A comprehensive analysis of germline predisposition to early-onset ovarian cancer

. 2024 Jul 13 ; 14 (1) : 16183. [epub] 20240713

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39003285

Grantová podpora
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU20-09-00355 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
NU20-09-00355 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
SVV260631 Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
COOPERATIO Univerzita Karlova v Praze
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
The National Center for Medical Genomics (LM2023067) Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39003285
PubMed Central PMC11246516
DOI 10.1038/s41598-024-66324-2
PII: 10.1038/s41598-024-66324-2
Knihovny.cz E-zdroje

The subset of ovarian cancer (OC) diagnosed ≤ 30yo represents a distinct subgroup exhibiting disparities from late-onset OC in many aspects, including indefinite germline cancer predisposition. We performed DNA/RNA-WES with HLA-typing, PRS assessment and survival analysis in 123 early-onset OC-patients compared to histology/stage-matched late-onset and unselected OC-patients, and population-matched controls. Only 6/123(4.9%) early-onset OC-patients carried a germline pathogenic variant (GPV) in high-penetrance OC-predisposition genes. Nevertheless, our comprehensive germline analysis of early-onset OC-patients revealed two divergent trajectories of potential germline susceptibility. Firstly, overrepresentation analysis highlighted a connection to breast cancer (BC) that was supported by the CHEK2 GPV enrichment in early-onset OC(p = 1.2 × 10-4), and the presumably BC-specific PRS313, which successfully stratified early-onset OC-patients from controls(p = 0.03). The second avenue pointed towards the impaired immune response, indicated by LY75-CD302 GPV(p = 8.3 × 10-4) and diminished HLA diversity compared with controls(p = 3 × 10-7). Furthermore, we found a significantly higher overall GPV burden in early-onset OC-patients compared to controls(p = 3.8 × 10-4). The genetic predisposition to early-onset OC appears to be a heterogeneous and complex process that goes beyond the traditional Mendelian monogenic understanding of hereditary cancer predisposition, with a significant role of the immune system. We speculate that rather a cumulative overall GPV burden than specific GPV may potentially increase OC risk, concomitantly with reduced HLA diversity.

Zobrazit více v PubMed

SEER. https://seer.cancer.gov/statfacts/html/ovary.html.

Labidi-Galy SI, et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 2017;8:1093. doi: 10.1038/s41467-017-00962-1. PubMed DOI PMC

Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci. 2019;20:952. doi: 10.3390/ijms20040952. PubMed DOI PMC

Pearce CL, et al. Population distribution of lifetime risk of ovarian cancer in the United States. Cancer Epidemiol. Biomarkers Prev. 2015;24:671–676. doi: 10.1158/1055-9965.EPI-14-1128. PubMed DOI PMC

Flaum N, Crosbie EJ, Edmondson RJ, Smith MJ, Evans DG. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin. Genet. 2019 doi: 10.1111/cge.13566. PubMed DOI PMC

Lhotova K, et al. Multigene panel germline testing of 1333 Czech patients with ovarian cancer. Cancers (Basel) 2020;12:956. doi: 10.3390/cancers12040956. PubMed DOI PMC

Stratton JF, et al. The genetic epidemiology of early-onset epithelial ovarian cancer: A population-based study. Am. J. Hum. Genet. 1999;65:1725–1732. doi: 10.1086/302671. PubMed DOI PMC

Flaum N, et al. MSH2 is the very young onset ovarian cancer predisposition gene, not BRCA1. J. Med. Genet. 2023 doi: 10.1136/jmg-2022-109055. PubMed DOI PMC

Herold N, et al. Pathogenic germline variants in SMARCA4 and further cancer predisposition genes in early onset ovarian cancer. Cancer Med. 2023;12:15256–15260. doi: 10.1002/cam4.6214. PubMed DOI PMC

Carter NJ, et al. Germline pathogenic variants identified in women with ovarian tumors. Gynecol. Oncol. 2018;151:481–488. doi: 10.1016/j.ygyno.2018.09.030. PubMed DOI

Horackova K, Janatova M, Kleiblova P, Kleibl Z, Soukupova J. Early-onset ovarian cancer <30 years: What do we know about its genetic predisposition? Int. J. Mol. Sci. 2023;24:17020. doi: 10.3390/ijms242317020. PubMed DOI PMC

Bolton KL, et al. Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat. Genet. 2010;42:880–884. doi: 10.1038/ng.666. PubMed DOI PMC

Dareng EO, et al. Polygenic risk modeling for prediction of epithelial ovarian cancer risk. Eur. J. Hum. Genet. 2022;30:349–362. doi: 10.1038/s41431-021-00987-7. PubMed DOI PMC

Goode EL, et al. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat. Genet. 2010;42:874–879. doi: 10.1038/ng.668. PubMed DOI PMC

Jervis S, et al. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects. J. Med. Genet. 2015;52:465–475. doi: 10.1136/jmedgenet-2015-103077. PubMed DOI PMC

Kuchenbaecker KB, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2017;109:dwj302. doi: 10.1093/jnci/djw302. PubMed DOI PMC

Permuth-Wey J, et al. Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nat. Commun. 2013;4:1627. doi: 10.1038/ncomms2613. PubMed DOI PMC

Pharoah PD, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. 2013;45:362–370. doi: 10.1038/ng.2564. PubMed DOI PMC

Phelan CM, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017;49:680–691. doi: 10.1038/ng.3826. PubMed DOI PMC

Yang X, et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J. Med. Genet. 2018;55:546. doi: 10.1136/jmedgenet-2018-105313. PubMed DOI PMC

Jia G, et al. Evaluating the utility of polygenic risk scores in identifying high-risk individuals for eight common cancers. JNCI Cancer Spectr. 2020;4:pkaa021. doi: 10.1093/jncics/pkaa021. PubMed DOI PMC

Kubler K, et al. HLA-class II haplotype associations with ovarian cancer. Int. J. Cancer. 2006;119:2980–2985. doi: 10.1002/ijc.22266. PubMed DOI

The NCMG research infrastructure; http://ncmg.cz.

National Marrow Donors Registry; www.allelefrequencies.net/pop6001c.asp?pop_id=3258

NCCN. Guidelines Version 2.2024: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, 2023).

Hovhannisyan M, et al. Polygenic risk score (PRS) and its potential for breast cancer risk stratification. Klinicka onkologie : casopis Ceske a Slovenske onkologicke spolecnosti. 2023;36:198–205. doi: 10.48095/ccko2023198. PubMed DOI

Hovhannisyan M, et al. Population-specific validation and comparison of the performance of 77- and 313-variant polygenic risk scores for breast cancer risk prediction. Cancer. 2024 doi: 10.1002/cncr.35337. PubMed DOI

Soukupova J, et al. Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS One. 2018;13:e0195761. doi: 10.1371/journal.pone.0195761. PubMed DOI PMC

Horackova K, et al. Low frequency of cancer-predisposition gene mutations in liver transplant candidates with hepatocellular carcinoma. LID - 2022 doi: 10.3390/cancers15010201. PubMed DOI PMC

Walker LC, et al. Comprehensive assessment of BARD1 messenger ribonucleic acid splicing with implications for variant classification. Front. Genet. 2019;10:1139. doi: 10.3389/fgene.2019.01139. PubMed DOI PMC

Dobin A, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

https://broadinstitute.github.io/picard/.

Cotto KC, et al. Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer. Nat. Commun. 2023;14:1589. doi: 10.1038/s41467-023-37266-6. PubMed DOI PMC

Agius P, Geiger H, Robine N. SCANVIS: A tool for SCoring, ANnotating and VISualizing splice junctions. Bioinformatics. 2019;35:4843–4845. doi: 10.1093/bioinformatics/btz452. PubMed DOI PMC

Fadista J, Manning AK, Florez JC, Groop L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 2016;24:1202–1205. doi: 10.1038/ejhg.2015.269. PubMed DOI PMC

Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–W205. doi: 10.1093/nar/gkz401. PubMed DOI PMC

Wang S, et al. SpecHLA enables full-resolution HLA typing from sequencing data. Cell Rep. Methods. 2023;3:100589. doi: 10.1016/j.crmeth.2023.100589. PubMed DOI PMC

Mavaddat N, et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 2019;104:21–34. doi: 10.1016/j.ajhg.2018.11.002. PubMed DOI PMC

Borde J, et al. Performance of breast cancer polygenic risk scores in 760 female CHEK2 germline mutation carriers. J. Natl. Cancer Instit. 2021;113:893–899. doi: 10.1093/jnci/djaa203. PubMed DOI PMC

Kurman RJ, Shih Ie M. The dualistic model of ovarian carcinogenesis: Revisited, revised, and expanded. Am J Pathol. 2016;186:733–747. doi: 10.1016/j.ajpath.2015.11.011. PubMed DOI PMC

Zemankova, P. et al. A deep intronic recurrent CHEK2 variant c.1009-118_1009-87delinsC affects pre-mRNA splicing and contributes to hereditary breast cancer predisposition. Breast 75, 103721, doi:10.1016/j.breast.2024.103721 (2024). PubMed PMC

Bonifaz L, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196:1627–1638. doi: 10.1084/jem.20021598. PubMed DOI PMC

Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. PubMed DOI

Network, N. C. C. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (Version 1.2023), <https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf> (2022).

Casper AC, et al. Risk of secondary malignancies in ovarian cancer survivors: 52,680 patients analyzed with over 40 years of follow-up. Gynecol. Oncol. 2021;162:454–460. doi: 10.1016/j.ygyno.2021.05.034. PubMed DOI

Wang J, Du Y, Kang Y. Do survivors of borderline ovarian tumors have susceptibility to secondary primary malignancies? A SEER population-based study. Int. J. Gynaecol. Obstet. 2024 doi: 10.1002/ijgo.15338. PubMed DOI

Kleiblova P, et al. Parallel DNA/RNA NGS using an identical target enrichment panel in the analysis of hereditary cancer predisposition. Folia Biol (Praha) 2024;70:62–73. doi: 10.14712/fb2024070010062. PubMed DOI

Koczkowska M, et al. Spectrum and prevalence of pathogenic variants in ovarian cancer susceptibility genes in a group of 333 patients. Cancers (Basel) 2018;10:442. doi: 10.3390/cancers10110442. PubMed DOI PMC

Jarhelle E, et al. Identifying sequence variants contributing to hereditary breast and ovarian cancer in BRCA1 and BRCA2 negative breast and ovarian cancer patients. Sci. Rep. 2019;9:19986. doi: 10.1038/s41598-019-55515-x. PubMed DOI PMC

Lawrenson K, et al. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. Carcinogenesis. 2015;36:1341–1353. doi: 10.1093/carcin/bgv138. PubMed DOI PMC

Kurian, A. W. et al. Genetic Testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. JCO1801854, 10.1200/JCO.18.01854 (2019). PubMed PMC

Stolarova, L. et al. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 9, doi:10.3390/cells9122675 (2020). PubMed PMC

Lo TH, et al. Characterization of the expression and function of the C-Type lectin receptor CD302 in mice and humans reveals a role in dendritic cell migration. J. Immunol. 2016;197:885–898. doi: 10.4049/jimmunol.1600259. PubMed DOI

Faddaoui A, et al. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. Oncotarget. 2015;7:14125. doi: 10.18632/oncotarget.7288. PubMed DOI PMC

Mehdi S, Bachvarova M, Scott-Boyer MP, Droit A, Bachvarov D. LY75 Ablation mediates mesenchymal-epithelial transition (MET) in epithelial ovarian cancer (EOC) cells associated with DNA methylation alterations and suppression of the Wnt/beta-Catenin pathway. Int. J. Mol. Sci. 2020;21:1848. doi: 10.3390/ijms21051848. PubMed DOI PMC

Pagliuca S, Gurnari C, Rubio MT, Visconte V, Lenz TL. Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front. Immunol. 2022;13:944872. doi: 10.3389/fimmu.2022.944872. PubMed DOI PMC

Aureli A, et al. Breast cancer is associated with increased HLA-DRB1*11:01 and HLA-DRB1*10:01 allele frequency in a population of patients from central Italy. Immunol. Invest. 2020;49:489–497. doi: 10.1080/08820139.2020.1737539. PubMed DOI

Tsai SC, Sheen MC, Chen BH. Association between HLA-DQA1, HLA-DQB1 and oral cancer. Kaohsiung J. Med. Sci. 2011;27:441–445. doi: 10.1016/j.kjms.2011.06.003. PubMed DOI PMC

Chen PC, Tsai EM, Er TK, Chang SJ, Chen BH. HLA-DQA1 and -DQB1 allele typing in southern Taiwanese women with breast cancer. Clin. Chem. Lab. Med. 2007;45:611–614. doi: 10.1515/CCLM.2007.132. PubMed DOI

Wang QL, et al. Association of HLA diversity with the risk of 25 cancers in the UK Biobank. EBioMedicine. 2023;92:104588. doi: 10.1016/j.ebiom.2023.104588. PubMed DOI PMC

Jones MR, Kamara D, Karlan BY, Pharoah PDP, Gayther SA. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol. 2017;147:705–713. doi: 10.1016/j.ygyno.2017.10.001. PubMed DOI

Kar SP, et al. Common genetic variation and susceptibility to ovarian cancer: Current insights and future directions. Cancer Epidemiol. Biomarkers Prev. 2018;27:395–404. doi: 10.1158/1055-9965.EPI-17-0315. PubMed DOI

Struzinska I, et al. Somatic genomic and transcriptomic characterization of primary ovarian serous borderline tumors and low-grade serous carcinomas. J. Mol. Diagn. 2024 doi: 10.1016/j.jmoldx.2023.12.004. PubMed DOI

Qing T, et al. Germline variant burden in cancer genes correlates with age at diagnosis and somatic mutation burden. Nat. Commun. 2020;11:2438. doi: 10.1038/s41467-020-16293-7. PubMed DOI PMC

Chan JK, et al. Ovarian cancer in younger vs older women: A population-based analysis. Br. J. Cancer. 2006;95:1314–1320. doi: 10.1038/sj.bjc.6603457. PubMed DOI PMC

Gockley A, et al. Outcomes of women with high-grade and low-grade advanced-stage serous epithelial ovarian cancer. Obstet. Gynecol. 2017;129:439–447. doi: 10.1097/AOG.0000000000001867. PubMed DOI PMC

Gershenson DM, et al. Impact of age and primary disease site on outcome in women with low-grade serous carcinoma of the ovary or peritoneum: Results of a large single-institution registry of a rare tumor. J. Clin. Oncol. 2015;33:2675–2682. doi: 10.1200/JCO.2015.61.0873. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...