis C. Composite Materials: Testing and Design. ASTM International; West Conshohocken, PA, USA: 1969. Failure criteria for filamentary composites.
Hoffman O. The brittle strength of orthotropic materials. J. Compos. Mater. 1967;1:200–206. doi: 10.1177/002199836700100210. DOI
Tessler A., DiSciuva M., Gherlone M. Refined Zigzag Theory for Laminated Composite and Sandwich Plates. NASA; Washington, DC, USA: 2009.
Foulk J., Allen D., Helms K. Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput. Methods Appl. Mech. Eng. 2000;183:51–66. doi: 10.1016/S0045-7825(99)00211-X. DOI
Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980;47:329–334. doi: 10.1115/1.3153664. DOI
Hashin Z., Rotem A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973;7:448–464. doi: 10.1177/002199837300700404. DOI
Bonora N., Esposito L. Mechanism based creep model incorporating damage. J. Eng. Mater. Technol. 2010;132:021013. doi: 10.1115/1.4000822. DOI
Cowper G.R., Symonds P.S. Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams. Brown University; Providence, RI, USA: 1957.
Yen C.-F. Ballistic impact modeling of composite materials; Proceedings of the 7th International LS-DYNA Users Conference; Dearborn, MI, USA. 12–14 June 2016; pp. 15–23.
De Luca A., Di Caprio F., Milella E., Lamanna G., Ignarra M., Caputo F. On the tensile behaviour of CF and CFRP materials under high strain rates. Key Eng. Mater. 2017;754:111–114. doi: 10.4028/www.scientific.net/KEM.754.111. DOI
Daniel I.M. Yield and failure criteria for composite materials under static and dynamic loading. Prog. Aerosp. Sci. 2016;81:18–25. doi: 10.1016/j.paerosci.2015.11.003. DOI
Whisler D., Kim H. Effect of impactor radius on low-velocity impact damage of glass/epoxy composites. J. Compos. Mater. 2012;46:3137–3149. doi: 10.1177/0021998312436991. DOI
Ansari M.M., Chakrabarti A. Impact behavior of FRP composite plate under low to hyper velocity impact. Compos. Part B Eng. 2016;95:462–474. doi: 10.1016/j.compositesb.2016.04.021. DOI
Panettieri E., Fanteria D., Montemurro M., Froustey C. Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study. Compos. Part B Eng. 2016;107:9–21. doi: 10.1016/j.compositesb.2016.09.057. DOI
Topac O.T., Gozluklu B., Gurses E., Coker D. Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact. Compos. Part A Appl. Sci. Manuf. 2017;92:167–182. doi: 10.1016/j.compositesa.2016.06.023. DOI
Nalla Mohamed M., Ananthapadmanaban D., Selvaraj M. Numerical Modeling of Energy Absorption Behaviour of Aluminium Foam Cored Sandwich Panels with Different Fibre Reinforced Polymer (FRP) Composite Facesheet Skins. Appl. Mech. Mater. 2016;852:66–71. doi: 10.4028/www.scientific.net/AMM.852.66. DOI
Žmindák M., Pelagić Z., Pastorek P., Močilan M., Vybošťok M. Finite element modelling of high velocity impact on plate structures. Procedia Eng. 2016;136:162–168. doi: 10.1016/j.proeng.2016.01.191. DOI
Hussain N.N., Regalla S.P., Rao Y.V.D. Low velocity impact characterization of glass fiber reinforced plastics for application of crash box. Mater. Today Proc. 2017;4:3252–3262. doi: 10.1016/j.matpr.2017.02.211. DOI
Bandaru A.K., Chavan V.V., Ahmad S., Alagirusamy R., Bhatnagar N. Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. Int. J. Impact Eng. 2016;89:1–13. doi: 10.1016/j.ijimpeng.2015.10.014. DOI
De Rosa I.M., Santulli C., Sarasini F. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. (1980–2015) 2010;31:2397–2405. doi: 10.1016/j.matdes.2009.11.059. DOI
Pelfrene J., Kuntsche J., Van Dam S., Van Paepegem W., Schneider J. Critical assessment of the post-breakage performance of blast loaded laminated glazing: Experiments and simulations. Int. J. Impact Eng. 2016;88:61–71. doi: 10.1016/j.ijimpeng.2015.09.008. DOI
Duser A.V., Jagota A., Bennison S.J. Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure. J. Eng. Mech. 1999;125:435–442. doi: 10.1061/(ASCE)0733-9399(1999)125:4(435). DOI
Hidallana-Gamage H.D., Thambiratnam D., Perera N. Influence of interlayer properties on the blast performance of laminated glass panels. Constr. Build. Mater. 2015;98:502–518. doi: 10.1016/j.conbuildmat.2015.08.129. DOI
Xu C., Yuan Y., Zhao C., Tan P., Xu X., Li Y. Dynamic crack-interface interactions in SGP laminated glass: An experimental investigation. Mech. Mater. 2018;122:76–84. doi: 10.1016/j.mechmat.2018.04.006. DOI