Association of Germline CHEK2 Gene Variants with Risk and Prognosis of Non-Hodgkin Lymphoma

. 2015 ; 10 (10) : e0140819. [epub] 20151027

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26506619

The checkpoint kinase 2 gene (CHEK2) codes for the CHK2 protein, an important mediator of the DNA damage response pathway. The CHEK2 gene has been recognized as a multi-cancer susceptibility gene; however, its role in non-Hodgkin lymphoma (NHL) remains unclear. We performed mutation analysis of the entire CHEK2 coding sequence in 340 NHL patients using denaturing high-performance liquid chromatography (DHPLC) and multiplex ligation-dependent probe amplification (MLPA). Identified hereditary variants were genotyped in 445 non-cancer controls. The influence of CHEK2 variants on disease risk was statistically evaluated. Identified CHEK2 germline variants included four truncating mutations (found in five patients and no control; P = 0.02) and nine missense variants (found in 21 patients and 12 controls; P = 0.02). Carriers of non-synonymous variants had an increased risk of NHL development [odds ratio (OR) 2.86; 95% confidence interval (CI) 1.42-5.79] and an unfavorable prognosis [hazard ratio (HR) of progression-free survival (PFS) 2.1; 95% CI 1.12-4.05]. In contrast, the most frequent intronic variant c.319+43dupA (identified in 22% of patients and 31% of controls) was associated with a decreased NHL risk (OR = 0.62; 95% CI 0.45-0.86), but its positive prognostic effect was limited to NHL patients with diffuse large B-cell lymphoma (DLBCL) treated by conventional chemotherapy without rituximab (HR-PFS 0.4; 94% CI 0.17-0.74). Our results show that germ-line CHEK2 mutations affecting protein coding sequence confer a moderately-increased risk of NHL, they are associated with an unfavorable NHL prognosis, and they may represent a valuable predictive biomarker for patients with DLBCL.

Zobrazit více v PubMed

Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108. PubMed

Dusek L, Muzik J, Gelnarova E, Finek J, Vyzula R, Abrahamova J (2010) Cancer incidence and mortality in the Czech Republic. Klin Onkol 23:311–324. PubMed

Kadan-Lottick NS, Kawashima T, Tomlinson G, Friedman DL, Yasui Y, Mertens AC, et al. (2006) The risk of cancer in twins: a report from the childhood cancer survivor study. Pediatr Blood Cancer 46:476–481. PubMed

Zhang Y, Wang R, Holford TR, Leaderer B, Zahm SH, Boyle P, et al. (2007) Family history of hematopoietic and non-hematopoietic malignancies and risk of non-Hodgkin lymphoma. Cancer Causes Control 18:351–359. PubMed

Wang SS, Slager SL, Brennan P, Holly EA, De Sanjose S, Bernstein L, et al. (2007) Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph). Blood 109:3479–3488. PubMed PMC

Skibola CF, Curry JD, Nieters A (2007) Genetic susceptibility to lymphoma. Haematologica 92:960–9. PubMed PMC

Cybulski C, Gorski B, Huzarski T, Masojc B, Mierzejewski M, Debniak T, et al. (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75:1131–1135. PubMed PMC

Cai Z, Chehab NH, Pavletich NP (2009) Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol Cell 35:818–829. 10.1016/j.molcel.2009.09.007 PubMed DOI

Prokopcova J, Kleibl Z, Banwell CM, Pohlreich P (2007) The role of ATM in breast cancer development. Breast Cancer Res Treat 104:121–128. PubMed

Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870. PubMed

Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, et al. (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913. PubMed

Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779. PubMed

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. 10.1016/j.cell.2011.02.013 PubMed DOI

Ham MF, Takakuwa T, Luo WJ, Liu A, Horii A, Aozasa K (2006) Impairment of double-strand breaks repair and aberrant splicing of ATM and MRE11 in leukemia-lymphoma cell lines with microsatellite instability. Cancer Sci 97:226–234. PubMed PMC

Bendall LJ (2011) It's all in the timing. Blood 118:5983–5984. 10.1182/blood-2011-09-381111 PubMed DOI

Taylor AM, Metcalfe JA, Thick J, Mak YF (1996) Leukemia and lymphoma in ataxia telangiectasia. Blood 87:423–438. PubMed

Gumy-Pause F, Wacker P, Maillet P, Betts DR, Sappino AP (2006) ATM alterations in childhood non-Hodgkin lymphoma. Cancer Genet Cytogenet 166:101–111. PubMed

Kleibl Z, Havranek O, Novotny J, Kleiblova P, Soucek P, Pohlreich P (2008) Analysis of CHEK2 FHA domain in Czech patients with sporadic breast cancer revealed distinct rare genetic alterations. Breast Cancer Res Treat 112:159–164. PubMed

Sodha N, Houlston RS, Williams R, Yuille MA, Mangion J, Eeles RA (2002) A robust method for detecting CHK2/RAD53 mutations in genomic DNA. HumMutat 19:173–177. PubMed

Sodha N, Williams R, Mangion J, Bullock SL, Yuille MR, Eeles RA, et al. (2000) Screening hCHK2 for Mutations. Science 289:359 PubMed

Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295:1379–1388. PubMed

Kleibl Z, Havranek O, Hlavata I, Novotny J, Sevcik J, Pohlreich P, et al. (2009) The CHEK2 gene I157T mutation and other alterations in its proximity increase the risk of sporadic colorectal cancer in the Czech population. Eur J Cancer 45:618–624. 10.1016/j.ejca.2008.09.022 PubMed DOI

Kleiblova P, Dostalova I, Bartlova M, Lacinova Z, Ticha I, Krejci V, et al. (2010) Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol Cell Endocrinol 314:150–156. 10.1016/j.mce.2009.08.002 PubMed DOI

Tavtigian SV, Byrnes GB, Goldgar DE, Thomas A (2008) Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Hum Mutat 29:1342–1354. 10.1002/humu.20896 PubMed DOI PMC

Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081. 10.1038/nprot.2009.86 PubMed DOI

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. 10.1038/nmeth0410-248 PubMed DOI PMC

Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. 10.1038/nmeth0810-575 PubMed DOI

Houdayer C (2011) In silico prediction of splice-affecting nucleotide variants. Methods Mol Biol 760:269–281. 10.1007/978-1-61779-176-5_17 PubMed DOI

Yang Y, Schmitz R, Mitala J, Whiting A, Xiao W, Ceribelli M, et al. (2014) Essential role of the linear ubiquitin chain assembly complex in lymphoma revealed by rare germline polymorphisms. Cancer Discov 4:480–493. 10.1158/2159-8290.CD-13-0915 PubMed DOI PMC

Rudd MF, Sellick GS, Webb EL, Catovsky D, Houlston RS (2006) Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. Blood 108:638–644. PubMed

Narod SA (2010) Testing for CHEK2 in the cancer genetics clinic: ready for prime time? Clin Genet 78:1–7. PubMed

Tedaldi G, Danesi R, Zampiga V, Tebaldi M, Bedei L, Zoli W, et al. (2014) First evidence of a large CHEK2 duplication involved in cancer predisposition in an Italian family with hereditary breast cancer. BMC Cancer 14:478 10.1186/1471-2407-14-478 PubMed DOI PMC

Cybulski C, Wokolorczyk D, Huzarski T, Byrski T, Gronwald J, Gorski B, et al. (2006) A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res Treat 102:119–122. PubMed

Cybulski C, Wokolorczyk D, Huzarski T, Byrski T, Gronwald J, Gorski B, et al. (2006) A large germline deletion in the Chek2 kinase gene is associated with an increased risk of prostate cancer. J Med Genet 43:863–866. PubMed PMC

Le Calvez-Kelm F, Lesueur F, Damiola F, Vallee M, Voegele C, Babikyan D, et al. (2011) Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res 13:R6 10.1186/bcr2810 PubMed DOI PMC

Hangaishi A, Ogawa S, Qiao Y, Wang L, Hosoya N, Yuji K, et al. (2002) Mutations of Chk2 in primary hematopoietic neoplasms. Blood 99:3075–3077. PubMed

Tavor S, Takeuchi S, Tsukasaki K, Miller CW, Hofmann WK, Ikezoe T, et al. (2001) Analysis of the CHK2 gene in lymphoid malignancies. Leuk Lymphoma 42:517–520. PubMed

Tort F, Hernandez S, Bea S, Martinez A, Esteller M, Herman JG, et al. (2002) CHK2-decreased protein expression and infrequent genetic alterations mainly occur in aggressive types of non-Hodgkin lymphomas. Blood 100:4602–4608. PubMed

de Miranda NF, Peng R, Georgiou K, Wu C, Falk Sorqvist E, Berglund M, et al. (2013) DNA repair genes are selectively mutated in diffuse large B cell lymphomas. J Exp Med 210:1729–1742. 10.1084/jem.20122842 PubMed DOI PMC

Havranek O, Spacek M, Hubacek P, Mocikova H, Markova J, Trneny M, et al. (2011) Alterations of CHEK2 forkhead-associated domain increase the risk of Hodgkin lymphoma. Neoplasma. 58:392–395. PubMed

Kiel MJ, Velusamy T, Rolland D, Sahasrabuddhe AA, Chung F, Bailey NG, et al. (2014) Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood 124:1460–1472. 10.1182/blood-2014-03-559542 PubMed DOI PMC

Janiszewska H, Bak A, Pilarska M, Heise M, Junkiert-Czarnecka A, Kuliszkiewicz-Janus M, et al. (2012) A risk of essential thrombocythemia in carriers of constitutional CHEK2 gene mutations. Haematologica 97:366–370. 10.3324/haematol.2011.049494 PubMed DOI PMC

Janiszewska H, Bąk A, Hartwig M, Kuliszkiewicz-Janus M, Całbecka M, Jaźwiec B, et al. The germline mutations of theCHEK2gene are associated with an increased risk of polycythaemia vera. Br J Haematol: 10.1111/bjh.13559 PubMed DOI

Chrisanthar R, Knappskog S, Lokkevik E, Anker G, Ostenstad B, Lundgren S, et al. (2008) CHEK2 mutations affecting kinase activity together with mutations in TP53 indicate a functional pathway associated with resistance to epirubicin in primary breast cancer. PLoS One 3:e3062 10.1371/journal.pone.0003062 PubMed DOI PMC

Antoni L, Sodha N, Collins I, Garrett MD (2007) CHK2 kinase: cancer susceptibility and cancer therapy—two sides of the same coin? Nat Rev Cancer 7:925–936. PubMed

Frei E, Visco C, Xu-Monette ZY, Dirnhofer S, Dybkaer K, Orazi A, et al. (2013) Addition of rituximab to chemotherapy overcomes the negative prognostic impact of cyclin E expression in diffuse large B-cell lymphoma. J Clin Pathol 66:956–961. 10.1136/jclinpath-2013-201619 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...