Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29649263
PubMed Central
PMC5896995
DOI
10.1371/journal.pone.0195761
PII: PONE-D-17-37442
Knihovny.cz E-zdroje
- MeSH
- dědičné nádorové syndromy genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- genetické testování MeSH
- lidé MeSH
- mutace INDEL MeSH
- mutace MeSH
- nádorové biomarkery * MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- variabilita počtu kopií segmentů DNA MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování * metody normy MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery * MeSH
BACKGROUND: Carriers of mutations in hereditary cancer predisposition genes represent a small but clinically important subgroup of oncology patients. The identification of causal germline mutations determines follow-up management, treatment options and genetic counselling in patients' families. Targeted next-generation sequencing-based analyses using cancer-specific panels in high-risk individuals have been rapidly adopted by diagnostic laboratories. While the use of diagnosis-specific panels is straightforward in typical cases, individuals with unusual phenotypes from families with overlapping criteria require multiple panel testing. Moreover, narrow gene panels are limited by our currently incomplete knowledge about possible genetic dispositions. METHODS: We have designed a multi-gene panel called CZECANCA (CZEch CAncer paNel for Clinical Application) for a sequencing analysis of 219 cancer-susceptibility and candidate predisposition genes associated with frequent hereditary cancers. RESULTS: The bioanalytical and bioinformatics pipeline was validated on a set of internal and commercially available DNA controls showing high coverage uniformity, sensitivity, specificity and accuracy. The panel demonstrates a reliable detection of both single nucleotide and copy number variants. Inter-laboratory, intra- and inter-run replicates confirmed the robustness of our approach. CONCLUSION: The objective of CZECANCA is a nationwide consolidation of cancer-predisposition genetic testing across various clinical indications with savings in costs, human labor and turnaround time. Moreover, the unified diagnostics will enable the integration and analysis of genotypes with associated phenotypes in a national database improving the clinical interpretation of variants.
Centre for Medical Genetics and Reproductive Medicine Gennet Prague Czech Republic
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Kulkarni A, Carley H. Advances in the recognition and management of hereditary cancer. Br Med Bull. 2016;120(1):123–38. doi: 10.1093/bmb/ldw046 PubMed DOI
Stoffel EM, Cooney KA. Advances in inherited cancers: Introduction. Semin Oncol. 2016;43(5):527 doi: 10.1053/j.seminoncol.2016.09.003 PubMed DOI
Rahman N. Mainstreaming genetic testing of cancer predisposition genes. Clin Med. 2014;14(4):436–9. doi: 10.7861/clinmedicine.14-4-436 PubMed DOI PMC
Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302–8. doi: 10.1038/nature12981 PubMed DOI PMC
Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med. 2008;359(20):2143–53. doi: 10.1056/NEJMra0802968 PubMed DOI
Feero WG. Clinical application of whole-genome sequencing: proceed with care. JAMA. 2014;311(10):1017–9. doi: 10.1001/jama.2014.1718 PubMed DOI
Shah PD, Nathanson KL. Application of Panel-Based Tests for Inherited Risk of Cancer. Annu Rev Genomics Hum Genet. 2017;18(1):201–27. doi: 10.1146/annurev-genom-091416-035305 PubMed DOI
Pohlreich P, Stribrna J, Kleibl Z, Zikan M, Kalbacova R, Petruzelka L, et al. Mutations of the BRCA1 gene in hereditary breast and ovarian cancer in the Czech Republic. Med Princ Pract. 2003;12(1):23–9. doi: 10.1159/000068163 PubMed DOI
Pohlreich P, Zikan M, Stribrna J, Kleibl Z, Janatova M, Kotlas J, et al. High proportion of recurrent germline mutations in the BRCA1 gene in breast and ovarian cancer patients from the Prague area. Breast Cancer Res. 2005;7(5):R728–R36. doi: 10.1186/bcr1282 PubMed DOI PMC
Janatova M, Kleibl Z, Stribrna J, Panczak A, Vesela K, Zimovjanova M, et al. The PALB2 Gene Is a Strong Candidate for Clinical Testing in BRCA1- and BRCA2-Negative Hereditary Breast Cancer. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2323–32. doi: 10.1158/1055-9965.EPI-13-0745-T PubMed DOI
Kleibl Z, Havranek O, Hlavata I, Novotny J, Sevcik J, Pohlreich P, et al. The CHEK2 gene I157T mutation and other alterations in its proximity increase the risk of sporadic colorectal cancer in the Czech population. Eur J Cancer. 2009;45(4):618–24. doi: 10.1016/j.ejca.2008.09.022 PubMed DOI
Soukupova J, Dundr P, Kleibl Z, Pohlreich P. Contribution of mutations in ATM to breast cancer development in the Czech population. Oncol Rep. 2008;19(6):1505–10. PubMed
Borecka M, Zemankova P, Vocka M, Soucek P, Soukupova J, Kleiblova P, et al. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genet. 2016;209(5):199–204. doi: 10.1016/j.cancergen.2016.03.003 PubMed DOI
Kleibl Z, Fidlerova J, Kleiblova P, Kormunda S, Bilek M, Bouskova K, et al. Influence of dihydropyrimidine dehydrogenase gene (DPYD) coding sequence variants on the development of fluoropyrimidine-related toxicity in patients with high-grade toxicity and patients with excellent tolerance of fluoropyrimidine-based chemotherapy. Neoplasma. 2009;56(4):303–16. doi: 10.4149/neo_2009_04_303 PubMed DOI
Kleiblova P, Shaltiel IA, Benada J, Sevcik J, Pechackova S, Pohlreich P, et al. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J Cell Biol. 2013;201(4):511–21. doi: 10.1083/jcb.201210031 PubMed DOI PMC
Janatova M, Soukupova J, Stribrna J, Kleiblova P, Vocka M, Boudova P, et al. Mutation Analysis of the RAD51C and RAD51D Genes in High-Risk Ovarian Cancer Patients and Families from the Czech Republic. PLoS One. 2015;10(6):e0127711 doi: 10.1371/journal.pone.0127711 PubMed DOI PMC
Ticha I, Kleibl Z, Stribrna J, Kotlas J, Zimovjanova M, Mateju M, et al. Screening for genomic rearrangements in BRCA1 and BRCA2 genes in Czech high-risk breast/ovarian cancer patients: high proportion of population specific alterations in BRCA1 gene. Breast Cancer Res Treat. 2010;124(2):337–47. doi: 10.1007/s10549-010-0745-y PubMed DOI
Havranek O, Kleiblova P, Hojny J, Lhota F, Soucek P, Trneny M, et al. Association of Germline CHEK2 Gene Variants with Risk and Prognosis of Non-Hodgkin Lymphoma. PLoS One. 2015;10(10):e0140819 doi: 10.1371/journal.pone.0140819 PubMed DOI PMC
Hardwick SA, Deveson IW, Mercer TR. Reference standards for next-generation sequencing. Nat Rev Genet. 2017;18(8):473–84. doi: 10.1038/nrg.2017.44 PubMed DOI
Lhota F, Zemankova P, Kleiblova P, Soukupova J, Vocka M, Stranecky V, et al. Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRCA2/PALB2-negatively tested breast cancer patients. Clin Genet. 2016. doi: 10.1111/cge.12748 PubMed DOI
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164 doi: 10.1093/nar/gkq603 PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Das R, Ghosh SK. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer. DNA Repair (Amst). 2017;52:92–102. doi: 10.1016/j.dnarep.2017.02.013 PubMed DOI
Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632 PubMed DOI PMC
Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue):D980–5. doi: 10.1093/nar/gkt1113 PubMed DOI PMC
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81. doi: 10.1038/nprot.2009.86 PubMed DOI
Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE. Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Human Mutat. 2008;29(1):6–13. doi: 10.1002/humu.20654 PubMed DOI
Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575–6. doi: 10.1038/nmeth0810-575 PubMed DOI
Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19(9):1553–61. doi: 10.1101/gr.092619.109 PubMed DOI PMC
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9. doi: 10.1038/nmeth0410-248 PubMed DOI PMC
Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110–21. doi: 10.1101/gr.097857.109 PubMed DOI PMC
Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–13. doi: 10.1101/gr.3577405 PubMed DOI PMC
Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5. doi: 10.1038/ng.2892 PubMed DOI PMC
Machackova E, Hazova J, Stahlova Hrabincova E, Vasickova P, Navratilova M, Svoboda M, et al. [Retrospective NGS Study in High-risk Hereditary Cancer Patients at Masaryk Memorial Cancer Institute]. Klin Onkol. 2016;29 Suppl 1:S35–45. . PubMed
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92. doi: 10.1093/bib/bbs017 PubMed DOI PMC
Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71. doi: 10.1093/bioinformatics/btp394 PubMed DOI PMC
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. doi: 10.1038/gim.2015.30 PubMed DOI PMC
Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55. doi: 10.1038/gim.2016.190 PubMed DOI
Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics. 2013;14(11):S1 doi: 10.1186/1471-2105-14-s11-s1 PubMed DOI PMC
Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. New Engl J Med. 2015;372(23):2243–57. doi: 10.1056/NEJMsr1501341 PubMed DOI PMC
Pearlman R, Frankel WL, Swanson B, et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017;3(4):464–71. doi: 10.1001/jamaoncol.2016.5194 PubMed DOI PMC
Espenschied CR, LaDuca H, Li S, McFarland R, Gau C-L, Hampel H. Multigene Panel Testing Provides a New Perspective on Lynch Syndrome. J Clin Oncol. 2017;35(22):2568–75. doi: 10.1200/JCO.2016.71.9260 PubMed DOI PMC
Grindedal EM, Heramb C, Karsrud I, Ariansen SL, Maehle L, Undlien DE, et al. Current guidelines for BRCA testing of breast cancer patients are insufficient to detect all mutation carriers. BMC cancer. 2017;17(1):438 doi: 10.1186/s12885-017-3422-2 PubMed DOI PMC
Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N. What can exome sequencing do for you? J Med Genet. 2011;48(9):580–9. doi: 10.1136/jmedgenet-2011-100223 PubMed DOI
Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121–32. doi: 10.1038/nrg3642 PubMed DOI
Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feenstra I, et al. Guidelines for diagnostic next-generation sequencing. Eur J Human Genet. 2016;24(1):2–5. doi: 10.1038/ejhg.2015.226 PubMed DOI PMC
Azimi M, Schmaus K, Greger V, Neitzel D, Rochelle R, Dinh T. Carrier screening by next-generation sequencing: health benefits and cost effectiveness. Mol Genet Genomic Med. 2016;4(3):292–302. doi: 10.1002/mgg3.204 PubMed DOI PMC
Moran O, Nikitina D, Royer R, Poll A, Metcalfe K, Narod SA, et al. Revisiting breast cancer patients who previously tested negative for BRCA mutations using a 12-gene panel. Breast Cancer Res Treat. 2017;161(1):135–42. doi: 10.1007/s10549-016-4038-y PubMed DOI
Soukupová J, Zemánková P, Kleiblová P, Janatová M, Kleibl Z. [CZECANCA: CZEch CAncer paNel for Clinical Application—Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic]. Klin Onkol. 2016;29 Suppl 1:S46–54. Czech. . PubMed
A retrospective single-center pilot study of the genetic background of the transplanted kidney
A comprehensive analysis of germline predisposition to early-onset ovarian cancer
Germline multigene panel testing of patients with endometrial cancer
DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC
Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer