A comprehensive study evaluating germline FANCG variants in predisposition to breast and ovarian cancer

. 2024 Aug ; 13 (16) : e70103.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39149814

Grantová podpora
EXCELES - LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023033 Ministerstvo Školství, Mládeže a Tělovýchovy
DRO-VFN-64165 Ministerstvo Zdravotnictví České Republiky
NU-03-00285 Ministerstvo Zdravotnictví České Republiky
NU20-03-00016 Ministerstvo Zdravotnictví České Republiky
NU20-03-00283 Ministerstvo Zdravotnictví České Republiky
SVV 260631 Grantová Agentura, Univerzita Karlova
UNCE/24/MED/022 Grantová Agentura, Univerzita Karlova

BACKGROUND: Monoallelic germline pathogenic variants (GPVs) in five Fanconi anemia (FA) genes (BRCA1/FANCS, BRCA2/FANCD1, PALB2/FANCN, BRIP1/FANCJ, and RAD51C/FANCO) confer an increased risk of breast (BC) and/or ovarian (OC) cancer, but the role of GPVs in 17 other FA genes remains unclear. METHODS: Here, we investigated the association of germline variants in FANCG/XRCC9 with BC and OC risk. RESULTS: The frequency of truncating GPVs in FANCG did not differ between BC (20/10,204; 0.20%) and OC (8/2966; 0.27%) patients compared to controls (6/3250; 0.18%). In addition, only one out of five tumor samples showed loss-of-heterozygosity of the wild-type FANCG allele. Finally, none of the nine functionally tested rare recurrent missense FANCG variants impaired DNA repair activities (FANCD2 monoubiquitination and FANCD2 foci formation) upon DNA damage, in contrast to all tested FANCG truncations. CONCLUSION: Our study suggests that heterozygous germline FANCG variants are unlikely to contribute to the development of BC or OC.

BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic

Centre for Medical Genetics and Reproductive Medicine GENNET Prague Czech Republic

Department of Biochemistry Faculty of Science Charles University Prague Czech Republic

Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic

Department of Genetics and Microbiology Faculty of Science Charles University Prague Prague Czech Republic

Department of Medical Genetics AGEL Laboratories AGEL Research and Training Institute Novy Jicin Czech Republic

Department of Medical Genetics Faculty of Medicine and Dentistry University Hospital Olomouc Palacky University Olomouc Czech Republic

Department of Medical Genetics GHC Genetics Prague Czech Republic

Department of Medical Genetics Pronatal Prague Czech Republic

Department of Oncology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Paediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Hospital Ceske Budejovice Ceske Budejovice Czech Republic

Institute for Clinical and Experimental Medicine Prague Czech Republic

Institute of Biology and Medical Genetics 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Institute of Medical Biochemistry and Laboratory Diagnostics 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Institute of Medical Genetics University Hospital Pilsen Pilsen Czech Republic

Institute of Pathological Physiology 1st Faculty of Medicine Charles University Prague Czech Republic

Institute of Pathology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Laboratory of Cancer Cell Biology Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Zobrazit více v PubMed

Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18:168‐185. PubMed

Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi anemia pathway: mechanisms of breast cancer predisposition development and potential therapeutic targets. Front Cell Dev Biol. 2020;8:160. PubMed PMC

Del Valle J, Rofes P, Moreno‐Cabrera JM, et al. Exploring the role of mutations in Fanconi anemia genes in hereditary cancer patients. Cancers (Basel). 2020;12(4):829. PubMed PMC

Zhu B, Yan K, Li L, et al. K63‐linked ubiquitination of FANCG is required for its association with the Rap80‐BRCA1 complex to modulate homologous recombination repair of DNA interstand crosslinks. Oncogene. 2015;34(22):2867‐2878. PubMed

De Rocco D, Bottega R, Cappelli E, et al. Molecular analysis of Fanconi anemia: the experience of the bone marrow failure study group of the Italian Association of Pediatric Onco‐hematology. Haematologica. 2014;99(6):1022‐1031. PubMed PMC

Gianni P, Matenoglou E, Geropoulos G, et al. The Fanconi anemia pathway and breast cancer: a comprehensive review of clinical data. Clin Breast Cancer. 2022;22(1):10‐25. PubMed

Schubert S, van Luttikhuizen JL, Auber B, et al. The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: high frequency of FANCM pathogenic variants. Int J Cancer. 2019;144(11):2683‐2694. PubMed

Nierenberg JL, Adamson AW, Hu D, et al. Whole exome sequencing and replication for breast cancer among Hispanic/Latino women identifies FANCM as a susceptibility gene for estrogen‐receptor‐negative breast cancer. medRxiv. 2023. doi:10.1101/2023.01.25.23284924 DOI

Song H, Dicks EM, Tyrer J, et al. Population‐based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high‐grade serous ovarian cancer. J Med Genet. 2021;58(5):305‐313. PubMed PMC

van der Heijden MS, Yeo CJ, Hruban RH, Kern SE. Fanconi anemia gene mutations in young‐onset pancreatic cancer. Cancer Res. 2003;63(10):2585‐2588. PubMed

Smith AL, Alirezaie N, Connor A, et al. Candidate DNA repair susceptibility genes identified by exome sequencing in high‐risk pancreatic cancer. Cancer Lett. 2016;370(2):302‐312. PubMed PMC

Roberts NJ, Norris AL, Petersen GM, Bondy ML, Brand R, Klein AP. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov. 2016;6(2):166‐175. PubMed PMC

Lhotova K, Stolarova L, Zemankova P, et al. Multigene panel germline testing of 1333 Czech patients with ovarian cancer. Cancers (Basel). 2020;12(4):956. PubMed PMC

Soukupova J, Zemankova P, Lhotova K, et al. Validation of CZECANCA (CZEch CAncer paNel for clinical application) for targeted NGS‐based analysis of hereditary cancer syndromes. PLoS One. 2018;13(4):e0195761. PubMed PMC

Daly MB, Pal T, Maxwell KN, et al. NCCN guidelines® insights: genetic/familial high‐risk assessment: breast, ovarian, and pancreatic, version 2.2024. J Natl Compr Cancer Netw. 2023;21(10):1000‐1010. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...