Early-Onset Ovarian Cancer <30 Years: What Do We Know about Its Genetic Predisposition?

. 2023 Nov 30 ; 24 (23) : . [epub] 20231130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38069345

Grantová podpora
NU20-03-00016 Ministry of Health
NU20-09-00355 Ministry of Health
NU23-03-00150 Ministry of Health
RVO-VFN 00064165 Ministry of Health
COOPERATIO Charles University
SVV260516 Charles University
LX22NPO05102 Ministry of Education Youth and Sports

Ovarian cancer (OC) is one of the leading causes of cancer-related deaths in women. Most patients are diagnosed with advanced epithelial OC in their late 60s, and early-onset adult OC diagnosed ≤30 years is rare, accounting for less than 5% of all OC cases. The most significant risk factor for OC development are germline pathogenic/likely pathogenic variants (GPVs) in OC predisposition genes (including BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, Lynch syndrome genes, or BRIP1), which contribute to the development of over 20% of all OC cases. GPVs in BRCA1/BRCA2 are the most prevalent. The presence of a GPV directs tailored cancer risk-reducing strategies for OC patients and their relatives. Identification of OC patients with GPVs can also have therapeutic consequences. Despite the general assumption that early cancer onset indicates higher involvement of hereditary cancer predisposition, the presence of GPVs in early-onset OC is rare (<10% of patients), and their heritability is uncertain. This review summarizes the current knowledge on the genetic predisposition to early-onset OC, with a special focus on epithelial OC, and suggests other alternative genetic factors (digenic, oligogenic, polygenic heritability, genetic mosaicism, imprinting, etc.) that may influence the development of early-onset OC in adult women lacking GPVs in known OC predisposition genes.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F., Bsc M.F.B., Me J.F., Soerjomataram M.I., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Kim M.-K., Kim K., Kim S.M., Kim J.W., Park N.-H., Song Y.-S., Kang S.-B. A hospital-based case-control study of identifying ovarian cancer using symptom index. J. Gynecol. Oncol. 2009;20:238–242. doi: 10.3802/jgo.2009.20.4.238. PubMed DOI PMC

National Cancer Institute: Surveillance, Epidemiology, and End Results Program. [(accessed on 1 September 2023)]; Available online: www.seer.cancer.gov/

Ray-Coquard I., Morice P., Lorusso D., Prat J., Oaknin A., Pautier P., Colombo N. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018;29((Suppl. S4)):iv1–iv18. doi: 10.1093/annonc/mdy001. PubMed DOI

Lhotova K., Stolarova L., Zemankova P., Vocka M., Janatova M., Borecka M., Cerna M., Jelinkova S., Kral J., Volkova Z., et al. Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer. Cancers. 2020;12:956. doi: 10.3390/cancers12040956. PubMed DOI PMC

Kanchi K.L., Johnson K.J., Lu C., McLellan M.D., Leiserson M.D.M., Wendl M.C., Zhang Q., Koboldt D.C., Xie M., Kandoth C., et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat. Commun. 2014;5:3156. doi: 10.1038/ncomms4156. PubMed DOI PMC

Risch H.A., McLaughlin J.R., Cole D.E., Rosen B., Bradley L., Kwan E., Jack E., Vesprini D.J., Kuperstein G., Abrahamson J.L., et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am. J. Hum. Genet. 2001;68:700–710. doi: 10.1086/318787. PubMed DOI PMC

Stratton J.F., Thompson D., Bobrow L., Dalal N., Gore M., Bishop D., Scott I., Evans G., Daly P., Easton D.F., et al. The genetic epidemiology of early-onset epithelial ovarian cancer: A population-based study. Am. J. Hum. Genet. 1999;65:1725–1732. doi: 10.1086/302671. PubMed DOI PMC

Carter N.J., Marshall M.L., Susswein L.R., Zorn K.K., Hiraki S., Arvai K.J., Torene R.I., McGill A.K., Yackowski L., Murphy P.D., et al. Germline pathogenic variants identified in women with ovarian tumors. Gynecol. Oncol. 2018;151:481–488. doi: 10.1016/j.ygyno.2018.09.030. PubMed DOI

Prat J. New insights into ovarian cancer pathology. Ann. Oncol. 2012;23((Suppl. S10)):x111–x117. doi: 10.1093/annonc/mds300. PubMed DOI

Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–615. doi: 10.1038/nature10166. PubMed DOI PMC

Morden C.R., Farrell A.C., Sliwowski M., Lichtensztejn Z., Altman A.D., Nachtigal M.W., McManus K.J. Chromosome instability is prevalent and dynamic in high-grade serous ovarian cancer patient samples. Gynecol. Oncol. 2021;161:769–778. doi: 10.1016/j.ygyno.2021.02.038. PubMed DOI

Matz M., Coleman M.P., Sant M., Chirlaque M.D., Visser O., Gore M., Allemani C., Bouzbid S., Hamdi-Chérif M., Zaidi Z., et al. The histology of ovarian cancer: Worldwide distribution and implications for international survival comparisons (CONCORD-2) Gynecol. Oncol. 2017;144:405–413. doi: 10.1016/j.ygyno.2016.10.019. PubMed DOI PMC

Kurman R.J., Shih I.M. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am. J. Pathol. 2016;186:733–747. doi: 10.1016/j.ajpath.2015.11.011. PubMed DOI PMC

GLOBOCAN 2020. [(accessed on 1 September 2023)]. Available online: https://gco.iarc.fr/

Lockley M., Stoneham S.J., Olson T.A. Ovarian cancer in adolescents and young adults. Pediatr. Blood Cancer. 2019;66:e27512. doi: 10.1002/pbc.27512. PubMed DOI

Chan J.K., Urban R., Cheung M.K., Osann K., Husain A., Teng N.N., Kapp D.S., Berek J.S., Leiserowitz G.S. Ovarian cancer in younger vs older women: A population-based analysis. Br. J. Cancer. 2006;95:1314–1320. doi: 10.1038/sj.bjc.6603457. PubMed DOI PMC

Grimley P.M., Matsuno R.K., Rosenberg P.S., Henson D.E., Schwartz A.M., Anderson W.F. Qualitative Age Interactions between Low-grade and High-grade Serous Ovarian Carcinomas. Cancer Epidemiol. Biomark. Prev. 2009;18:2256–2261. doi: 10.1158/1055-9965.EPI-09-0240. PubMed DOI

Massi D., Susini T., Savino L., Boddi V., Amunni G., Colafranceschi M. Epithelial ovarian tumors in the reproductive age group: Age is not an independent prognostic factor. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1996;77:1131–1136. doi: 10.1002/(SICI)1097-0142(19960315)77:6<1131::AID-CNCR19>3.0.CO;2-2. PubMed DOI

Yoshikawa K., Fukuda T., Uemura R., Matsubara H., Wada T., Kawanishi M., Tasaka R., Kasai M., Hashiguchi Y., Ichimura T., et al. Age-related differences in prognosis and prognostic factors among patients with epithelial ovarian cancer. Mol. Clin. Oncol. 2018;9:329–334. doi: 10.3892/mco.2018.1668. PubMed DOI PMC

Schildkraut J.M., Halabi S., Bastos E., Marchbanks P.A., McDonald J.A., Berchuck A. Prognostic factors in early-onset epithelial ovarian cancer: A population-based study. Obstet. Gynecol. 2000;95:119–127. doi: 10.1097/00006250-200001000-00023. PubMed DOI

Gershenson D.M., Bodurka D.C., Lu K.H., Nathan L.C., Milojevic L., Wong K.K., Malpica A., Sun C.C. Impact of Age and Primary Disease Site on Outcome in Women With Low-Grade Serous Carcinoma of the Ovary or Peritoneum: Results of a Large Single-Institution Registry of a Rare Tumor. J. Clin. Oncol. 2015;33:2675–2682. doi: 10.1200/JCO.2015.61.0873. PubMed DOI PMC

Lalrinpuii E., Bhageerathy P.S., Sebastian A., Jeyaseelan L., Thomas V., Thomas A., Chandy R., Peedicayil A. Ovarian Cancer in Young Women. Indian J. Surg. Oncol. 2017;8:540–547. doi: 10.1007/s13193-017-0680-z. PubMed DOI PMC

Zhang J., Ugnat A.-M., Clarke K., Mao Y. Ovarian cancer histology-specific incidence trends in Canada 1969–1993: Age-period-cohort analyses. Br. J. Cancer. 1999;81:152–158. doi: 10.1038/sj.bjc.6690665. PubMed DOI PMC

Schneider D.T., Terenziani M., Cecchetto G., Olson T.A., Schneider D.T., Terenziani M., Olson T.A., Schneider D.T., Cecchetto G., Olson T.A., et al. Rare Tumors in Children and Adolescents. Springer International Publishing; Cham, Switzerland: 2012. Gonadal and Extragonadal Germ Cell Tumors, Sex Cord Stromal and Rare Gonadal Tumors; pp. 327–402.

Huang Y., Ming X., Li B., Li Z. Histological Characteristics and Early-Stage Diagnosis Are Associated With Better Survival in Young Patients With Epithelial Ovarian Cancer: A Retrospective Analysis Based on Surveillance Epidemiology and End Results Database. Front. Oncol. 2020;10:595789. doi: 10.3389/fonc.2020.595789. PubMed DOI PMC

Fu Z., Brooks M.M., Irvin S., Jordan S., Aben K.K.H., Anton-Culver H., Bandera E.V., Beckmann M.W., Berchuck A., Brooks-Wilson A., et al. Lifetime ovulatory years and risk of epithelial ovarian cancer: A multinational pooled analysis. JNCI J. Natl. Cancer Inst. 2023;115:539–551. doi: 10.1093/jnci/djad011. PubMed DOI PMC

Pavanello M., Chan I.H., Ariff A., Pharoah P.D., Gayther S.A., Ramus S.J. Rare Germline Genetic Variants and the Risks of Epithelial Ovarian Cancer. Cancers. 2020;12:3046. doi: 10.3390/cancers12103046. PubMed DOI PMC

Witjes V.M., van Bommel M.H., Ligtenberg M.J., Vos J.R., Mourits M.J., Ausems M.G., de Hullu J.A., Bosse T., Hoogerbrugge N. Probability of detecting germline BRCA1/2 pathogenic variants in histological subtypes of ovarian carcinoma. A meta-analysis. Gynecol. Oncol. 2022;164:221–230. doi: 10.1016/j.ygyno.2021.10.072. PubMed DOI

Toss A., Tomasello C., Razzaboni E., Contu G., Grandi G., Cagnacci A., Schilder R.J., Cortesi L. Hereditary ovarian cancer: Not only BRCA 1 and 2 genes. BioMed Res. Int. 2015;2015:341723. doi: 10.1155/2015/341723. PubMed DOI PMC

Chen J., Bae E., Zhang L., Hughes K., Parmigiani G., Braun D., Rebbeck T.R. Penetrance of Breast and Ovarian Cancer in Women Who Carry a BRCA1/2 Mutation and Do Not Use Risk-Reducing Salpingo-Oophorectomy: An Updated Meta-Analysis. JNCI Cancer Spectr. 2020;4:pkaa029. doi: 10.1093/jncics/pkaa029. PubMed DOI PMC

Kuchenbaecker K.B., Hopper J.L., Barnes D.R., Phillips K.A., Mooij T.M., Roos-Blom M.J., Jervis S., Van Leeuwen F.E., Milne R.L., Andrieu N., et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017;317:2402–2416. doi: 10.1001/jama.2017.7112. PubMed DOI

Weber-Lassalle N., Hauke J., Ramser J., Richters L., Groß E., Blümcke B., Gehrig A., Kahlert A.-K., Müller C.R., Hackmann K., et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018;20:7. doi: 10.1186/s13058-018-0935-9. PubMed DOI PMC

Lilyquist J., LaDuca H., Polley E., Davis B.T., Shimelis H., Hu C., Hart S.N., Dolinsky J.S., Couch F.J., Goldgar D.E. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol. Oncol. 2017;147:375–380. doi: 10.1016/j.ygyno.2017.08.030. PubMed DOI PMC

National Comprehensive Cancer Network Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (Version 1.2023) 2022. [(accessed on 1 September 2023)]. Available online: https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf.

Cummings S., Roman S.S., Saam J., Bernhisel R., Brown K., Lancaster J.M., Usha L. Age of ovarian cancer diagnosis among BRIP1, RAD51C, and RAD51D mutation carriers identified through multi-gene panel testing. J. Ovarian Res. 2021;14:61. doi: 10.1186/s13048-021-00809-w. PubMed DOI PMC

Dominguez-Valentin M., Sampson J.R., Seppälä T.T., ten Broeke S.W., Plazzer J.-P., Nakken S., Engel C., Aretz S., Jenkins M.A., Sunde L., et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020;22:15–25. doi: 10.1038/s41436-019-0596-9. PubMed DOI PMC

Bernards S.S., Norquist B.M., Harrell M.I., Agnew K.J., Lee M.K., Walsh T., Swisher E.M. Genetic characterization of early onset ovarian carcinoma. Gynecol. Oncol. 2016;140:221–225. doi: 10.1016/j.ygyno.2015.12.017. PubMed DOI PMC

Curtius K., Gupta S., Boland C.R. Review article: Lynch Syndrome-a mechanistic and clinical management update. Aliment. Pharmacol. Ther. 2022;55:960–977. doi: 10.1111/apt.16826. PubMed DOI PMC

Flaum N., Crosbie E.J., Woodward E.R., Lalloo F., Morgan R., Ryan N., Evans D.G. MSH2 is the very young onset ovarian cancer predisposition gene, not BRCA1. J. Med. Genet. 2023;60:576–577. doi: 10.1136/jmg-2022-109055. PubMed DOI PMC

Kurian A.W., Hughes E., Handorf E.A., Gutin A., Allen B., Hartman A.-R., Hall M.J. Breast and Ovarian Cancer Penetrance Estimates Derived From Germline Multiple-Gene Sequencing Results in Women. JCO Precis. Oncol. 2017;1:1–12. doi: 10.1200/PO.16.00066. PubMed DOI

Yang X., Leslie G., Doroszuk A., Schneider S., Allen J., Decker B., Dunning A.M., Redman J., Scarth J., Plaskocinska I., et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020;38:674–685. doi: 10.1200/JCO.19.01907. PubMed DOI PMC

Narayan P., Ahsan M.D., Webster E.M., Perez L., Levi S.R., Harvey B., Wolfe I., Beaumont S., Brewer J.T., Siegel D., et al. Partner and localizer of BRCA2 (PALB2) pathogenic variants and ovarian cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2023;177:72–85. doi: 10.1016/j.ygyno.2023.07.017. PubMed DOI

Hearle N., Schumacher V., Menko F.H., Olschwang S., Boardman L.A., Gille J.J., Keller J.J., Westerman A.M., Scott R.J., Lim W., et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin. Cancer Res. 2006;12:3209–3215. doi: 10.1158/1078-0432.CCR-06-0083. PubMed DOI

Klimkowski S., Ibrahim M., Ibarra Rovira J.J., Elshikh M., Javadi S., Klekers A.R., Abusaif A.A., Moawad A.W., Ali K., Elsayes K.M. Peutz-Jeghers Syndrome and the Role of Imaging: Pathophysiology, Diagnosis, and Associated Cancers. Cancers. 2021;13:5121. doi: 10.3390/cancers13205121. PubMed DOI PMC

Giardiello F.M., Brensinger J.D., Tersmette A.C., Goodman S.N., Petersen G.M., Booker S.V., Cruz–Correa M., Offerhaus J.A. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119:1447–1453. doi: 10.1053/gast.2000.20228. PubMed DOI

De Paolis E., Paragliola R.M., Concolino P. Spectrum of DICER1 Germline Pathogenic Variants in Ovarian Sertoli-Leydig Cell Tumor. J. Clin. Med. 2021;10:1845. doi: 10.3390/jcm10091845. PubMed DOI PMC

Frio T.R., Bahubeshi A., Kanellopoulou C., Hamel N., Niedziela M., Sabbaghian N., Pouchet C., Gilbert L., O’Brien P.K., Serfas K., et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA. 2011;305:68–77. doi: 10.1001/jama.2010.1910. PubMed DOI PMC

Schultz K.A.P., Harris A., Doros L.A., Young R.H., Dehner L.P., Frazier A.L., Hill D.A., Messinger Y.H. Clinical and genetic aspects of ovarian stromal tumors: A report from the International Ovarian and Testicular Stromal Tumor Registry. J. Clin. Oncol. 2014;32((Suppl. S15)):5520. doi: 10.1200/jco.2014.32.15_suppl.5520. DOI

Witkowski L., Carrot-Zhang J., Albrecht S., Fahiminiya S., Hamel N., Tomiak E., Grynspan D., Saloustros E., Nadaf J., Rivera B., et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet. 2014;46:438–443. doi: 10.1038/ng.2931. PubMed DOI

Herold N., Schmolling J., Ernst C., Ataseven B., Blümcke B., Schömig-Markiefka B., Heikaus S., Göhring U., Engel C., Lampe B., et al. Pathogenic germline variants in SMARCA4 and further cancer predisposition genes in early onset ovarian cancer. Cancer Med. 2023;12:15256–15260. doi: 10.1002/cam4.6214. PubMed DOI PMC

Ryan N., Evans D., Green K., Crosbie E. Pathological features and clinical behavior of Lynch syndrome-associated ovarian cancer. Gynecol. Oncol. 2017;144:491–495. doi: 10.1016/j.ygyno.2017.01.005. PubMed DOI PMC

Huang K.L., Mashl R.J., Wu Y., Ritter D.I., Wang J., Oh C., Paczkowska M., Reynolds S., Wyczalkowski M.A., Oak N., et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018;173:355–370.e14. doi: 10.1016/j.cell.2018.03.039. PubMed DOI PMC

McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University. Baltimore M. Online Mendelian Inheritance in Man, OMIM®. 2022. [(accessed on 1 September 2023)]. Available online: https://omim.org/

Felicio P.S., Grasel R.S., Campacci N., de Paula A.E., Galvão H.C., Torrezan G.T., Sabato C.S., Fernandes G.C., Souza C.P., Michelli R.D., et al. Whole-exome sequencing of non-BRCA1/BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Hum. Mutat. 2021;42:290–299. doi: 10.1002/humu.24158. PubMed DOI PMC

da Costa e Silva Carvalho S., Cury N.M., Brotto D.B., De Araujo L.F., Rosa R.C.A., Texeira L.A., Plaça J.R., Marques A.A., Peronni K.C., Ruy P.D.C., et al. Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: Analysis of a 21 gene panel in the Brazilian population. BMC Med. Genom. 2020;13:21. doi: 10.1186/s12920-019-0652-y. PubMed DOI PMC

Boyd J., Sonoda Y., Federici M.G., Bogomolniy F., Rhei E., Maresco D.L., Saigo P.E., Almadrones L.A., Barakat R.R., Brown C.L., et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA. 2000;283:2260–2265. doi: 10.1001/jama.283.17.2260. PubMed DOI

Cibula D., Laco J., Dundr P., Hájková N., Tichá I., Hojný J., Němejcová K., Bártů M., Michálková R., Zikán M., et al. Synchronous endometrioid endometrial and ovarian carcinomas are biologically related: A clinico-pathological and molecular (next generation sequencing) study of 22 cases. Oncol. Lett. 2019;17:2207–2214. PubMed PMC

Jarhelle E., Stensland H.M.F.R., Hansen G.M., Skarsfjord S., Jonsrud C., Ingebrigtsen M., Strømsvik N., Van Ghelue M. Identifying sequence variants contributing to hereditary breast and ovarian cancer in BRCA1 and BRCA2 negative breast and ovarian cancer patients. Sci. Rep. 2019;9:19986. doi: 10.1038/s41598-019-55515-x. PubMed DOI PMC

Koczkowska M., Krawczynska N., Stukan M., Kuzniacka A., Brozek I., Sniadecki M., Debniak J., Wydra D., Biernat W., Kozlowski P., et al. Spectrum and Prevalence of Pathogenic Variants in Ovarian Cancer Susceptibility Genes in a Group of 333 Patients. Cancers. 2018;10:442. doi: 10.3390/cancers10110442. PubMed DOI PMC

Pal T., Permuth-Wey J., Betts J.A., Krischer J.P., Fiorica J., Arango H., LaPolla J., Hoffman M., Martino M.A., Wakeley K., et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104:2807–2816. doi: 10.1002/cncr.21536. PubMed DOI

Anand L., Padmavathi V., Dhivya V., Mahalaxmi I., Balachandar V. De novo germ-line mutation of APC gene in periampullary carcinoma with familial adenomatous polyps—A novel familial case report in South India. Karbala Int. J. Mod. Sci. 2016;2:266–270. doi: 10.1016/j.kijoms.2016.09.002. DOI

Vibert R., Le Gall J., Buecher B., Mouret-Fourme E., Bataillon G., Becette V., Trabelsi-Grati O., Moncoutier V., Dehainault C., Carriere J., et al. APC germline pathogenic variants and epithelial ovarian cancer: Causal or coincidental findings? J. Med. Genet. 2023;60:460–463. doi: 10.1136/jmg-2022-108467. PubMed DOI

Babovic N., Simmons P.S., Moir C., Thorland E.C., Scheithauer B., Gliem T.J., Babovic-Vuksanovic D. Mucinous cystadenoma of ovary in a patient with juvenile polyposis due to 10q23 microdeletion: Expansion of phenotype. Am. J. Med. Genet. A. 2010;152A:2623–2627. doi: 10.1002/ajmg.a.33637. PubMed DOI

Lou L., Zhou L., Wang W., Li H., Li Y. Atypical ovarian carcinoid tumor with widespread skeletal metastases: A case report of multiple endocrine neoplasia type 1 in a young woman. BMC Cancer. 2019;19:1107. doi: 10.1186/s12885-019-6332-7. PubMed DOI PMC

Yauy K., Imbert-Bouteille M., Bubien V., Lindet-Bourgeois C., Rathat G., Perrochia H., MacGrogan G., Longy M., Bessis D., Tinat J., et al. Ovarian Clear Cell Carcinoma in Cowden Syndrome. J. Natl. Compr. Cancer Netw. 2019;17:7–11. doi: 10.6004/jnccn.2018.7065. PubMed DOI

Cho M.-Y., Kim H.S., Eng C., Kim D.S., Kang S.J., Eom M., Yi S.Y., Bronner M.P. First report of ovarian dysgerminoma in Cowden syndrome with germline PTEN mutation and PTEN-related 10q loss of tumor heterozygosity. Am. J. Surg. Pathol. 2008;32:1258–1264. doi: 10.1097/PAS.0b013e31816be8b7. PubMed DOI

Sia T.Y., Maio A., Kemel Y.M., Arora K.S., Gordhandas S.B., Kahn R.M., Salo-Mullen E.E., Sheehan M.A., Tejada P.R., Bandlamudi C., et al. Germline Pathogenic Variants and Genetic Counseling by Ancestry in Patients With Epithelial Ovarian Cancer. JCO Precis. Oncol. 2023;7:e2300137. doi: 10.1200/PO.23.00137. PubMed DOI PMC

Janavičius R., Andrėkutė K., Mickys U., Rudaitis V., Brasiūnienė B., Griškevičius L. Apparently “BRCA-related” breast and ovarian cancer patient with germline TP53 mutation. Breast J. 2011;17:409–415. doi: 10.1111/j.1524-4741.2011.01088.x. PubMed DOI

Blanco A., Grana B., Fachal L., Santamarina M., Cameselle-Teijeiro J., Ruíz-Ponte C., Carracedo A., Vega A. Beyond BRCA1 and BRCA2 wild-type breast and/or ovarian cancer families: Germline mutations in TP53 and PTEN. Clin. Genet. 2010;77:193–196. doi: 10.1111/j.1399-0004.2009.01309.x. PubMed DOI

Norquist B.M., Harrell M.I., Brady M.F., Walsh T., Lee M.K., Gulsuner S., Bernards S.S., Casadei S., Yi Q., Burger R.A., et al. Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol. 2016;2:482–490. doi: 10.1001/jamaoncol.2015.5495. PubMed DOI PMC

Dace P., Olita H., Ludmila E., Ingrida D. Tumour suppressor gene CDKN2A/p16 germline mutations in melanoma patients with additional cancer and cancer in their family history. Acta Univ. Latv. 2003;662:25–32.

Eoh K.J., Kim J.E., Park H.S., Lee S.T., Park J.S., Han J.W., Lee J.Y., Kim S., Kim S.W., Kim J.H., et al. Detection of Germline Mutations in Patients with Epithelial Ovarian Cancer Using Multi-gene Panels: Beyond BRCA1/2. Cancer Res. Treat. 2018;50:917–925. doi: 10.4143/crt.2017.220. PubMed DOI PMC

Mur P., García-Mulero S., del Valle J., Magraner-Pardo L., Vidal A., Pineda M., Cinnirella G., Martín-Ramos E., Pons T., López-Doriga A., et al. Role of POLE and POLD1 in familial cancer. Genet. Med. 2020;22:2089–2100. doi: 10.1038/s41436-020-0922-2. PubMed DOI PMC

Song H., Dicks E.M., Tyrer J., Intermaggio M., Chenevix-Trench G., Bowtell D.D., Traficante N., AOCS Group. Brenton J., Goranova T., et al. Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer. J. Med Genet. 2020;58:305–313. doi: 10.1136/jmedgenet-2019-106739. PubMed DOI PMC

Schubert S., van Luttikhuizen J.L., Auber B., Schmidt G., Hofmann W., Penkert J., Davenport C.F., Hille-Betz U., Wendeburg L., Bublitz J., et al. The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants. Int. J. Cancer. 2019;144:2683–2694. doi: 10.1002/ijc.31992. PubMed DOI

del Valle J., Rofes P., Moreno-Cabrera J.M., López-Dóriga A., Belhadj S., Vargas-Parra G., Teulé À., Cuesta R., Muñoz X., Campos O., et al. Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers. 2020;12:829. doi: 10.3390/cancers12040829. PubMed DOI PMC

Bertelsen B., Tuxen I.V., Yde C.W., Gabrielaite M., Torp M.H., Kinalis S., Oestrup O., Rohrberg K., Spangaard I., Santoni-Rugiu E., et al. High frequency of pathogenic germline variants within homologous recombination repair in patients with advanced cancer. NPJ Genom. Med. 2019;4:13. doi: 10.1038/s41525-019-0087-6. PubMed DOI PMC

Cavaillé M., Uhrhammer N., Privat M., Ponelle-Chachuat F., Gay-Bellile M., Lepage M., Molnar I., Viala S., Bidet Y., Bignon Y. Analysis of 11 candidate genes in 849 adult patients with suspected hereditary cancer predisposition. Genes Chromosomes Cancer. 2021;60:73–78. doi: 10.1002/gcc.22911. PubMed DOI PMC

Fostira F., Kostantopoulou I., Apostolou P., Papamentzelopoulou M.S., Papadimitriou C., Faliakou E., Christodoulou C., Boukovinas I., Razis E., Tryfonopoulos D., et al. One in three highly selected Greek patients with breast cancer carries a loss-of-function variant in a cancer susceptibility gene. J. Med Genet. 2019;57:53–61. doi: 10.1136/jmedgenet-2019-106189. PubMed DOI PMC

Norquist B., Harrell M., Walsh T., Lee M., King M., Davidson S., Mannel R., DiSilvestro P., Swisher E., Birrer M. Germline mutations in DNA repair genes in women with ovarian, peritoneal, or fallopian tube cancer treated on GOG protocols 218 and 262. Gynecol. Oncol. 2014;133:6. doi: 10.1016/j.ygyno.2014.03.030. DOI

Golmard L., Castéra L., Krieger S., Moncoutier V., Abidallah K., Tenreiro H., Laugé A., Tarabeux J., Millot G.A., Nicolas A., et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur. J. Hum. Genet. 2017;25:1345–1353. doi: 10.1038/s41431-017-0021-2. PubMed DOI PMC

Zhao Q., Yang J., Li L., Cao D., Yu M., Shen K. Germline and somatic mutations in homologous recombination genes among Chinese ovarian cancer patients detected using next-generation sequencing. J. Gynecol. Oncol. 2017;28:e39. doi: 10.3802/jgo.2017.28.e39. PubMed DOI PMC

Subramanian D.N., Zethoven M., McInerny S., Morgan J.A., Rowley S.M., Lee J.E.A., Li N., Gorringe K.L., James P.A., Campbell I.G. Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nat. Commun. 2020;11:1640. doi: 10.1038/s41467-020-15461-z. PubMed DOI PMC

Srivastava S., Olson H.E., Cohen J.S., Gubbels C.S., Lincoln S., Davis B.T., Shahmirzadi L., Gupta S., Picker J., Yu T.W., et al. BRAT1 mutations present with a spectrum of clinical severity. Am. J. Med. Genet. A. 2016;170:2265–2273. doi: 10.1002/ajmg.a.37783. PubMed DOI PMC

Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014;20:764–775. doi: 10.1158/1078-0432.CCR-13-2287. PubMed DOI PMC

Lu C., Xie M., Wendl M.C., Wang J., McLellan M.D., Leiserson M.D.M., Huang K.-L., Wyczalkowski M.A., Jayasinghe R., Banerjee T., et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat. Commun. 2015;6:10086. doi: 10.1038/ncomms10086. PubMed DOI PMC

Stradella A., Del Valle J., Rofes P., Vargas-Parra G., Salinas M., González S., Montes E., López-Doriga A., Gómez C., de Cid R., et al. ERCC3, a new ovarian cancer susceptibility gene? Eur. J. Cancer. 2020;141:1–8. doi: 10.1016/j.ejca.2020.09.023. PubMed DOI

Soukupova J., Zemankova P., Nehasil P., Kleibl Z., Kleibl Z., Soukupová J., Janatová M., Zemánková P., Černá M., Jelínková S., et al. Re: ERCC3, a new ovarian cancer susceptibility gene? Eur. J. Cancer. 2021;150:278–280. doi: 10.1016/j.ejca.2021.03.014. PubMed DOI

Meienberg J., Bruggmann R., Oexle K., Matyas G. Clinical sequencing: Is WGS the better WES? Hum. Genet. 2016;135:359–362. doi: 10.1007/s00439-015-1631-9. PubMed DOI PMC

Cavalieri S., Pozzi E., Gatti R.A., Brusco A. Deep-intronic ATM mutation detected by genomic resequencing and corrected in vitro by antisense morpholino oligonucleotide (AMO) Eur. J. Hum. Genet. 2013;21:774–778. doi: 10.1038/ejhg.2012.266. PubMed DOI PMC

Evans D.R., van Veen E.M., Byers H.J., Wallace A.J., Ellingford J.M., Beaman G., Santoyo-Lopez J., Aitman T.J., Eccles D.M., Lalloo F.I., et al. A Dominantly Inherited 5’ UTR Variant Causing Methylation-Associated Silencing of BRCA1 as a Cause of Breast and Ovarian Cancer. Am. J. Hum. Genet. 2018;103:213–220. doi: 10.1016/j.ajhg.2018.07.002. PubMed DOI PMC

Rusch M., Nakitandwe J., Shurtleff S., Newman S., Zhang Z., Edmonson M.N., Parker M., Jiao Y., Ma X., Liu Y., et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat. Commun. 2018;9:3962. doi: 10.1038/s41467-018-06485-7. PubMed DOI PMC

Funingana I., Trotman J., Ambrose J., Roberts T., Watkins J., Ridley M., Gilson B., Freeman S., Jimenez-Linan M., Sosinsky A., et al. 7P Integration of whole genome sequencing (WGS) into NHS pathways for high-grade ovarian cancer (HGOC): A single-centre prospective experience. ESMO Open. 2023;8:100861. doi: 10.1016/j.esmoop.2023.100861. DOI

Guan Z., Begg C.B., Shen R. Predicting Cancer Risk from Germline Whole-exome Sequencing Data Using a Novel Context-based Variant Aggregation Approach. Cancer Res. Commun. 2023;3:483–488. doi: 10.1158/2767-9764.CRC-22-0355. PubMed DOI PMC

Domchek S.M., Tang J., Stopfer J., Lilli D.R., Hamel N., Tischkowitz M., Monteiro A.N.A., Messick T.E., Powers J., Yonker A., et al. Biallelic deleterious BRCA1 mutations in a woman with early-onset ovarian cancer. Cancer Discov. 2013;3:399–405. doi: 10.1158/2159-8290.CD-12-0421. PubMed DOI PMC

Scherz A., Stoll S., Rothlisberger B., Rabaglio M. A New de novo BRCA1 Mutation in a Young Breast Cancer Patient: A Case Report. Appl. Clin. Genet. 2023;16:83–87. doi: 10.2147/TACG.S405120. PubMed DOI PMC

Tenedini E., Piana S., Toss A., Marino M., Barbieri E., Artuso L., Venturelli M., Gasparini E., Mandato V.D., Marchi I., et al. Constitutional Mosaicism: A Critical Issue in the Definition of BRCA-Inherited Cancer Risk. JCO Precis. Oncol. 2022;6:e2200138. doi: 10.1200/PO.22.00138. PubMed DOI PMC

Witkowski L., Lalonde E., Zhang J., Albrecht S., Hamel N., Cavallone L., May S.T., Nicholson J.C., Coleman N., Murray M.J., et al. Familial rhabdoid tumour ‘avant la lettre’—From pathology review to exome sequencing and back again. J. Pathol. 2013;231:35–43. doi: 10.1002/path.4225. PubMed DOI

Golmard L., Delnatte C., Laugé A., Moncoutier V., Lefol C., Abidallah K., Tenreiro H., Copigny F., Giraudeau M., Guy C., et al. Breast and ovarian cancer predisposition due to de novo BRCA1 and BRCA2 mutations. Oncogene. 2016;35:1324–1327. doi: 10.1038/onc.2015.181. PubMed DOI

von Hardenberg S., Wallaschek H., Du C., Schmidt G., Auber B. A holistic approach to maximise diagnostic output in trio exome sequencing. Front. Pediatr. 2023;11:1183891. doi: 10.3389/fped.2023.1183891. PubMed DOI PMC

Speight B., Colvin E., Epurescu E.D., Drummond J., Verhoef S., Pereira M., Evans D.G., Tischkowitz M. Low-level constitutional mosaicism of BRCA1 in two women with young onset ovarian cancer. Hered. Cancer Clin. Pract. 2022;20:32. doi: 10.1186/s13053-022-00237-x. PubMed DOI PMC

Alhopuro P., Vainionpää R., Anttonen A.-K., Aittomäki K., Nevanlinna H., Pöyhönen M. Constitutional mosaicism for a BRCA2 mutation as a cause of early-onset breast cancer. Fam. Cancer. 2020;19:307–310. doi: 10.1007/s10689-020-00186-1. PubMed DOI PMC

Schwartz M., Ibadioune S., Chansavang A., Vacher S., Caputo S.M., Delhomelle H., Wong J., Abidallah K., Moncoutier V., Becette V., et al. Mosaic BRCA1 promoter methylation contribution in hereditary breast/ovarian cancer pedigrees. J. Med. Genet. 2023 doi: 10.1136/jmg-2023-109325. PubMed DOI

Pinto D., Pinto C., Guerra J., Pinheiro M., Santos R., Vedeld H.M., Yohannes Z., Peixoto A., Santos C., Pinto P., et al. Contribution of MLH1 constitutional methylation for Lynch syndrome diagnosis in patients with tumor MLH1 downregulation. Cancer Med. 2018;7:433–444. doi: 10.1002/cam4.1285. PubMed DOI PMC

Rantala J.N.J., Heikkinen S.M.M., Hirvonen E.M., Tanskanen T., Malila N.K., Pitkäniemi J.M. Familial aggregation of early-onset cancers in early-onset breast cancer families. Int. J. Cancer. 2023;153:331–340. doi: 10.1002/ijc.34538. PubMed DOI

Imbert-Bouteille M., Corsini C., Picot M.-C., Mizrahy L., Akouete S., Huguet H., Thomas F., Geneviève D., Taourel P., Ychou M., et al. No Association of Early-Onset Breast or Ovarian Cancer with Early-Onset Cancer in Relatives in BRCA1 or BRCA2 Mutation Families. Genes. 2021;12:1100. doi: 10.3390/genes12071100. PubMed DOI PMC

Stratton J.F., Pharoah P., Smith S.K., Easton D., Ponder B.A.J. A systematic review and meta-analysis of family history and risk of ovarian cancer. BJOG Int. J. Obstet. Gynaecol. 1998;105:493–499. doi: 10.1111/j.1471-0528.1998.tb10148.x. PubMed DOI

Eng K.H., Szender J.B., Etter J.L., Kaur J., Poblete S., Huang R.Y., Zhu Q., Grzesik K.A., Battaglia S., Cannioto R., et al. Paternal lineage early onset hereditary ovarian cancers: A Familial Ovarian Cancer Registry study. PLoS Genet. 2018;14:e1007194. doi: 10.1371/journal.pgen.1007194. PubMed DOI PMC

Buller R.E., Sood A.K., Lallas T., Buekers T., Skilling J.S. Association between nonrandom X-chromosome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. J. Natl. Cancer Inst. 1999;91:339–346. doi: 10.1093/jnci/91.4.339. PubMed DOI

Liu R., Kain M., Wang L. Inactivation of X-linked tumor suppressor genes in human cancer. Future Oncol. 2012;8:463–481. doi: 10.2217/fon.12.26. PubMed DOI PMC

Lose F., Duffy D.L., Kay G.F., Kedda M.A., Spurdle A.B. Skewed X chromosome inactivation and breast and ovarian cancer status: Evidence for X-linked modifiers of BRCA1. J. Natl. Cancer Inst. 2008;100:1519–1529. doi: 10.1093/jnci/djn345. PubMed DOI

Winham S.J., Larson N.B., Armasu S.M., Fogarty Z.C., Larson M.C., McCauley B.M., Wang C., Lawrenson K., Gayther S., Cunningham J.M., et al. Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Hum. Mol. Genet. 2019;28:1331–1342. doi: 10.1093/hmg/ddy444. PubMed DOI PMC

Qing T., Mohsen H., Marczyk M., Ye Y., O’meara T., Zhao H., Townsend J.P., Gerstein M., Hatzis C., Kluger Y., et al. Germline variant burden in cancer genes correlates with age at diagnosis and somatic mutation burden. Nat. Commun. 2020;11:2438. doi: 10.1038/s41467-020-16293-7. PubMed DOI PMC

Jia G., Lu Y., Wen W., Long J., Liu Y., Tao R., Li B., Denny J.C., Shu X.-O., Zheng W. Evaluating the Utility of Polygenic Risk Scores in Identifying High-Risk Individuals for Eight Common Cancers. JNCI Cancer Spectr. 2020;4:pkaa021. doi: 10.1093/jncics/pkaa021. PubMed DOI PMC

Yang X., Leslie G., Gentry-Maharaj A., Ryan A., Intermaggio M., Lee A., Kalsi J.K., Tyrer J., Gaba F., Manchanda R., et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J. Med Genet. 2018;55:546–554. doi: 10.1136/jmedgenet-2018-105313. PubMed DOI PMC

Dareng E.O., Tyrer J.P., Barnes D.R., Jones M.R., Yang X., Aben K.K.H., Adank M.A., Agata S., Andrulis I.L., Anton-Culver H., et al. Polygenic risk modeling for prediction of epithelial ovarian cancer risk. Eur. J. Hum. Genet. 2022;30:349–362. doi: 10.1038/s41431-021-00987-7. PubMed DOI PMC

Borde J., Laitman Y., Blümcke B., Niederacher D., Weber-Lassalle K., Sutter C., Rump A., Arnold N., Wang-Gohrke S., Horváth J., et al. Polygenic risk scores indicate extreme ages at onset of breast cancer in female BRCA1/2 pathogenic variant carriers. BMC Cancer. 2022;22:706. doi: 10.1186/s12885-022-09780-1. PubMed DOI PMC

Fatapour Y., Brody J.P. Genetic Risk Scores and Missing Heritability in Ovarian Cancer. Genes. 2023;14:762. doi: 10.3390/genes14030762. PubMed DOI PMC

Rebbeck T.R., Friebel T.M., Mitra N., Wan F., Chen S., Andrulis I.L., Apostolou P., Arnold N., Arun B.K., Barrowdale D., et al. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Res. 2016;18:112. doi: 10.1186/s13058-016-0768-3. PubMed DOI PMC

Zhu Q., Wang J., Yu H., Hu Q., Bateman N.W., Long M., Rosario S., Schultz E., Dalgard C.L., Wilkerson M.D., et al. Whole-Genome Sequencing Identifies PPARGC1A as a Putative Modifier of Cancer Risk in BRCA1/2 Mutation Carriers. Cancers. 2022;14:2350. doi: 10.3390/cancers14102350. PubMed DOI PMC

Laitman Y., Michaelson-Cohen R., Chen-Shtoyerman R., Goldberg Y., Reish O., Bernstein-Molho R., Levy-Lahad E., Ben Baruch N.E., Kedar I., Evans D.G., et al. Age at diagnosis of cancer in 185delAG BRCA1 mutation carriers of diverse ethnicities: Tentative evidence for modifier factors. Fam. Cancer. 2021;20:189–194. doi: 10.1007/s10689-020-00216-y. PubMed DOI

Lee C.H., Subramanian S., Beck A.H., Espinosa I., Senz J., Zhu S.X., Huntsman D., van de Rijn M., Gilks C.B. MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PLoS ONE. 2009;4:e7314. doi: 10.1371/journal.pone.0007314. PubMed DOI PMC

Pastrello C., Polesel J., Della Puppa L., Viel A., Maestro R. Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis. 2010;31:2124–2126. doi: 10.1093/carcin/bgq184. PubMed DOI

Zhang K., Chandrakasan S., Chapman H., Valencia C.A., Husami A., Kissell D., Johnson J.A., Filipovich A.H. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood. 2014;124:1331–1334. doi: 10.1182/blood-2014-05-573105. PubMed DOI PMC

Moreno-Ruiz N., Ambrose J.C., Arumugam P., Baple E.L., Bleda M., Boardman-Pretty F., Boissiere J.M., Boustred C.R., Brittain H., Caulfield M.J., et al. Assessing the digenic model in rare disorders using population sequencing data. Eur. J. Hum. Genet. 2022;30:1439–1443. doi: 10.1038/s41431-022-01191-x. PubMed DOI PMC

Kamar A., Khalil A., Nemer G. The Digenic Causality in Familial Hypercholesterolemia: Revising the Genotype-Phenotype Correlations of the Disease. Front. Genet. 2020;11:572045. doi: 10.3389/fgene.2020.572045. PubMed DOI PMC

Ameratunga R., Woon S.-T., Bryant V.L., Steele R., Slade C., Leung E.Y., Lehnert K. Clinical Implications of Digenic Inheritance and Epistasis in Primary Immunodeficiency Disorders. Front. Immunol. 2017;8:1965. doi: 10.3389/fimmu.2017.01965. PubMed DOI PMC

Nachtegael C., Gravel B., Dillen A., Smits G., Nowé A., Papadimitriou S., Lenaerts T. Scaling up oligogenic diseases research with OLIDA: The Oligogenic Diseases Database. Database. 2022;2022:baac023. doi: 10.1093/database/baac023. PubMed DOI PMC

Fijneman R.J., de Vries S.S., Jansen R.C., Demant P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat. Genet. 1996;14:465–467. doi: 10.1038/ng1296-465. PubMed DOI

Tansel A., Katz L.H., El-Serag H.B., Thrift A.P., Parepally M., Shakhatreh M.H., Kanwal F. Incidence and Determinants of Hepatocellular Carcinoma in Autoimmune Hepatitis: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2017;15:1207–1217.e4. doi: 10.1016/j.cgh.2017.02.006. PubMed DOI PMC

Helicobacter and Cancer Collaborative Group Gastric cancer and Helicobacter pylori: A combined analysis of 12 case control studies nested within prospective cohorts. Gut. 2001;49:347. doi: 10.1136/gut.49.3.347. PubMed DOI PMC

Gausman V., Dornblaser D., Anand S., Hayes R.B., O’Connell K., Du M., Liang P.S. Risk Factors Associated With Early-Onset Colorectal Cancer. Clin. Gastroenterol. Hepatol. 2020;18:2752–2759.e2. doi: 10.1016/j.cgh.2019.10.009. PubMed DOI PMC

Bae E., Lim S., Han K.-D., Jung J.-H., Choi H., Kim C., Ma S., Kim S. Systemic lupus erythematosus is a risk factor for cancer: A nationwide population-based study in Korea. Lupus. 2019;28:317–323. doi: 10.1177/0961203319826672. PubMed DOI

Kübler K., Arndt P.F., Wardelmann E., Krebs D., Kuhn W., van der Ven K. HLA-class II haplotype associations with ovarian cancer. Int. J. Cancer. 2006;119:2980–2985. doi: 10.1002/ijc.22266. PubMed DOI

Carbone M., Arron S.T., Beutler B., Bononi A., Cavenee W., Cleaver J.E., Croce C.M., D’andrea A., Foulkes W.D., Gaudino G., et al. Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nat. Rev. Cancer. 2020;20:533–549. doi: 10.1038/s41568-020-0265-y. PubMed DOI PMC

Novelli F., Bononi A., Wang Q., Bai F., Patergnani S., Kricek F., Haglund E., Suarez J.S., Tanji M., Xu R., et al. BAP1 forms a trimer with HMGB1 and HDAC1 that modulates gene x environment interaction with asbestos. Proc. Natl. Acad. Sci. USA. 2021;118:e2111946118. doi: 10.1073/pnas.2111946118. PubMed DOI PMC

Kurzynska-Kokorniak A., Koralewska N., Pokornowska M., Urbanowicz A., Tworak A., Mickiewicz A., Figlerowicz M. The many faces of Dicer: The complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res. 2015;43:4365–4380. doi: 10.1093/nar/gkv328. PubMed DOI PMC

Nickerson M.L., Warren M.B., Toro J.R., Matrosova V., Glenn G., Turner M.L., Duray P., Merino M., Choyke P., Pavlovich C.P., et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell. 2002;2:157–164. doi: 10.1016/S1535-6108(02)00104-6. PubMed DOI

L’espérance K., Grundy A., Abrahamowicz M., Arseneau J., Gilbert L., Gotlieb W.H., Provencher D., Koushik A. Alcohol intake and the risk of epithelial ovarian cancer. Cancer Causes Control. 2023;34:533–541. doi: 10.1007/s10552-023-01681-3. PubMed DOI

Wang T., Townsend M.K., Vinci C., Jake-Schoffman D.E., Tworoger S.S. Early life exposure to tobacco smoke and ovarian cancer risk in adulthood. Int. J. Epidemiol. 2021;50:965–974. doi: 10.1093/ije/dyab018. PubMed DOI PMC

Collaborative Group on Epidemiological Studies of Ovarian Cancer Ovarian cancer and smoking: Individual participant meta-analysis including 28,114 women with ovarian cancer from 51 epidemiological studies. Lancet Oncol. 2012;13:946–956. doi: 10.1016/S1470-2045(12)70322-4. PubMed DOI PMC

Mitamura T., Zhai T., Hatanaka K.C., Hatanaka Y., Amano T., Wang L., Tanaka S., Watari H. Germline PRDM1 Variant rs2185379 in Long-Term Recurrence-Free Survivors of Advanced Ovarian Cancer. Pharmacogenomics Pers. Med. 2022;15:977–984. doi: 10.2147/PGPM.S387120. PubMed DOI PMC

Shi T., Jiang R., Wang P., Xu Y., Yin S., Cheng X., Zang R. Significant association of the EXO1 rs851797 polymorphism with clinical outcome of ovarian cancer. Onco Targets Ther. 2017;10:4841–4851. doi: 10.2147/OTT.S141668. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...