A comprehensive analysis of germline predisposition to early-onset ovarian cancer
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU20-09-00355
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví Ceské Republiky
NU20-09-00355
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016
Ministerstvo Zdravotnictví Ceské Republiky
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
SVV260631
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
COOPERATIO
Univerzita Karlova v Praze
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
The National Center for Medical Genomics (LM2023067)
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39003285
PubMed Central
PMC11246516
DOI
10.1038/s41598-024-66324-2
PII: 10.1038/s41598-024-66324-2
Knihovny.cz E-zdroje
- Klíčová slova
- Early-onset, Germline whole exome sequencing, HLA, Mutation burden, Ovarian cancer, Polygenic risk score,
- MeSH
- checkpoint kinasa 2 genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory vaječníků * genetika MeSH
- studie případů a kontrol MeSH
- věk při počátku nemoci * MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- checkpoint kinasa 2 MeSH
The subset of ovarian cancer (OC) diagnosed ≤ 30yo represents a distinct subgroup exhibiting disparities from late-onset OC in many aspects, including indefinite germline cancer predisposition. We performed DNA/RNA-WES with HLA-typing, PRS assessment and survival analysis in 123 early-onset OC-patients compared to histology/stage-matched late-onset and unselected OC-patients, and population-matched controls. Only 6/123(4.9%) early-onset OC-patients carried a germline pathogenic variant (GPV) in high-penetrance OC-predisposition genes. Nevertheless, our comprehensive germline analysis of early-onset OC-patients revealed two divergent trajectories of potential germline susceptibility. Firstly, overrepresentation analysis highlighted a connection to breast cancer (BC) that was supported by the CHEK2 GPV enrichment in early-onset OC(p = 1.2 × 10-4), and the presumably BC-specific PRS313, which successfully stratified early-onset OC-patients from controls(p = 0.03). The second avenue pointed towards the impaired immune response, indicated by LY75-CD302 GPV(p = 8.3 × 10-4) and diminished HLA diversity compared with controls(p = 3 × 10-7). Furthermore, we found a significantly higher overall GPV burden in early-onset OC-patients compared to controls(p = 3.8 × 10-4). The genetic predisposition to early-onset OC appears to be a heterogeneous and complex process that goes beyond the traditional Mendelian monogenic understanding of hereditary cancer predisposition, with a significant role of the immune system. We speculate that rather a cumulative overall GPV burden than specific GPV may potentially increase OC risk, concomitantly with reduced HLA diversity.
Centre for Medical Genetics and Reproductive Medicine GENNET Prague Czech Republic
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
SEER. https://seer.cancer.gov/statfacts/html/ovary.html.
Labidi-Galy SI, et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 2017;8:1093. doi: 10.1038/s41467-017-00962-1. PubMed DOI PMC
Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci. 2019;20:952. doi: 10.3390/ijms20040952. PubMed DOI PMC
Pearce CL, et al. Population distribution of lifetime risk of ovarian cancer in the United States. Cancer Epidemiol. Biomarkers Prev. 2015;24:671–676. doi: 10.1158/1055-9965.EPI-14-1128. PubMed DOI PMC
Flaum N, Crosbie EJ, Edmondson RJ, Smith MJ, Evans DG. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin. Genet. 2019 doi: 10.1111/cge.13566. PubMed DOI PMC
Lhotova K, et al. Multigene panel germline testing of 1333 Czech patients with ovarian cancer. Cancers (Basel) 2020;12:956. doi: 10.3390/cancers12040956. PubMed DOI PMC
Stratton JF, et al. The genetic epidemiology of early-onset epithelial ovarian cancer: A population-based study. Am. J. Hum. Genet. 1999;65:1725–1732. doi: 10.1086/302671. PubMed DOI PMC
Flaum N, et al. MSH2 is the very young onset ovarian cancer predisposition gene, not BRCA1. J. Med. Genet. 2023 doi: 10.1136/jmg-2022-109055. PubMed DOI PMC
Herold N, et al. Pathogenic germline variants in SMARCA4 and further cancer predisposition genes in early onset ovarian cancer. Cancer Med. 2023;12:15256–15260. doi: 10.1002/cam4.6214. PubMed DOI PMC
Carter NJ, et al. Germline pathogenic variants identified in women with ovarian tumors. Gynecol. Oncol. 2018;151:481–488. doi: 10.1016/j.ygyno.2018.09.030. PubMed DOI
Horackova K, Janatova M, Kleiblova P, Kleibl Z, Soukupova J. Early-onset ovarian cancer <30 years: What do we know about its genetic predisposition? Int. J. Mol. Sci. 2023;24:17020. doi: 10.3390/ijms242317020. PubMed DOI PMC
Bolton KL, et al. Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat. Genet. 2010;42:880–884. doi: 10.1038/ng.666. PubMed DOI PMC
Dareng EO, et al. Polygenic risk modeling for prediction of epithelial ovarian cancer risk. Eur. J. Hum. Genet. 2022;30:349–362. doi: 10.1038/s41431-021-00987-7. PubMed DOI PMC
Goode EL, et al. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat. Genet. 2010;42:874–879. doi: 10.1038/ng.668. PubMed DOI PMC
Jervis S, et al. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects. J. Med. Genet. 2015;52:465–475. doi: 10.1136/jmedgenet-2015-103077. PubMed DOI PMC
Kuchenbaecker KB, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2017;109:dwj302. doi: 10.1093/jnci/djw302. PubMed DOI PMC
Permuth-Wey J, et al. Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nat. Commun. 2013;4:1627. doi: 10.1038/ncomms2613. PubMed DOI PMC
Pharoah PD, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. 2013;45:362–370. doi: 10.1038/ng.2564. PubMed DOI PMC
Phelan CM, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017;49:680–691. doi: 10.1038/ng.3826. PubMed DOI PMC
Yang X, et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J. Med. Genet. 2018;55:546. doi: 10.1136/jmedgenet-2018-105313. PubMed DOI PMC
Jia G, et al. Evaluating the utility of polygenic risk scores in identifying high-risk individuals for eight common cancers. JNCI Cancer Spectr. 2020;4:pkaa021. doi: 10.1093/jncics/pkaa021. PubMed DOI PMC
Kubler K, et al. HLA-class II haplotype associations with ovarian cancer. Int. J. Cancer. 2006;119:2980–2985. doi: 10.1002/ijc.22266. PubMed DOI
The NCMG research infrastructure; http://ncmg.cz.
National Marrow Donors Registry; www.allelefrequencies.net/pop6001c.asp?pop_id=3258
NCCN. Guidelines Version 2.2024: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, 2023).
Hovhannisyan M, et al. Polygenic risk score (PRS) and its potential for breast cancer risk stratification. Klinicka onkologie : casopis Ceske a Slovenske onkologicke spolecnosti. 2023;36:198–205. doi: 10.48095/ccko2023198. PubMed DOI
Hovhannisyan M, et al. Population-specific validation and comparison of the performance of 77- and 313-variant polygenic risk scores for breast cancer risk prediction. Cancer. 2024 doi: 10.1002/cncr.35337. PubMed DOI
Soukupova J, et al. Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS One. 2018;13:e0195761. doi: 10.1371/journal.pone.0195761. PubMed DOI PMC
Horackova K, et al. Low frequency of cancer-predisposition gene mutations in liver transplant candidates with hepatocellular carcinoma. LID - 2022 doi: 10.3390/cancers15010201. PubMed DOI PMC
Walker LC, et al. Comprehensive assessment of BARD1 messenger ribonucleic acid splicing with implications for variant classification. Front. Genet. 2019;10:1139. doi: 10.3389/fgene.2019.01139. PubMed DOI PMC
Dobin A, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
https://broadinstitute.github.io/picard/.
Cotto KC, et al. Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer. Nat. Commun. 2023;14:1589. doi: 10.1038/s41467-023-37266-6. PubMed DOI PMC
Agius P, Geiger H, Robine N. SCANVIS: A tool for SCoring, ANnotating and VISualizing splice junctions. Bioinformatics. 2019;35:4843–4845. doi: 10.1093/bioinformatics/btz452. PubMed DOI PMC
Fadista J, Manning AK, Florez JC, Groop L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 2016;24:1202–1205. doi: 10.1038/ejhg.2015.269. PubMed DOI PMC
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–W205. doi: 10.1093/nar/gkz401. PubMed DOI PMC
Wang S, et al. SpecHLA enables full-resolution HLA typing from sequencing data. Cell Rep. Methods. 2023;3:100589. doi: 10.1016/j.crmeth.2023.100589. PubMed DOI PMC
Mavaddat N, et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 2019;104:21–34. doi: 10.1016/j.ajhg.2018.11.002. PubMed DOI PMC
Borde J, et al. Performance of breast cancer polygenic risk scores in 760 female CHEK2 germline mutation carriers. J. Natl. Cancer Instit. 2021;113:893–899. doi: 10.1093/jnci/djaa203. PubMed DOI PMC
Kurman RJ, Shih Ie M. The dualistic model of ovarian carcinogenesis: Revisited, revised, and expanded. Am J Pathol. 2016;186:733–747. doi: 10.1016/j.ajpath.2015.11.011. PubMed DOI PMC
Zemankova, P. et al. A deep intronic recurrent CHEK2 variant c.1009-118_1009-87delinsC affects pre-mRNA splicing and contributes to hereditary breast cancer predisposition. Breast 75, 103721, doi:10.1016/j.breast.2024.103721 (2024). PubMed PMC
Bonifaz L, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196:1627–1638. doi: 10.1084/jem.20021598. PubMed DOI PMC
Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. PubMed DOI
Network, N. C. C. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (Version 1.2023), <https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf> (2022).
Casper AC, et al. Risk of secondary malignancies in ovarian cancer survivors: 52,680 patients analyzed with over 40 years of follow-up. Gynecol. Oncol. 2021;162:454–460. doi: 10.1016/j.ygyno.2021.05.034. PubMed DOI
Wang J, Du Y, Kang Y. Do survivors of borderline ovarian tumors have susceptibility to secondary primary malignancies? A SEER population-based study. Int. J. Gynaecol. Obstet. 2024 doi: 10.1002/ijgo.15338. PubMed DOI
Kleiblova P, et al. Parallel DNA/RNA NGS using an identical target enrichment panel in the analysis of hereditary cancer predisposition. Folia Biol (Praha) 2024;70:62–73. doi: 10.14712/fb2024070010062. PubMed DOI
Koczkowska M, et al. Spectrum and prevalence of pathogenic variants in ovarian cancer susceptibility genes in a group of 333 patients. Cancers (Basel) 2018;10:442. doi: 10.3390/cancers10110442. PubMed DOI PMC
Jarhelle E, et al. Identifying sequence variants contributing to hereditary breast and ovarian cancer in BRCA1 and BRCA2 negative breast and ovarian cancer patients. Sci. Rep. 2019;9:19986. doi: 10.1038/s41598-019-55515-x. PubMed DOI PMC
Lawrenson K, et al. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. Carcinogenesis. 2015;36:1341–1353. doi: 10.1093/carcin/bgv138. PubMed DOI PMC
Kurian, A. W. et al. Genetic Testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. JCO1801854, 10.1200/JCO.18.01854 (2019). PubMed PMC
Stolarova, L. et al. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 9, doi:10.3390/cells9122675 (2020). PubMed PMC
Lo TH, et al. Characterization of the expression and function of the C-Type lectin receptor CD302 in mice and humans reveals a role in dendritic cell migration. J. Immunol. 2016;197:885–898. doi: 10.4049/jimmunol.1600259. PubMed DOI
Faddaoui A, et al. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. Oncotarget. 2015;7:14125. doi: 10.18632/oncotarget.7288. PubMed DOI PMC
Mehdi S, Bachvarova M, Scott-Boyer MP, Droit A, Bachvarov D. LY75 Ablation mediates mesenchymal-epithelial transition (MET) in epithelial ovarian cancer (EOC) cells associated with DNA methylation alterations and suppression of the Wnt/beta-Catenin pathway. Int. J. Mol. Sci. 2020;21:1848. doi: 10.3390/ijms21051848. PubMed DOI PMC
Pagliuca S, Gurnari C, Rubio MT, Visconte V, Lenz TL. Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front. Immunol. 2022;13:944872. doi: 10.3389/fimmu.2022.944872. PubMed DOI PMC
Aureli A, et al. Breast cancer is associated with increased HLA-DRB1*11:01 and HLA-DRB1*10:01 allele frequency in a population of patients from central Italy. Immunol. Invest. 2020;49:489–497. doi: 10.1080/08820139.2020.1737539. PubMed DOI
Tsai SC, Sheen MC, Chen BH. Association between HLA-DQA1, HLA-DQB1 and oral cancer. Kaohsiung J. Med. Sci. 2011;27:441–445. doi: 10.1016/j.kjms.2011.06.003. PubMed DOI PMC
Chen PC, Tsai EM, Er TK, Chang SJ, Chen BH. HLA-DQA1 and -DQB1 allele typing in southern Taiwanese women with breast cancer. Clin. Chem. Lab. Med. 2007;45:611–614. doi: 10.1515/CCLM.2007.132. PubMed DOI
Wang QL, et al. Association of HLA diversity with the risk of 25 cancers in the UK Biobank. EBioMedicine. 2023;92:104588. doi: 10.1016/j.ebiom.2023.104588. PubMed DOI PMC
Jones MR, Kamara D, Karlan BY, Pharoah PDP, Gayther SA. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol. 2017;147:705–713. doi: 10.1016/j.ygyno.2017.10.001. PubMed DOI
Kar SP, et al. Common genetic variation and susceptibility to ovarian cancer: Current insights and future directions. Cancer Epidemiol. Biomarkers Prev. 2018;27:395–404. doi: 10.1158/1055-9965.EPI-17-0315. PubMed DOI
Struzinska I, et al. Somatic genomic and transcriptomic characterization of primary ovarian serous borderline tumors and low-grade serous carcinomas. J. Mol. Diagn. 2024 doi: 10.1016/j.jmoldx.2023.12.004. PubMed DOI
Qing T, et al. Germline variant burden in cancer genes correlates with age at diagnosis and somatic mutation burden. Nat. Commun. 2020;11:2438. doi: 10.1038/s41467-020-16293-7. PubMed DOI PMC
Chan JK, et al. Ovarian cancer in younger vs older women: A population-based analysis. Br. J. Cancer. 2006;95:1314–1320. doi: 10.1038/sj.bjc.6603457. PubMed DOI PMC
Gockley A, et al. Outcomes of women with high-grade and low-grade advanced-stage serous epithelial ovarian cancer. Obstet. Gynecol. 2017;129:439–447. doi: 10.1097/AOG.0000000000001867. PubMed DOI PMC
Gershenson DM, et al. Impact of age and primary disease site on outcome in women with low-grade serous carcinoma of the ovary or peritoneum: Results of a large single-institution registry of a rare tumor. J. Clin. Oncol. 2015;33:2675–2682. doi: 10.1200/JCO.2015.61.0873. PubMed DOI PMC