Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer

. 2020 Apr 13 ; 12 (4) : . [epub] 20200413

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32295079

Grantová podpora
16-29959A Ministerstvo Zdravotnictví Ceské Republiky
NV17-32030A Ministerstvo Zdravotnictví Ceské Republiky
NV18-03-00024 Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
DRO (FNOl, 00098892) Ministerstvo Zdravotnictví Ceské Republiky
SVV2019/260367 Univerzita Karlova v Praze
PROGRES Q28/LF1 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_013/0001634 Univerzita Karlova v Praze

Ovarian cancer (OC) is the deadliest gynecologic malignancy with a substantial proportion of hereditary cases and a frequent association with breast cancer (BC). Genetic testing facilitates treatment and preventive strategies reducing OC mortality in mutation carriers. However, the prevalence of germline mutations varies among populations and many rarely mutated OC predisposition genes remain to be identified. We aimed to analyze 219 genes in 1333 Czech OC patients and 2278 population-matched controls using next-generation sequencing. We revealed germline mutations in 18 OC/BC predisposition genes in 32.0% of patients and in 2.5% of controls. Mutations in BRCA1/BRCA2, RAD51C/RAD51D, BARD1, and mismatch repair genes conferred high OC risk (OR > 5). Mutations in BRIP1 and NBN were associated with moderate risk (both OR = 3.5). BRCA1/2 mutations dominated in almost all clinicopathological subgroups including sporadic borderline tumors of ovary (BTO). Analysis of remaining 201 genes revealed somatic mosaics in PPM1D and germline mutations in SHPRH and NAT1 associating with a high/moderate OC risk significantly; however, further studies are warranted to delineate their contribution to OC development in other populations. Our findings demonstrate the high proportion of patients with hereditary OC in Slavic population justifying genetic testing in all patients with OC, including BTO.

Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute 656 53 Brno Czech Republic

Department of Gynecology and Obstetrics Hospital Na Bulovce and 1st Faculty of Medicine Charles University 180 81 Prague Czech Republic

Department of Medical Genetics AGEL Laboratories AGEL Research and Training Institute 741 01 Novy Jicin Czech Republic

Department of Medical Genetics Centre for Medical Genetics and Reproductive Medicine Gennet 170 00 Prague Czech Republic

Department of Medical Genetics GHC Genetics 110 00 Prague Czech Republic

Department of Medical Genetics Pronatal 147 00 Prague Czech Republic

Department of Medical Genetics University Hospital Olomouc Faculty of Medicine and Dentistry Palacky University Olomouc 779 00 Olomouc Czech Republic

Department of Oncology 1st Faculty of Medicine Charles University and General University Hospital Prague 128 08 Prague Czech Republic

Institute of Biochemistry and Experimental Oncology 1st Faculty of Medicine Charles University 128 53 Prague Czech Republic

Institute of Biology and Medical Genetics 1st Faculty of Medicine Charles University and General University Hospital Prague 128 00 Prague Czech Republic

Laboratory of Cancer Cell Biology Institute of Molecular Genetics of the Czech Academy of Sciences 142 20 Prague Czech Republic

Research Unit for Rare Diseases Department of Pediatrics and Adolescent Medicine 1st Faculty of Medicine Charles University and General University Hospital Prague 12808 Prague Czech Republic

Zobrazit více v PubMed

Levanon K., Crum C., Drapkin R. New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J. Clin. Oncol. 2008;26:5284–5293. doi: 10.1200/JCO.2008.18.1107. PubMed DOI PMC

Kim J., Park E.Y., Kim O., Schilder J.M., Coffey D.M., Cho C.H., Bast R.C., Jr. Cell Origins of High-Grade Serous Ovarian Cancer. Cancers (Basel) 2018;10:433. doi: 10.3390/cancers10110433. PubMed DOI PMC

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA A Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI

Walsh T., Casadei S., Lee M.K., Pennil C.C., Nord A.S., Thornton A.M., Roeb W., Agnew K.J., Stray S.M., Wickramanayake A., et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. USA. 2011;108:18032–18037. doi: 10.1073/pnas.1115052108. PubMed DOI PMC

Koczkowska M., Krawczynska N., Stukan M., Kuzniacka A., Brozek I., Sniadecki M., Debniak J., Wydra D., Biernat W., Kozlowski P., et al. Spectrum and Prevalence of Pathogenic Variants in Ovarian Cancer Susceptibility Genes in a Group of 333 Patients. Cancers (Basel) 2018;10:442. doi: 10.3390/cancers10110442. PubMed DOI PMC

Krivokuca A., Boljevic I., Jovandic S., Magic Z., Mandic A., Tomasevic Z., Brankovic-Magic M. Germline mutations in cancer susceptibility genes in high grade serous ovarian cancer in Serbia. J. Hum. Genet. 2019 doi: 10.1038/s10038-019-0562-z. PubMed DOI

Offit K. BRCA mutation frequency and penetrance: New data, old debate. J. Natl. Cancer Inst. 2006;98:1675–1677. doi: 10.1093/jnci/djj500. PubMed DOI

Norquist B.M., Harrell M.I., Brady M.F., Walsh T., Lee M.K., Gulsuner S., Bernards S.S., Casadei S., Yi Q., Burger R.A., et al. Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol. 2016;2:482–490. doi: 10.1001/jamaoncol.2015.5495. PubMed DOI PMC

Loveday C., Turnbull C., Ruark E., Xicola R.M., Ramsay E., Hughes D., Warren-Perry M., Snape K., Breast Cancer Susceptibility C., Eccles D., et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat. Genet. 2012;44:475–476. doi: 10.1038/ng.2224. author reply 476. PubMed DOI

Loveday C., Turnbull C., Ramsay E., Hughes D., Ruark E., Frankum J.R., Bowden G., Kalmyrzaev B., Warren-Perry M., Snape K., et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011;43:879–882. doi: 10.1038/ng.893. PubMed DOI PMC

Watson P., Butzow R., Lynch H.T., Mecklin J.P., Jarvinen H.J., Vasen H.F., Madlensky L., Fidalgo P., Bernstein I., International Collaborative Group on H. The clinical features of ovarian cancer in hereditary nonpolyposis colorectal cancer. Gynecol. Oncol. 2001;82:223–228. doi: 10.1006/gyno.2001.6279. PubMed DOI

Ramus S.J., Song H., Dicks E., Tyrer J.P., Rosenthal A.N., Intermaggio M.P., Fraser L., Gentry-Maharaj A., Hayward J., Philpott S., et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv214. PubMed DOI PMC

Banno K., Kisu I., Yanokura M., Masuda K., Ueki A., Kobayashi Y., Hirasawa A., Aoki D. Hereditary gynecological tumors associated with Peutz-Jeghers syndrome (Review) Oncol. Lett. 2013;6:1184–1188. doi: 10.3892/ol.2013.1527. PubMed DOI PMC

Lilyquist J., LaDuca H., Polley E., Davis B.T., Shimelis H., Hu C., Hart S.N., Dolinsky J.S., Couch F.J., Goldgar D.E. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol. Oncol. 2017;147:375–380. doi: 10.1016/j.ygyno.2017.08.030. PubMed DOI PMC

Carter N.J., Marshall M.L., Susswein L.R., Zorn K.K., Hiraki S., Arvai K.J., Torene R.I., McGill A.K., Yackowski L., Murphy P.D., et al. Germline pathogenic variants identified in women with ovarian tumors. Gynecol. Oncol. 2018;151:481–488. doi: 10.1016/j.ygyno.2018.09.030. PubMed DOI

Schubert S., van Luttikhuizen J.L., Auber B., Schmidt G., Hofmann W., Penkert J., Davenport C.F., Hille-Betz U., Wendeburg L., Bublitz J., et al. The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants. Int. J. Cancer. 2019;144:2683–2694. doi: 10.1002/ijc.31992. PubMed DOI

Daly M.B., Pilarski R., Berry M., Buys S.S., Farmer M., Friedman S., Garber J.E., Kauff N.D., Khan S., Klein C., et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast and Ovarian, Version 2.2017. J. Natl. Compr. Cancer Netw. JNCCN. 2017;15:9–20. doi: 10.6004/jnccn.2017.0003. PubMed DOI

Domchek S.M., Friebel T.M., Neuhausen S.L., Wagner T., Evans G., Isaacs C., Garber J.E., Daly M.B., Eeles R., Matloff E., et al. Mortality after bilateral salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers: A prospective cohort study. Lancet. Oncol. 2006;7:223–229. doi: 10.1016/S1470-2045(06)70585-X. PubMed DOI

Soukupova J., Zemankova P., Lhotova K., Janatova M., Borecka M., Stolarova L., Lhota F., Foretova L., Machackova E., Stranecky V., et al. Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS ONE. 2018;13:e0195761. doi: 10.1371/journal.pone.0195761. PubMed DOI PMC

King M.C., Marks J.H., Mandell J.B., New York Breast Cancer Study G. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302:643–646. doi: 10.1126/science.1088759. PubMed DOI

Rafnar T., Gudbjartsson D.F., Sulem P., Jonasdottir A., Sigurdsson A., Jonasdottir A., Besenbacher S., Lundin P., Stacey S.N., Gudmundsson J., et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat. Genet. 2011;43:1104–1107. doi: 10.1038/ng.955. PubMed DOI

Bonache S., Esteban I., Moles-Fernandez A., Tenes A., Duran-Lozano L., Montalban G., Bach V., Carrasco E., Gadea N., Lopez-Fernandez A., et al. Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J. Cancer Res. Clin. Oncol. 2018;144:2495–2513. doi: 10.1007/s00432-018-2763-9. PubMed DOI PMC

Lynch H.T., de la Chapelle A. Hereditary colorectal cancer. N. Engl. J. Med. 2003;348:919–932. doi: 10.1056/NEJMra012242. PubMed DOI

Lu H.M., Li S., Black M.H., Lee S., Hoiness R., Wu S., Mu W., Huether R., Chen J., Sridhar S., et al. Association of Breast and Ovarian Cancers With Predisposition Genes Identified by Large-Scale Sequencing. JAMA Oncol. 2018 doi: 10.1001/jamaoncol.2018.2956. PubMed DOI PMC

Kurian A.W., Ward K.C., Howlader N., Deapen D., Hamilton A.S., Mariotto A., Miller D., Penberthy L.S., Katz S.J. Genetic Testing and Results in a Population-Based Cohort of Breast Cancer Patients and Ovarian Cancer Patients. J. Clin. Oncol. 2019:JCO1801854. doi: 10.1200/JCO.18.01854. PubMed DOI PMC

Yang X., Leslie G., Doroszuk A., Schneider S., Allen J., Decker B., Dunning A.M., Redman J., Scarth J., Plaskocinska I., et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020;38:674–685. doi: 10.1200/JCO.19.01907. PubMed DOI PMC

Kleiblova P., Stolarova L., Krizova K., Lhota F., Hojny J., Zemankova P., Havranek O., Vocka M., Cerna M., Lhotova K., et al. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int. J. Cancer. 2019 doi: 10.1002/ijc.32385. PubMed DOI

Harter P., Hauke J., Heitz F., Reuss A., Kommoss S., Marme F., Heimbach A., Prieske K., Richters L., Burges A., et al. Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1) PLoS ONE. 2017;12:e0186043. doi: 10.1371/journal.pone.0186043. PubMed DOI PMC

Whitworth J., Skytte A.B., Sunde L., Lim D.H., Arends M.J., Happerfield L., Frayling I.M., van Minkelen R., Woodward E.R., Tischkowitz M.D., et al. Multilocus Inherited Neoplasia Alleles Syndrome: A Case Series and Review. JAMA Oncol. 2016;2:373–379. doi: 10.1001/jamaoncol.2015.4771. PubMed DOI

Stradella A., Del Valle J., Rofes P., Feliubadalo L., Grau Garces E., Velasco A., Gonzalez S., Vargas G., Izquierdo A., Campos O., et al. Does multilocus inherited neoplasia alleles syndrome have severe clinical expression? J. Med. Genet. 2018 doi: 10.1136/jmedgenet-2018-105700. PubMed DOI PMC

Whitworth J., Smith P.S., Martin J.E., West H., Luchetti A., Rodger F., Clark G., Carss K., Stephens J., Stirrups K., et al. Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes. Am. J. Hum. Genet. 2018;103:3–18. doi: 10.1016/j.ajhg.2018.04.013. PubMed DOI PMC

Castera L., Harter V., Muller E., Krieger S., Goardon N., Ricou A., Rousselin A., Paimparay G., Legros A., Bruet O., et al. Landscape of pathogenic variations in a panel of 34 genes and cancer risk estimation from 5131 HBOC families. Genet. Med. 2018;20:1677–1686. doi: 10.1038/s41436-018-0005-9. PubMed DOI

Morgan R.D., Burghel G.J., Flaum N., Bulman M., Clamp A.R., Hasan J., Mitchell C.L., Schlecht H., Woodward E.R., Lallo F.I., et al. Prevalence of germline pathogenic BRCA1/2 variants in sequential epithelial ovarian cancer cases. J. Med. Genet. 2019;56:301–307. doi: 10.1136/jmedgenet-2018-105792. PubMed DOI

Plaskocinska I., Shipman H., Drummond J., Thompson E., Buchanan V., Newcombe B., Hodgkin C., Barter E., Ridley P., Ng R., et al. New paradigms for BRCA1/BRCA2 testing in women with ovarian cancer: Results of the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study. J. Med. Genet. 2016;53:655–661. doi: 10.1136/jmedgenet-2016-103902. PubMed DOI PMC

Rust K., Spiliopoulou P., Tang C.Y., Bell C., Stirling D., Phang T., Davidson R., Mackean M., Nussey F., Glasspool R.M., et al. Routine germline BRCA1 and BRCA2 testing in patients with ovarian carcinoma: Analysis of the Scottish real-life experience. BJOG. 2018;125:1451–1458. doi: 10.1111/1471-0528.15171. PubMed DOI

Ruark E., Snape K., Humburg P., Loveday C., Bajrami I., Brough R., Rodrigues D.N., Renwick A., Seal S., Ramsay E., et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature. 2013;493:406–410. doi: 10.1038/nature11725. PubMed DOI PMC

Akbari M.R., Lepage P., Rosen B., McLaughlin J., Risch H., Minden M., Narod S.A. PPM1D mutations in circulating white blood cells and the risk for ovarian cancer. J. Natl. Cancer Inst. 2014;106:djt323. doi: 10.1093/jnci/djt323. PubMed DOI

Kleiblova P., Shaltiel I.A., Benada J., Sevcik J., Pechackova S., Pohlreich P., Voest E.E., Dundr P., Bartek J., Kleibl Z., et al. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J. Cell Biol. 2013;201:511–521. doi: 10.1083/jcb.201210031. PubMed DOI PMC

Pharoah P.D.P., Song H., Dicks E., Intermaggio M.P., Harrington P., Baynes C., Alsop K., Australian Ovarian Cancer Study G., Bogdanova N., Cicek M.S., et al. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations. J. Natl. Cancer Inst. 2016;108 doi: 10.1093/jnci/djv347. PubMed DOI PMC

Hein D.W., Fakis G., Boukouvala S. Functional expression of human arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles: A mini review. Pharm. Genom. 2018;28:238–244. doi: 10.1097/FPC.0000000000000350. PubMed DOI PMC

Butcher N.J., Minchin R.F. Arylamine N-acetyltransferase 1: A novel drug target in cancer development. Pharm. Rev. 2012;64:147–165. doi: 10.1124/pr.110.004275. PubMed DOI

Seelinger M., Otterlei M. Helicase-Like Transcription Factor HLTF and E3 Ubiquitin Ligase SHPRH Confer DNA Damage Tolerance through Direct Interactions with Proliferating Cell Nuclear Antigen (PCNA) Int. J. Mol. Sci. 2020;21:693. doi: 10.3390/ijms21030693. PubMed DOI PMC

Nalepa G., Clapp D.W. Fanconi anaemia and cancer: An intricate relationship. Nat. Rev. Cancer. 2018;18:168–185. doi: 10.1038/nrc.2017.116. PubMed DOI

Zhang L., Bao Y., Riaz M., Tiller J., Liew D., Zhuang X., Amor D.J., Huq A., Petelin L., Nelson M., et al. Population genomic screening of all young adults in a health-care system: A cost-effectiveness analysis. Genet. Med. 2019 doi: 10.1097/01.ogx.0000654116.18244.8f. PubMed DOI PMC

Best A.F., Tucker M.A., Frone M.N., Greene M.H., Peters J.A., Katki H.A. A Pragmatic Testing-Eligibility Framework for Population Mutation Screening: The Example of BRCA1/2. Cancer Epidemiol Biomark. Prev. 2019;28:293–302. doi: 10.1158/1055-9965.EPI-18-0584. PubMed DOI PMC

Turnbull C., Sud A., Houlston R.S. Cancer genetics, precision prevention and a call to action. Nat. Genet. 2018;50:1212–1218. doi: 10.1038/s41588-018-0202-0. PubMed DOI PMC

Gabai-Kapara E., Lahad A., Kaufman B., Friedman E., Segev S., Renbaum P., Beeri R., Gal M., Grinshpun-Cohen J., Djemal K., et al. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc. Natl. Acad. Sci. USA. 2014;111:14205–14210. doi: 10.1073/pnas.1415979111. PubMed DOI PMC

Manchanda R., Patel S., Gordeev V.S., Antoniou A.C., Smith S., Lee A., Hopper J.L., MacInnis R.J., Turnbull C., Ramus S.J., et al. Cost-effectiveness of Population-Based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 Mutation Testing in Unselected General Population Women. J. Natl. Cancer Inst. 2018;110:714–725. doi: 10.1093/jnci/djx265. PubMed DOI

George A., Kaye S., Banerjee S. Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer. Nat. Rev. Clin. Oncol. 2017;14:284–296. doi: 10.1038/nrclinonc.2016.191. PubMed DOI

Ledermann J., Harter P., Gourley C., Friedlander M., Vergote I., Rustin G., Scott C.L., Meier W., Shapira-Frommer R., Safra T., et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet. Oncol. 2014;15:852–861. doi: 10.1097/OGX.0000000000000107. Correction in 2015, 16, e158. PubMed DOI

Chandran E.A., Kennedy I. Significant Tumor Response to the Poly (ADP-ribose) Polymerase Inhibitor Olaparib in Heavily Pretreated Patient With Ovarian Carcinosarcoma Harboring a Germline RAD51D Mutation. JCO Precis. Oncol. 2018:1–4. doi: 10.1200/PO.18.00253. PubMed DOI

Ngoi N.Y.L., Tay D., Heong V., Thian Y.L., Ong P.Y., Ow S.G.W., Jeyasekharan A.D., Lim Y.W., Lim S.E., Lee S.C., et al. Reversal of Bowel Obstruction with Platinum-Based Chemotherapy and Olaparib in Recurrent, Short Platinum-Free Interval, RAD51C Germline Mutation–Associated Ovarian Cancer. JCO Precis. Oncol. 2018:1–8. doi: 10.1200/PO.18.00008. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A retrospective single-center pilot study of the genetic background of the transplanted kidney

. 2025 ; 20 (1) : e0316192. [epub] 20250108

RAD51 recruitment but not replication fork stability associates with PARP inhibitor response in ovarian cancer patient-derived xenograft models

. 2024 Dec ; 6 (4) : zcae044. [epub] 20241128

PRDM1 rs2185379, unlike BRCA1, is not a prognostic marker in patients with advanced ovarian cancer

. 2024 ; 40 (2) : 199-203.

A comprehensive study evaluating germline FANCG variants in predisposition to breast and ovarian cancer

. 2024 Aug ; 13 (16) : e70103.

A comprehensive analysis of germline predisposition to early-onset ovarian cancer

. 2024 Jul 13 ; 14 (1) : 16183. [epub] 20240713

A deep intronic recurrent CHEK2 variant c.1009-118_1009-87delinsC affects pre-mRNA splicing and contributes to hereditary breast cancer predisposition

. 2024 Jun ; 75 () : 103721. [epub] 20240325

Early-Onset Ovarian Cancer <30 Years: What Do We Know about Its Genetic Predisposition?

. 2023 Nov 30 ; 24 (23) : . [epub] 20231130

Germline multigene panel testing of patients with endometrial cancer

. 2023 Jun ; 25 (6) : 216. [epub] 20230412

Importance of Germline and Somatic Alterations in Human MRE11, RAD50, and NBN Genes Coding for MRN Complex

. 2023 Mar 15 ; 24 (6) : . [epub] 20230315

Low Frequency of Cancer-Predisposition Gene Mutations in Liver Transplant Candidates with Hepatocellular Carcinoma

. 2022 Dec 29 ; 15 (1) : . [epub] 20221229

Identification of Germline Mutations in Melanoma Patients with Early Onset, Double Primary Tumors, or Family Cancer History by NGS Analysis of 217 Genes

. 2020 Oct 09 ; 8 (10) : . [epub] 20201009

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...