Optimal Roving Winding on Toroidal Parts of Composite Frames
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37571121
PubMed Central
PMC10421064
DOI
10.3390/polym15153227
PII: polym15153227
Knihovny.cz E-zdroje
- Klíčová slova
- curved composite frame, optimized winding procedure, roving winding, straight helix, toroidal helix, torus, winding angle,
- Publikační typ
- časopisecké články MeSH
Frames made of polymer composites are increasingly used in the aerospace, automotive, and agricultural industries. A frequently used technology in the production line of composite frames is winding rovings onto a non-load-bearing frame to form the structure using an industrial robot and a winding head, which is solidified through a subsequent heat-treatment pressure process. In this technology, the most difficult procedure is the winding of the curved parts of a composite frame. The primary concern is to ensure the proper winding angles, minimize the gaps and overlaps, and ensure the homogeneity of the wound layers. In practice, the curved frame parts very often geometrically form sections of a torus. In this work, the difficulty of achieving a uniform winding of toroidal parts is described and quantified. It is shown that attaining the required winding quality depends significantly on the geometrical parameters of the torus in question. A mathematical model with a detailed procedure describing how to determine the number of rovings of a given width on toroidal parts is presented. The results of this work are illustrated with practical examples of today's industrial problems.
Zobrazit více v PubMed
Ghandvar H., Jabbar K.A., Idris M.H., Ahmad N., Jahare M.H., Koloor S.S.R., Petrů M. Influence of barium addition on the formation of primary Mg2Si crystals from Al–Mg–Si melts. J. Mater. Res. Technol. 2021;11:448–465. doi: 10.1016/j.jmrt.2021.01.051. DOI
Joshani M., Koloor S., Abdullah R. Damage mechanics model for fracture process of steel-concrete composite slabs. Appl. Mech. Mater. 2012;165:339–345. doi: 10.4028/www.scientific.net/AMM.165.339. DOI
Shokravi H., Mohammadyan-Yasouj S.E., Koloor S.S.R., Petrů M., Heidarrezaei M. Effect of alumina additives on mechanical and fresh properties of self-compacting concrete: A review. Processes. 2021;9:554. doi: 10.3390/pr9030554. DOI
Farokhi Nejad A., Bin Salim M.Y., Rahimian Koloor S.S., Petrik S., Yahya M.Y., Abu Hassan S., Mohd Shah M.K. Hybrid and synthetic FRP composites under different strain rates: A review. Polymers. 2021;13:3400. PubMed PMC
Rubino F., Nisticò A., Tucci F., Carlone P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020;8:26. doi: 10.3390/jmse8010026. DOI
Koloor S., Ayatollahi M., Tamin M. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI
Khan M.S., Abdul-Latif A., Koloor S.S.R., Petrů M., Tamin M.N. Representative cell analysis for damage-based failure model of polymer hexagonal honeycomb structure under the out-of-plane loadings. Polymers. 2020;13:52. doi: 10.3390/polym13010052. PubMed DOI PMC
Hassan M.H., Othman A.R., Kamaruddin S. A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures. Int. J. Adv. Manuf. Technol. 2017;91:4081–4094. doi: 10.1007/s00170-017-0096-5. DOI
Mouritz A.P., Gellert E., Burchill P., Challis K. Review of advanced composite structures for naval ships and submarines. Compos. Struct. 2001;53:21–42. doi: 10.1016/S0263-8223(00)00175-6. DOI
Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers. 2019;11:1667. doi: 10.3390/polym11101667. PubMed DOI PMC
Koloor S.R., Karimzadeh A., Abdullah M., Petrů M., Yidris N., Sapuan S., Tamin M. Linear-nonlinear stiffness responses of carbon fiber-reinforced polymer composite materials and structures: A numerical study. Polymers. 2021;13:344. doi: 10.3390/polym13030344. PubMed DOI PMC
Mlýnek J., Petrů M., Martinec T., Rahimian Koloor S.S. Fabrication of high-quality polymer composite frame by a new method of fiber winding process. Polymers. 2020;12:1037. doi: 10.3390/polym12051037. PubMed DOI PMC
Scholz M.S., Blanchfield J.P., Bloom L.D., Coburn B.H., Elkington M., Fuller J.D., Gilbert M.E., Muflahi S.A., Pernice M.F., Rae S.I., et al. The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos. Sci. Technol. 2011;71:1791–1803. doi: 10.1016/j.compscitech.2011.08.017. DOI
Jenkins M. Materials in Sports Equipment. Volume 1 Woodhead Publishing; Sawston, UK: 2003.
Kalanchiam M., Chinnasamy M. Advantages of composite materials in aircraft structures. Int. J. Aerosp. Mech. Eng. 2012;6:2428–2432.
Teshnizi S.S., Koloor S., Sharifishourabi G., Ayob A., Yazid Y.M. Mechanical behavior of GFRP laminated composite pipe subjected to uniform radial patch load. Adv. Mater. Res. 2012;488:542–546. doi: 10.4028/www.scientific.net/AMR.488-489.542. DOI
Okolie O., Latto J., Faisal N., Jamieson H., Mukherji A., Njuguna J. Manufacturing defects in thermoplastic composite pipes and their effect on the in-situ performance of thermoplastic composite pipes in oil and gas applications. Appl. Compos. Mater. 2023;30:231–306. doi: 10.1007/s10443-022-10066-9. DOI
Khalid H.U., Ismail M.C., Nosbi N. Permeation damage of polymer liner in oil and gas pipelines: A review. Polymers. 2020;12:2307. doi: 10.3390/polym12102307. PubMed DOI PMC
Quanjin M., Rejab M., Idris M., Kumar N.M., Merzuki M. Robotic filament winding technique (RFWT) in industrial application: A review of state of the art and future perspectives. Int. Res. J. Eng. Technol. 2018;5:1668–1676.
Sorrentino L., Anamateros E., Bellini C., Carrino L., Corcione G., Leone A., Paris G. Robotic filament winding: An innovative technology to manufacture complex shape structural parts. Compos. Struct. 2019;220:699–707. doi: 10.1016/j.compstruct.2019.04.055. DOI
Sorrentino L., Marchetti M., Bellini C., Delfini A., Del Sette F. Manufacture of high performance isogrid structure by Robotic Filament Winding. Compos. Struct. 2017;164:43–50. doi: 10.1016/j.compstruct.2016.12.061. DOI
Koustas I., Papingiotis T., Vosniakos G.-C., Dine A. On the development of a filament winding robotic system. Procedia Manuf. 2018;17:919–926. doi: 10.1016/j.promfg.2018.10.145. DOI
Martinec T., Mlýnek J., Petrů M. Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames. Robot. Comput.-Integr. Manuf. 2015;35:42–54. doi: 10.1016/j.rcim.2015.02.004. DOI
Petru M., Mlynek J., Martinec T. Numerical modelling for optimization of fibres winding process of manufacturing technology for the non-circular aerospaces frames. Manuf. Technol. 2018;18:90–98. doi: 10.21062/ujep/59.2018/a/1213-2489/MT/18/1/90. DOI
Mlýnek J., Rahimian Koloor S.S., Martinec T., Petrů M. Fabrication of high-quality straight-line polymer composite frame with different radius parts using fiber winding process. Polymers. 2021;13:497. doi: 10.3390/polym13040497. PubMed DOI PMC
Mlýnek J., Petrů M., Ryvolová M., Rahimian Koloor S.S. Winding optimization of composite frame by dry fiber rovings. J. Ind. Text. 2022;52:15280837221114639. doi: 10.1177/15280837221114639. DOI
Shifrin T. Differential Geometry: A First Course in Curves and Surfaces. University of Georgia; Athens, GA, USA: 2015. p. 24.
Olsen K., Bohr J. Geometry of the toroidal N-helix: Optimal-packing and zero-twist. N. J. Phys. 2012;14:023063. doi: 10.1088/1367-2630/14/2/023063. DOI
Benenson W., Harris J.W., Stöcker H., Lutz H. Handbook of Physics. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2006.
Jeffrey A., Dai H.H. Handbook of Mathematical Formulas and Integrals. Elsevier; Amsterdam, The Netherlands: 2008.
Do Carmo M. Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc.; Englewood Cliffs, NJ, USA: 1976.
Kiselev A.P. Kiselev’s Geometry: Stereometry. Sumizdat; El Cerrito, CA, USA: 2008.
Petru M., Mlynek J., Martinec T., Broncek J. Mathematical modelling of fibre winding process for composite frames. Commun. Sci. Lett. Univ. Zilina. 2016;18:103–111. doi: 10.26552/com.C.2016.4.103-111. DOI