CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33322746
PubMed Central
PMC7763663
DOI
10.3390/cells9122675
PII: cells9122675
Knihovny.cz E-zdroje
- Klíčová slova
- CHEK2, CHK2, KAP1, WIP1, breast cancer, checkpoint kinase 2, colorectal cancer, germline mutation, hereditary cancer, prostate cancer, renal cancer, thyroid cancer,
- MeSH
- checkpoint kinasa 2 chemie genetika metabolismus MeSH
- genetická predispozice k nemoci * MeSH
- lidé MeSH
- mutační rychlost MeSH
- nádory enzymologie genetika MeSH
- substrátová specifita MeSH
- zárodečné mutace genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- checkpoint kinasa 2 MeSH
- CHEK2 protein, human MeSH Prohlížeč
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
Zobrazit více v PubMed
Pilleron S., Soto-Perez-de-Celis E., Vignat J., Ferlay J., Soerjomataram I., Bray F., Sarfati D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer. 2020 doi: 10.1002/ijc.33232. PubMed DOI PMC
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Benada J., Macurek L. Targeting the Checkpoint to Kill Cancer Cells. Biomolecules. 2015;5:1912–1937. doi: 10.3390/biom5031912. PubMed DOI PMC
Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–308. doi: 10.1038/nature12981. PubMed DOI PMC
Hyman D.M., Taylor B.S., Baselga J. Implementing Genome-Driven Oncology. Cell. 2017;168:584–599. doi: 10.1016/j.cell.2016.12.015. PubMed DOI PMC
Turnbull C., Sud A., Houlston R.S. Cancer genetics, precision prevention and a call to action. Nat. Genet. 2018;50:1212–1218. doi: 10.1038/s41588-018-0202-0. PubMed DOI PMC
Easton D.F., Pharoah P.D., Antoniou A.C., Tischkowitz M., Tavtigian S.V., Nathanson K.L., Devilee P., Meindl A., Couch F.J., Southey M., et al. Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 2015;372:2243–2257. doi: 10.1056/NEJMsr1501341. PubMed DOI PMC
Shah P.D., Nathanson K.L. Application of Panel-Based Tests for Inherited Risk of Cancer. Annu. Rev. Genom. Hum. Genet. 2017;18:201–227. doi: 10.1146/annurev-genom-091416-035305. PubMed DOI
Kapoor N.S., Curcio L.D., Blakemore C.A., Bremner A.K., McFarland R.E., West J.G., Banks K.C. Multigene Panel Testing Detects Equal Rates of Pathogenic BRCA1/2 Mutations and has a Higher Diagnostic Yield Compared to Limited BRCA1/2 Analysis Alone in Patients at Risk for Hereditary Breast Cancer. Ann. Surg. Oncol. 2015;22:3282–3288. doi: 10.1245/s10434-015-4754-2. PubMed DOI
Federici G., Soddu S. Variants of uncertain significance in the era of high-throughput genome sequencing: A lesson from breast and ovary cancers. J. Exp. Clin. Cancer Res. 2020;39:46. doi: 10.1186/s13046-020-01554-6. PubMed DOI PMC
Fackenthal J.D., Olopade O.I. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat. Rev. Cancer. 2007;7:937–948. doi: 10.1038/nrc2054. PubMed DOI
Belman S., Parsons M.T., Spurdle A.B., Goldgar D.E., Feng B.J. Considerations in assessing germline variant pathogenicity using cosegregation analysis. Genet. Med. 2020 doi: 10.1038/s41436-020-0920-4. PubMed DOI
Falck J., Mailand N., Syljuasen R.G., Bartek J., Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410:842–847. doi: 10.1038/35071124. PubMed DOI
Bartek J., Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–429. doi: 10.1016/S1535-6108(03)00110-7. PubMed DOI
Matsuoka S., Huang M., Elledge S.J. Linkage of ATM to Cell Cycle Regulation by the Chk2 Protein Kinase. Science. 1998;282:1893–1897. doi: 10.1126/science.282.5395.1893. PubMed DOI
Bartkova J., Horejsi Z., Koed K., Kramer A., Tort F., Zieger K., Guldberg P., Sehested M., Nesland J.M., Lukas C., et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–870. doi: 10.1038/nature03482. PubMed DOI
Halazonetis T.D., Gorgoulis V.G., Bartek J. An Oncogene-Induced DNA Damage Model for Cancer Development. Science. 2008;319:1352–1355. doi: 10.1126/science.1140735. PubMed DOI
Bell D.W., Varley J.M., Szydlo T.E., Kang D.H., Wahrer D.C., Shannon K.E., Lubratovich M., Verselis S.J., Isselbacher K.J., Fraumeni J.F., et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999;286:2528–2531. doi: 10.1126/science.286.5449.2528. PubMed DOI
Cybulski C., Gorski B., Huzarski T., Masojc B., Mierzejewski M., Debniak T., Teodorczyk U., Byrski T., Gronwald J., Matyjasik J., et al. CHEK2 is a multiorgan cancer susceptibility gene. Am. J. Hum. Genet. 2004;75:1131–1135. doi: 10.1086/426403. PubMed DOI PMC
Delimitsou A., Fostira F., Kalfakakou D., Apostolou P., Konstantopoulou I., Kroupis C., Papavassiliou A.G., Kleibl Z., Stratikos E., Voutsinas G.E., et al. Functional characterization of CHEK2 variants in a Saccharomyces cerevisiae system. Hum. Mutat. 2019;40:631–648. doi: 10.1002/humu.23728. PubMed DOI
Caswell-Jin J.L., Gupta T., Hall E., Petrovchich I.M., Mills M.A., Kingham K.E., Koff R., Chun N.M., Levonian P., Lebensohn A.P., et al. Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk. Genet. Med. 2018;20:234–239. doi: 10.1038/gim.2017.96. PubMed DOI
Brown A.L., Lee C.H., Schwarz J.K., Mitiku N., Piwnica-Worms H., Chung J.H. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA. 1999;96:3745–3750. doi: 10.1073/pnas.96.7.3745. PubMed DOI PMC
Chaturvedi P., Eng W.K., Zhu Y., Mattern M.R., Mishra R., Hurle M.R., Zhang X., Annan R.S., Lu Q., Faucette L.F., et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene. 1999;18:4047–4054. doi: 10.1038/sj.onc.1202925. PubMed DOI
Melo J., Toczyski D. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 2002;14:237–245. doi: 10.1016/S0955-0674(02)00312-5. PubMed DOI
Zoppoli G., Solier S., Reinhold W.C., Liu H., Connelly J.W., Monks A., Shoemaker R.H., Abaan O.D., Davis S.R., Meltzer P.S., et al. CHEK2 genomic and proteomic analyses reveal genetic inactivation or endogenous activation across the 60 cell lines of the US National Cancer Institute. Oncogene. 2012;31:403–418. doi: 10.1038/onc.2011.283. PubMed DOI PMC
Tominaga K., Morisaki H., Kaneko Y., Fujimoto A., Tanaka T., Ohtsubo M., Hirai M., Okayama H., Ikeda K., Nakanishi M. Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53. J. Biol. Chem. 1999;274:31463–31467. doi: 10.1074/jbc.274.44.31463. PubMed DOI
Staalesen V., Falck J., Geisler S., Bartkova J., Borresen-Dale A.L., Lukas J., Lillehaug J.R., Bartek J., Lonning P.E. Alternative splicing and mutation status of CHEK2 in stage III breast cancer. Oncogene. 2004 doi: 10.1038/sj.onc.1207928. PubMed DOI
Matsui T., Katsuno Y., Inoue T., Fujita F., Joh T., Niida H., Murakami H., Itoh M., Nakanishi M. Negative regulation of Chk2 expression by p53 is dependent on the CCAAT-binding transcription factor NF-Y. J. Biol. Chem. 2004;279:25093–25100. doi: 10.1074/jbc.M403232200. PubMed DOI
Williams L.H., Choong D., Johnson S.A., Campbell I.G. Genetic and epigenetic analysis of CHEK2 in sporadic breast, colon, and ovarian cancers. Clin. Cancer Res. 2006;12:6967–6972. doi: 10.1158/1078-0432.CCR-06-1770. PubMed DOI
Sodha N., Williams R., Mangion J., Bullock S.L., Yuille M.R., Eeles R.A., Bell D.W., Wahrer D.C.R., Varley J.M., Haber D.A. Screening hCHK2 for Mutations. Science. 2000;289:359a. doi: 10.1126/science.289.5478.359a. PubMed DOI
Munch C., Kirsch S., Fernandes A.M., Schempp W. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids. BMC Evol. Biol. 2008;8:269. doi: 10.1186/1471-2148-8-269. PubMed DOI PMC
Ahn J., Urist M., Prives C. The Chk2 protein kinase. DNA Repair. 2004;3:1039–1047. doi: 10.1016/j.dnarep.2004.03.033. PubMed DOI
Li J., Williams B.L., Haire L.F., Goldberg M., Wilker E., Durocher D., Yaffe M.B., Jackson S.P., Smerdon S.J. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol. Cell. 2002;9:1045–1054. doi: 10.1016/S1097-2765(02)00527-0. PubMed DOI
Cai Z., Chehab N.H., Pavletich N.P. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell. 2009;35:818–829. doi: 10.1016/j.molcel.2009.09.007. PubMed DOI
Wybenga-Groot L.E., Ho C.S., Sweeney F.D., Ceccarelli D.F., McGlade C.J., Durocher D., Sicheri F. Structural basis of Rad53 kinase activation by dimerization and activation segment exchange. Cell Signal. 2014;26:1825–1836. doi: 10.1016/j.cellsig.2014.05.004. PubMed DOI
Matsuoka S., Rotman G., Ogawa A., Shiloh Y., Tamai K., Elledge S.J. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:10389–10394. doi: 10.1073/pnas.190030497. PubMed DOI PMC
Ouchi M., Ouchi T. Distinct DNA damage determines differential phosphorylation of Chk2. Cancer Biol. Ther. 2014;15:1700–1704. doi: 10.4161/15384047.2014.972823. PubMed DOI PMC
Zannini L., Lecis D., Lisanti S., Benetti R., Buscemi G., Schneider C., Delia D. Karyopherin-alpha2 protein interacts with Chk2 and contributes to its nuclear import. J. Biol. Chem. 2003;278:42346–42351. doi: 10.1074/jbc.M303304200. PubMed DOI
Schwarz J.K., Lovly C.M., Piwnica-Worms H. Regulation of the Chk2 Protein Kinase by Oligomerization-Mediated cis- and trans-Phosphorylation. Mol. Cancer Res. 2003;1:598–609. PubMed
Kurz E.U., Douglas P., Lees-Miller S.P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 2004;279:53272–53281. doi: 10.1074/jbc.M406879200. PubMed DOI
Kass E.M., Ahn J., Tanaka T., Freed-Pastor W.A., Keezer S., Prives C. Stability of checkpoint kinase 2 is regulated via phosphorylation at serine 456. J. Biol. Chem. 2007;282:30311–30321. doi: 10.1074/jbc.M704642200. PubMed DOI
Gabant G., Lorphelin A., Nozerand N., Marchetti C., Bellanger L., Dedieu A., Quemeneur E., Alpha-Bazin B. Autophosphorylated residues involved in the regulation of human chk2 in vitro. J. Mol. Biol. 2008;380:489–503. doi: 10.1016/j.jmb.2008.04.053. PubMed DOI
Oliver A.W., Paul A., Boxall K.J., Barrie S.E., Aherne G.W., Garrett M.D., Mittnacht S., Pearl L.H. Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J. 2006;25:3179–3190. doi: 10.1038/sj.emboj.7601209. PubMed DOI PMC
Wu X., Chen J. Autophosphorylation of checkpoint kinase 2 at serine 516 is required for radiation-induced apoptosis. J. Biol. Chem. 2003;278:36163–36168. doi: 10.1074/jbc.M303795200. PubMed DOI
Blackford A.N., Jackson S.P. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol. Cell. 2017;66:801–817. doi: 10.1016/j.molcel.2017.05.015. PubMed DOI
Shang Z., Yu L., Lin Y.F., Matsunaga S., Shen C.Y., Chen B.P. DNA-PKcs activates the Chk2-Brca1 pathway during mitosis to ensure chromosomal stability. Oncogenesis. 2014;3:e85. doi: 10.1038/oncsis.2013.49. PubMed DOI PMC
Aquino Perez C., Palek M., Stolarova L., von Morgen P., Macurek L. Phosphorylation of PLK3 Is Controlled by Protein Phosphatase 6. Cells. 2020;9:1506. doi: 10.3390/cells9061506. PubMed DOI PMC
Bahassiel M., Myer D.L., McKenney R.J., Hennigan R.F., Stambrook P.J. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat. Res. 2006;596:166–176. doi: 10.1016/j.mrfmmm.2005.12.002. PubMed DOI
Van Vugt M.A., Gardino A.K., Linding R., Ostheimer G.J., Reinhardt H.C., Ong S.E., Tan C.S., Miao H., Keezer S.M., Li J., et al. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol. 2010;8:e1000287. doi: 10.1371/journal.pbio.1000287. PubMed DOI PMC
Benada J., Burdová K., Lidak T., von Morgen P., Macurek L. Polo-like kinase 1 inhibits DNA damage response during mitosis. Cell Cycle. 2015;14:219–231. doi: 10.4161/15384101.2014.977067. PubMed DOI PMC
Chouinard G., Clement I., Lafontaine J., Rodier F., Schmitt E. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Div. 2013;8:7. doi: 10.1186/1747-1028-8-7. PubMed DOI PMC
Oliva-Trastoy M., Berthonaud V., Chevalier A., Ducrot C., Marsolier-Kergoat M.C., Mann C., Leteurtre F. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene. 2007;26:1449–1458. doi: 10.1038/sj.onc.1209927. PubMed DOI
Fujimoto H., Onishi N., Kato N., Takekawa M., Xu X.Z., Kosugi A., Kondo T., Imamura M., Oishi I., Yoda A., et al. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ. 2006;13:1170–1180. doi: 10.1038/sj.cdd.4401801. PubMed DOI
Freeman A.K., Dapic V., Monteiro A.N. Negative regulation of CHK2 activity by protein phosphatase 2A is modulated by DNA damage. Cell Cycle. 2010;9:736–747. doi: 10.4161/cc.9.4.10613. PubMed DOI PMC
Leroy C., Lee S.E., Vaze M.B., Ochsenbien F., Guerois R., Haber J.E., Marsolier-Kergoat M.-C. PP2C Phosphatases Ptc2 and Ptc3 Are Required for DNA Checkpoint Inactivation after a Double-Strand Break. Mol. Cell. 2003;11:827–835. doi: 10.1016/S1097-2765(03)00058-3. PubMed DOI
Heikkinen K., Rapakko K., Karppinen S.M., Erkko H., Knuutila S., Lundan T., Mannermaa A., Borresen-Dale A.L., Borg A., Barkardottir R.B., et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2006;27:1593–1599. doi: 10.1093/carcin/bgi360. PubMed DOI PMC
Carlessi L., Buscemi G., Fontanella E., Delia D. A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage. Biochim. Biophys. Acta. 2010;1803:1213–1223. doi: 10.1016/j.bbamcr.2010.06.002. PubMed DOI
Bolton K.L., Ptashkin R.N., Gao T., Braunstein L., Devlin S.M., Kelly D., Patel M., Berthon A., Syed A., Yabe M., et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 2020 doi: 10.1038/s41588-020-00710-0. PubMed DOI PMC
Bohgaki M., Hakem A., Halaby M.J., Bohgaki T., Li Q., Bissey P.A., Shloush J., Kislinger T., Sanchez O., Sheng Y., et al. The E3 ligase PIRH2 polyubiquitylates CHK2 and regulates its turnover. Cell Death Differ. 2013;20:812–822. doi: 10.1038/cdd.2013.7. PubMed DOI PMC
Kass E.M., Poyurovsky M.V., Zhu Y., Prives C. Mdm2 and PCAF increase Chk2 ubiquitination and degradation independently of their intrinsic E3 ligase activities. Cell Cycle. 2009;8:430–437. doi: 10.4161/cc.8.3.7624. PubMed DOI
Garcia-Limones C., Lara-Chica M., Jimenez-Jimenez C., Perez M., Moreno P., Munoz E., Calzado M.A. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2. Oncogene. 2016;35:4289–4301. doi: 10.1038/onc.2015.495. PubMed DOI
Lovly C.M., Yan L., Ryan C.E., Takada S., Piwnica-Worms H. Regulation of Chk2 ubiquitination and signaling through autophosphorylation of serine 379. Mol. Cell. Biol. 2008;28:5874–5885. doi: 10.1128/MCB.00821-08. PubMed DOI PMC
Wang L., Yang L., Wang C., Zhao W., Ju Z., Zhang W., Shen J., Peng Y., An C., Luu Y.T., et al. Inhibition of the ATM/Chk2 axis promotes cGAS/STING signaling in ARID1A-deficient tumors. J. Clin. Investig. 2020 doi: 10.1172/JCI130445. PubMed DOI PMC
Zhang D., Zaugg K., Mak T.W., Elledge S.J. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell. 2006;126:529–542. doi: 10.1016/j.cell.2006.06.039. PubMed DOI
Wu J., Chen Y., Geng G., Li L., Yin P., Nowsheen S., Li Y., Wu C., Liu J., Zhao F., et al. USP39 regulates DNA damage response and chemo-radiation resistance by deubiquitinating and stabilizing CHK2. Cancer Lett. 2019;449:114–124. doi: 10.1016/j.canlet.2019.02.015. PubMed DOI
Alves-Fernandes D.K., Jasiulionis M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019;20:3153. doi: 10.3390/ijms20133153. PubMed DOI PMC
Seo G.J., Kim S.E., Lee Y.M., Lee J.W., Lee J.R., Hahn M.J., Kim S.T. Determination of substrate specificity and putative substrates of Chk2 kinase. Biochem. Biophys. Res. Commun. 2003;304:339–343. doi: 10.1016/S0006-291X(03)00589-8. PubMed DOI
Zannini L., Delia D., Buscemi G. CHK2 kinase in the DNA damage response and beyond. J. Mol. Cell Biol. 2014;6:442–457. doi: 10.1093/jmcb/mju045. PubMed DOI PMC
Paull T.T. Mechanisms of ATM Activation. Annu. Rev. Biochem. 2015;84:711–738. doi: 10.1146/annurev-biochem-060614-034335. PubMed DOI
Sulli G., Di Micco R., d’Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat. Rev. Cancer. 2012;12:709–720. doi: 10.1038/nrc3344. PubMed DOI
Bartek J., Bartkova J., Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26:7773–7779. doi: 10.1038/sj.onc.1210881. PubMed DOI
Neizer-Ashun F., Bhattacharya R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett. 2020;497:202–211. doi: 10.1016/j.canlet.2020.09.016. PubMed DOI
Cheng Q., Chen J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle. 2010;9:472–478. doi: 10.4161/cc.9.3.10556. PubMed DOI PMC
Hirao A., Kong Y.Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., Liu D., Elledge S.J., Mak T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000;287:1824–1827. doi: 10.1126/science.287.5459.1824. PubMed DOI
Chen L., Gilkes D.M., Pan Y., Lane W.S., Chen J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 2005;24:3411–3422. doi: 10.1038/sj.emboj.7600812. PubMed DOI PMC
Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J.P., Sedivy J.M., Kinzler K.W., Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282:1497–1501. doi: 10.1126/science.282.5393.1497. PubMed DOI
Waldman T., Kinzler K.W., Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995;55:5187–5190. PubMed
Kastan M.B., Zhan Q., el-Deiry W.S., Carrier F., Jacks T., Walsh W.V., Plunkett B.S., Vogelstein B., Fornace A.J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–597. doi: 10.1016/0092-8674(92)90593-2. PubMed DOI
Jack M.T., Woo R.A., Hirao A., Cheung A., Mak T.W., Lee P.W. Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc. Natl. Acad. Sci. USA. 2002;99:9825–9829. doi: 10.1073/pnas.152053599. PubMed DOI PMC
Jallepalli P.V., Lengauer C., Vogelstein B., Bunz F. The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J. Biol. Chem. 2003;278:20475–20479. doi: 10.1074/jbc.M213159200. PubMed DOI
Shaltiel I.A., Aprelia M., Saurin A.T., Chowdhury D., Kops G.J., Voest E.E., Medema R.H. Distinct phosphatases antagonize the p53 response in different phases of the cell cycle. Proc. Natl. Acad. Sci. USA. 2014;111:7313–7318. doi: 10.1073/pnas.1322021111. PubMed DOI PMC
Hu C., Zhang S., Gao X., Gao X., Xu X., Lv Y., Zhang Y., Zhu Z., Zhang C., Li Q., et al. Roles of Kruppel-associated Box (KRAB)-associated Co-repressor KAP1 Ser-473 Phosphorylation in DNA Damage Response. J. Biol. Chem. 2012;287:18937–18952. doi: 10.1074/jbc.M111.313262. PubMed DOI PMC
Lee D.H., Goodarzi A.A., Adelmant G.O., Pan Y., Jeggo P.A., Marto J.A., Chowdhury D. Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J. 2012;31:2403–2415. doi: 10.1038/emboj.2012.86. PubMed DOI PMC
Stevens C., Smith L., La Thangue N.B. Chk2 activates E2F-1 in response to DNA damage. Nat. Cell Biol. 2003;5:401–409. doi: 10.1038/ncb974. PubMed DOI
Donzelli M., Draetta G.F. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 2003;4:671–677. doi: 10.1038/sj.embor.embor887. PubMed DOI PMC
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 2016;6:a026104. doi: 10.1101/cshperspect.a026104. PubMed DOI PMC
Peng C.Y., Graves P.R., Thoma R.S., Wu Z., Shaw A.S., Piwnica-Worms H. Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277:1501–1505. doi: 10.1126/science.277.5331.1501. PubMed DOI
Yang S., Kuo C., Bisi J.E., Kim M.K. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat. Cell Biol. 2002;4:865–870. doi: 10.1038/ncb869. PubMed DOI
Di Masi A., Cilli D., Berardinelli F., Talarico A., Pallavicini I., Pennisi R., Leone S., Antoccia A., Noguera N.I., Lo-Coco F., et al. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL. Cell Death Dis. 2016;7:e2308. doi: 10.1038/cddis.2016.115. PubMed DOI PMC
Yang S., Jeong J.H., Brown A.L., Lee C.H., Pandolfi P.P., Chung J.H., Kim M.K. Promyelocytic leukemia activates Chk2 by mediating Chk2 autophosphorylation. J. Biol. Chem. 2006;281:26645–26654. doi: 10.1074/jbc.M604391200. PubMed DOI
Zhang J., Willers H., Feng Z., Ghosh J.C., Kim S., Weaver D.T., Chung J.H., Powell S.N., Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell Biol. 2004;24:708–718. doi: 10.1128/MCB.24.2.708-718.2004. PubMed DOI PMC
Lee J.S., Collins K.M., Brown A.L., Lee C.H., Chung J.H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000;404:201–204. doi: 10.1038/35004614. PubMed DOI
Petsalaki E., Zachos G. DNA damage response proteins regulating mitotic cell division: Double agents preserving genome stability. FEBS J. 2020;287:1700–1721. doi: 10.1111/febs.15240. PubMed DOI
Sankaran S., Starita L.M., Groen A.C., Ko M.J., Parvin J.D. Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol. Cell Biol. 2005;25:8656–8668. doi: 10.1128/MCB.25.19.8656-8668.2005. PubMed DOI PMC
Chabalier-Taste C., Racca C., Dozier C., Larminat F. BRCA1 is regulated by Chk2 in response to spindle damage. Biochim. Biophys. Acta. 2008;1783:2223–2233. doi: 10.1016/j.bbamcr.2008.08.006. PubMed DOI
Stolz A., Ertych N., Bastians H. Tumor suppressor CHK2: Regulator of DNA damage response and mediator of chromosomal stability. Clin. Cancer Res. 2011;17:401–405. doi: 10.1158/1078-0432.CCR-10-1215. PubMed DOI
Nai S., Shi Y., Ru H., Ding Y., Geng Q., Li Z., Dong M.Q., Xu X., Li J. Chk2-dependent phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) regulates centrosome maturation. Cell Cycle. 2019;18:2651–2659. doi: 10.1080/15384101.2019.1654795. PubMed DOI PMC
Guo Q.Q., Wang S.S., Zhang S.S., Xu H.D., Li X.M., Guan Y., Yi F., Zhou T.T., Jiang B., Bai N., et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 2020;39:e103111. doi: 10.15252/embj.2019103111. PubMed DOI PMC
Chen Y., Wu J., Liang G., Geng G., Zhao F., Yin P., Nowsheen S., Wu C., Li Y., Li L., et al. CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci. Adv. 2020;6:eaax5819. doi: 10.1126/sciadv.aax5819. PubMed DOI PMC
Takai H., Naka K., Okada Y., Watanabe M., Harada N., Saito S., Anderson C.W., Appella E., Nakanishi M., Suzuki H., et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 2002;21:5195–5205. doi: 10.1093/emboj/cdf506. PubMed DOI PMC
Niida H., Murata K., Shimada M., Ogawa K., Ohta K., Suzuki K., Fujigaki H., Khaw A.K., Banerjee B., Hande M.P., et al. Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo. EMBO J. 2010;29:3558–3570. doi: 10.1038/emboj.2010.218. PubMed DOI PMC
Paperna T., Sharon-Shwartzman N., Kurolap A., Goldberg Y., Moustafa N., Carasso Y., Feinstien M., Mory A., Reznick-Levi G., Gonzaga-Jauregui C., et al. Homozygosity for CHEK2 p.Gly167Arg leads to a unique cancer syndrome with multiple complex chromosomal translocations in peripheral blood karyotype. J. Med. Genet. 2019 doi: 10.1136/jmedgenet-2018-105824. PubMed DOI
Rainville I., Hatcher S., Rosenthal E., Larson K., Bernhisel R., Meek S., Gorringe H., Mundt E., Manley S. High risk of breast cancer in women with biallelic pathogenic variants in CHEK2. Breast Cancer Res. Treat. 2020 doi: 10.1007/s10549-020-05543-3. PubMed DOI PMC
Van Jaarsveld M.T.M., Deng D., Ordoñez-Rueda D., Paulsen M., Wiemer E.A.C., Zi Z. Cell-type-specific role of CHK2 in mediating DNA damage-induced G2 cell cycle arrest. Oncogenesis. 2020;9:35. doi: 10.1038/s41389-020-0219-y. PubMed DOI PMC
Wu X., Webster S.R., Chen J. Characterization of tumor-associated Chk2 mutations. J. Biol. Chem. 2001;276:2971–2974. doi: 10.1074/jbc.M009727200. PubMed DOI
Allinen M., Huusko P., Mantyniemi S., Launonen V., Winqvist R. Mutation analysis of the CHK2 gene in families with hereditary breast cancer. Br. J. Cancer. 2001;85:209–212. doi: 10.1054/bjoc.2001.1858. PubMed DOI PMC
Bougeard G., Limacher J.M., Martin C., Charbonnier F., Killian A., Delattre O., Longy M., Jonveaux P., Fricker J.P., Stoppa-Lyonnet D., et al. Detection of 11 germline inactivating TP53 mutations and absence of TP63 and HCHK2 mutations in 17 French families with Li-Fraumeni or Li-Fraumeni-like syndrome. J. Med. Genet. 2001;38:253–257. doi: 10.1136/jmg.38.4.253. PubMed DOI PMC
Sodha N., Houlston R.S., Bullock S., Yuille M.A., Chu C., Turner G., Eeles R.A. Increasing evidence that germline mutations in CHEK2 do not cause Li-Fraumeni syndrome. Hum. Mutat. 2002;20:460–462. doi: 10.1002/humu.10136. PubMed DOI
Vahteristo P., Bartkova J., Eerola H., Syrjakoski K., Ojala S., Kilpivaara O., Tamminen A., Kononen J., Aittomaki K., Heikkila P., et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am. J. Hum. Genet. 2002;71:432–438. doi: 10.1086/341943. PubMed DOI PMC
Siddiqui R., Onel K., Facio F., Nafa K., Diaz L.R., Kauff N., Huang H., Robson M., Ellis N., Offit K. The TP53 mutational spectrum and frequency of CHEK2*1100delC in Li-Fraumeni-like kindreds. Fam. Cancer. 2005;4:177–181. doi: 10.1007/s10689-004-1946-5. PubMed DOI
Hogervorst F.B., Cornelis R.S., Bout M., van Vliet M., Oosterwijk J.C., Olmer R., Bakker B., Klijn J.G., Vasen H.F., Meijers-Heijboer H., et al. Rapid detection of BRCA1 mutations by the protein truncation test. Nat. Genet. 1995;10:208–212. doi: 10.1038/ng0695-208. PubMed DOI
Aloraifi F., McCartan D., McDevitt T., Green A.J., Bracken A., Geraghty J. Protein-truncating variants in moderate-risk breast cancer susceptibility genes: A meta-analysis of high-risk case-control screening studies. Cancer Genet. 2015;208:455–463. doi: 10.1016/j.cancergen.2015.06.001. PubMed DOI
Sutcliffe E.G., Stettner A.R., Miller S.A., Solomon S.R., Marshall M.L., Roberts M.E., Susswein L.R., Arvai K.J., Klein R.T., Murphy P.D., et al. Differences in cancer prevalence among CHEK2 carriers identified via multi-gene panel testing. Cancer Genet. 2020;246–247:12–17. doi: 10.1016/j.cancergen.2020.07.001. PubMed DOI
Kleiblova P., Stolarova L., Krizova K., Lhota F., Hojny J., Zemankova P., Havranek O., Vocka M., Cerna M., Lhotova K., et al. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int. J. Cancer. J. Int. Cancer. 2019 doi: 10.1002/ijc.32385. PubMed DOI
Apostolou P., Fostira F., Mollaki V., Delimitsou A., Vlassi M., Pentheroudakis G., Faliakou E., Kollia P., Fountzilas G., Yannoukakos D., et al. Characterization and prevalence of two novel CHEK2 large deletions in Greek breast cancer patients. J. Hum. Genet. 2018;63:877–886. doi: 10.1038/s10038-018-0466-3. PubMed DOI
Soukupova J., Zemankova P., Kleiblova P., Janatova M., Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application-- Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic. Klin. Onkol. 2016;29(Suppl. 1):S46–S54. doi: 10.14735/amko2016S46. PubMed DOI
Pritchard C.C., Mateo J., Walsh M.F., De Sarkar N., Abida W., Beltran H., Garofalo A., Gulati R., Carreira S., Eeles R., et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016;375:443–453. doi: 10.1056/NEJMoa1603144. PubMed DOI PMC
Young E.L., Feng B.J., Stark A.W., Damiola F., Durand G., Forey N., Francy T.C., Gammon A., Kohlmann W.K., Kaphingst K.A., et al. Multigene testing of moderate-risk genes: Be mindful of the missense. J. Med. Genet. 2016;53:366–376. doi: 10.1136/jmedgenet-2015-103398. PubMed DOI PMC
Manoukian S., Peissel B., Frigerio S., Lecis D., Bartkova J., Roversi G., Radice P., Bartek J., Delia D. Two new CHEK2 germ-line variants detected in breast cancer/sarcoma families negative for BRCA1, BRCA2, and TP53 gene mutations. Breast Cancer Res. Treat. 2011;130:207–215. doi: 10.1007/s10549-011-1548-5. PubMed DOI
Bell D.W., Kim S.H., Godwin A.K., Schiripo T.A., Harris P.L., Haserlat S.M., Wahrer D.C., Haiman C.A., Daly M.B., Niendorf K.B., et al. Genetic and functional analysis of CHEK2 (CHK2) variants in multiethnic cohorts. Int. J. Cancer. 2007;121:2661–2667. doi: 10.1002/ijc.23026. PubMed DOI PMC
Desrichard A., Bidet Y., Uhrhammer N., Bignon Y.J. CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Res. 2011;13:R119. doi: 10.1186/bcr3062. PubMed DOI PMC
Roeb W., Higgins J., King M.C. Response to DNA damage of CHEK2 missense mutations in familial breast cancer. Hum. Mol. Genet. 2012;21:2738–2744. doi: 10.1093/hmg/dds101. PubMed DOI PMC
Tischkowitz M.D., Yilmaz A., Chen L.Q., Karyadi D.M., Novak D., Kirchhoff T., Hamel N., Tavtigian S.V., Kolb S., Bismar T.A., et al. Identification and characterization of novel SNPs in CHEK2 in Ashkenazi Jewish men with prostate cancer. Cancer Lett. 2008;270:173–180. doi: 10.1016/j.canlet.2008.05.006. PubMed DOI PMC
Shaag A., Walsh T., Renbaum P., Kirchhoff T., Nafa K., Shiovitz S., Mandell J.B., Welcsh P., Lee M.K., Ellis N., et al. Functional and genomic approaches reveal an ancient CHEK2 allele associated with breast cancer in the Ashkenazi Jewish population. Hum. Mol. Genet. 2005;14:555–563. doi: 10.1093/hmg/ddi052. PubMed DOI
Hauke J., Horvath J., Gross E., Gehrig A., Honisch E., Hackmann K., Schmidt G., Arnold N., Faust U., Sutter C., et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: Results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med. 2018;7:1349–1358. doi: 10.1002/cam4.1376. PubMed DOI PMC
Lhota F., Zemankova P., Kleiblova P., Soukupova J., Vocka M., Stranecky V., Janatova M., Hartmannova H., Hodanova K., Kmoch S., et al. Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRCA2/PALB2-negatively tested breast cancer patients. Clin. Genet. 2016;90:324–333. doi: 10.1111/cge.12748. PubMed DOI
Kurian A.W., Ward K.C., Howlader N., Deapen D., Hamilton A.S., Mariotto A., Miller D., Penberthy L.S., Katz S.J. Genetic Testing and Results in a Population-Based Cohort of Breast Cancer Patients and Ovarian Cancer Patients. J. Clin. Oncol. 2019 doi: 10.1200/JCO.18.01854. PubMed DOI PMC
Kleibl Z., Novotny J., Bezdickova D., Malik R., Kleiblova P., Foretova L., Petruzelka L., Ilencikova D., Cinek P., Pohlreich P. The CHEK2 c.1100delC germline mutation rarely contributes to breast cancer development in the Czech Republic. Breast Cancer Res. Treat. 2005;90:165–167. doi: 10.1007/s10549-004-4023-8. PubMed DOI
Caligo M.A., Agata S., Aceto G., Crucianelli R., Manoukian S., Peissel B., Scaini M.C., Sensi E., Veschi S., Cama A., et al. The CHEK2 c.1100delC mutation plays an irrelevant role in breast cancer predisposition in Italy. Hum. Mutat. 2004;24:100–101. doi: 10.1002/humu.20051. PubMed DOI
Fachal L., Santamarina M., Blanco A., Carracedo A., Vega A. CHEK2 c.1100delC mutation among non-BRCA1/2 Spanish hereditary breast cancer families. Clin. Transl. Oncol. 2013;15:164–165. doi: 10.1007/s12094-012-0967-z. PubMed DOI
Apostolou P., Fostira F., Papamentzelopoulou M., Michelli M., Panopoulos C., Fountzilas G., Konstantopoulou I., Voutsinas G.E., Yannoukakos D. CHEK2 c.1100delC allele is rarely identified in Greek breast cancer cases. Cancer Genet. 2015;208:129–134. doi: 10.1016/j.cancergen.2015.02.006. PubMed DOI
Irmejs A., Miklasevics E., Boroschenko V., Gardovskis A., Vanags A., Melbarde-Gorkusa I., Bitina M., Suchy J., Gardovskis J. Pilot study on low penetrance breast and colorectal cancer predisposition markers in latvia. Hered. Cancer Clin. Pract. 2006;4:48–51. doi: 10.1186/1897-4287-4-1-48. PubMed DOI PMC
Brennan P., McKay J., Moore L., Zaridze D., Mukeria A., Szeszenia-Dabrowska N., Lissowska J., Rudnai P., Fabianova E., Mates D., et al. Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: Case control study. Hum. Mol. Genet. 2007;16:1794–1801. doi: 10.1093/hmg/ddm127. PubMed DOI
Bermisheva M.A., Takhirova Z.R., Bogdanova N., Khusnutdinova E.K. Frequency of CHEK2 gene mutations in breast cancer patients from Republic of Bashkortostan. Mol. Biol. 2014;48:46–51. doi: 10.1134/S0026893314010026. DOI
Kleibl Z., Havranek O., Novotny J., Kleiblova P., Soucek P., Pohlreich P. Analysis of CHEK2 FHA domain in Czech patients with sporadic breast cancer revealed distinct rare genetic alterations. Breast Cancer Res. Treat. 2008;112:159–164. doi: 10.1007/s10549-007-9838-7. PubMed DOI
Kaufman B., Laitman Y., Gronwald J., Winqvist R., Irmejs A., Lubinski J., Pylkas K., Gardovskis J., Miklasevics E., Friedman E. Haplotypes of the I157T CHEK2 germline mutation in ethnically diverse populations. Fam. Cancer. 2009;8:473–478. doi: 10.1007/s10689-009-9269-1. PubMed DOI
Walsh T., Casadei S., Coats K.H., Swisher E., Stray S.M., Higgins J., Roach K.C., Mandell J., Lee M.K., Ciernikova S., et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA J. Am. Med. Assoc. 2006;295:1379–1388. doi: 10.1001/jama.295.12.1379. PubMed DOI
Cybulski C., Huzarski T., Byrski T., Gronwald J., Debniak T., Jakubowska A., Gorski B., Wokolorczyk D., Masojc B., Narod S.A., et al. Estrogen receptor status in CHEK2-positive breast cancers: Implications for chemoprevention. Clin Genet. 2009;75:72–78. doi: 10.1111/j.1399-0004.2008.01111.x. PubMed DOI
Plonis J., Kalniete D., Nakazawa-Miklasevica M., Irmejs A., Vjaters E., Gardovskis J., Miklasevics E. The CHEK2 del5395 is a founder mutation without direct effects for cancer risk in the latvian population. Balk. J. Med. Genet. 2015;18:33–36. doi: 10.1515/bjmg-2015-0083. PubMed DOI PMC
Sun J., Meng H., Yao L., Lv M., Bai J., Zhang J., Wang L., Ouyang T., Li J., Wang T., et al. Germline Mutations in Cancer Susceptibility Genes in a Large Series of Unselected Breast Cancer Patients. Clin. Cancer Res. 2017;23:6113–6119. doi: 10.1158/1078-0432.CCR-16-3227. PubMed DOI
Fan Z., Ouyang T., Li J., Wang T., Fan Z., Fan T., Lin B., Xu Y., Xie Y. Identification and analysis of CHEK2 germline mutations in Chinese BRCA1/2-negative breast cancer patients. Breast Cancer Res. Treat. 2018;169:59–67. doi: 10.1007/s10549-018-4673-6. PubMed DOI
Zeng C., Guo X., Wen W., Shi J., Long J., Cai Q., Shu X.O., Xiang Y., Zheng W. Evaluation of pathogenetic mutations in breast cancer predisposition genes in population-based studies conducted among Chinese women. Breast Cancer Res. Treat. 2020;181:465–473. doi: 10.1007/s10549-020-05643-0. PubMed DOI PMC
Momozawa Y., Iwasaki Y., Hirata M., Liu X., Kamatani Y., Takahashi A., Sugano K., Yoshida T., Murakami Y., Matsuda K., et al. Germline Pathogenic Variants in 7636 Japanese Patients With Prostate Cancer and 12 366 Controls. J. Natl. Cancer Inst. 2020;112:369–376. doi: 10.1093/jnci/djz124. PubMed DOI PMC
Momozawa Y., Iwasaki Y., Parsons M.T., Kamatani Y., Takahashi A., Tamura C., Katagiri T., Yoshida T., Nakamura S., Sugano K., et al. Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat. Commun. 2018;9:4083. doi: 10.1038/s41467-018-06581-8. PubMed DOI PMC
Fostira F., Kostantopoulou I., Apostolou P., Papamentzelopoulou M.S., Papadimitriou C., Faliakou E., Christodoulou C., Boukovinas I., Razis E., Tryfonopoulos D., et al. One in three highly selected Greek patients with breast cancer carries a loss-of-function variant in a cancer susceptibility gene. J. Med. Genet. 2020;57:53–61. doi: 10.1136/jmedgenet-2019-106189. PubMed DOI PMC
Kurian A.W., Bernhisel R., Larson K., Caswell-Jin J.L., Shadyab A.H., Ochs-Balcom H., Stefanick M.L. Prevalence of Pathogenic Variants in Cancer Susceptibility Genes Among Women With Postmenopausal Breast Cancer. JAMA J. Am. Med. Assoc. 2020;323:995–997. doi: 10.1001/jama.2020.0229. PubMed DOI PMC
Rogoża-Janiszewska E., Malińska K., Cybulski C., Jakubowska A., Gronwald J., Huzarski T., Lener M., Górski B., Kluźniak W., Rudnicka H., et al. Prevalence of Recurrent Mutations Predisposing to Breast Cancer in Early-Onset Breast Cancer Patients from Poland. Cancers. 2020;12:2321. doi: 10.3390/cancers12082321. PubMed DOI PMC
Cybulski C., Kluźniak W., Huzarski T., Wokołorczyk D., Kashyap A., Rusak B., Stempa K., Gronwald J., Szymiczek A., Bagherzadeh M., et al. The spectrum of mutations predisposing to familial breast cancer in Poland. Int. J. Cancer. 2019;145:3311–3320. doi: 10.1002/ijc.32492. PubMed DOI
Nurmi A., Muranen T.A., Pelttari L.M., Kiiski J.I., Heikkinen T., Lehto S., Kallioniemi A., Schleutker J., Butzow R., Blomqvist C., et al. Recurrent moderate-risk mutations in Finnish breast and ovarian cancer patients. Int. J. Cancer. 2019 doi: 10.1002/ijc.32309. PubMed DOI PMC
Girard E., Eon-Marchais S., Olaso R., Renault A.L., Damiola F., Dondon M.G., Barjhoux L., Goidin D., Meyer V., Le Gal D., et al. Familial breast cancer and DNA repair genes: Insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing. Int. J. Cancer. 2019;144:1962–1974. doi: 10.1002/ijc.31921. PubMed DOI PMC
Decker B., Allen J., Luccarini C., Pooley K.A., Shah M., Bolla M.K., Wang Q., Ahmed S., Baynes C., Conroy D.M., et al. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J. Med. Genet. 2017;54:732–741. doi: 10.1136/jmedgenet-2017-104588. PubMed DOI PMC
Slavin T.P., Maxwell K.N., Lilyquist J., Vijai J., Neuhausen S.L., Hart S.N., Ravichandran V., Thomas T., Maria A., Villano D., et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer. 2017;3:22. doi: 10.1038/s41523-017-0024-8. PubMed DOI PMC
Couch F.J., Shimelis H., Hu C., Hart S.N., Polley E.C., Na J., Hallberg E., Moore R., Thomas A., Lilyquist J., et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol. 2017;3:1190–1196. doi: 10.1001/jamaoncol.2017.0424. PubMed DOI PMC
Schmidt M.K., Hogervorst F., van Hien R., Cornelissen S., Broeks A., Adank M.A., Meijers H., Waisfisz Q., Hollestelle A., Schutte M., et al. Age-and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. J. Clin. Oncol. 2016;34:2750–2760. doi: 10.1200/JCO.2016.66.5844. PubMed DOI PMC
Naslund-Koch C., Nordestgaard B.G., Bojesen S.E. Increased Risk for Other Cancers in Addition to Breast Cancer for CHEK2*1100delC Heterozygotes Estimated From the Copenhagen General Population Study. J. Clin. Oncol. 2016;34:1208–1216. doi: 10.1200/JCO.2015.63.3594. PubMed DOI
Southey M.C., Goldgar D.E., Winqvist R., Pylkas K., Couch F., Tischkowitz M., Foulkes W.D., Dennis J., Michailidou K., van Rensburg E.J., et al. PALB2, CHEK2 and ATM rare variants and cancer risk: Data from COGS. J. Med. Genet. 2016;53:800–811. doi: 10.1136/jmedgenet-2016-103839. PubMed DOI PMC
Liu Y., Liao J., Xu Y., Chen W., Liu D., Ouyang T., Li J., Wang T., Fan Z., Fan T., et al. A recurrent CHEK2 p.H371Y mutation is associated with breast cancer risk in Chinese women. Hum. Mutat. 2011;32:1000–1003. doi: 10.1002/humu.21538. PubMed DOI
Cybulski C., Wokolorczyk D., Jakubowska A., Huzarski T., Byrski T., Gronwald J., Masojc B., Deebniak T., Gorski B., Blecharz P., et al. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J. Clin. Oncol. 2011;29:3747–3752. doi: 10.1200/JCO.2010.34.0778. PubMed DOI
Le Calvez-Kelm F., Lesueur F., Damiola F., Vallee M., Voegele C., Babikyan D., Durand G., Forey N., McKay-Chopin S., Robinot N., et al. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: Results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res. 2011;13:R6. doi: 10.1186/bcr2810. PubMed DOI PMC
Fletcher O., Johnson N., Dos Santos Silva I., Kilpivaara O., Aittomaki K., Blomqvist C., Nevanlinna H., Wasielewski M., Meijers-Heijerboer H., Broeks A., et al. Family history, genetic testing, and clinical risk prediction: Pooled analysis of CHEK2 1100delC in 1,828 bilateral breast cancers and 7030 controls. Cancer Epidemiol. Biomark. Prev. 2009;18:230–234. doi: 10.1158/1055-9965.EPI-08-0416. PubMed DOI PMC
Weischer M., Bojesen S.E., Tybjaerg-Hansen A., Axelsson C.K., Nordestgaard B.G. Increased risk of breast cancer associated with CHEK2*1100delC. J. Clin. Oncol. 2007;25:57–63. doi: 10.1200/JCO.2005.05.5160. PubMed DOI
Cybulski C., Gorski B., Huzarski T., Byrski T., Gronwald J., Debniak T., Wokolorczyk D., Jakubowska A., Kowalska E., Oszurek O., et al. CHEK2-positive breast cancers in young Polish women. Clin. Cancer Res. 2006;12:4832–4835. doi: 10.1158/1078-0432.CCR-06-0158. PubMed DOI
Chekmariova E.V., Sokolenko A.P., Buslov K.G., Iyevleva A.G., Ulibina Y.M., Rozanov M.E., Mitiushkina N.V., Togo A.V., Matsko D.E., Voskresenskiy D.A., et al. CHEK2 1100delC mutation is frequent among Russian breast cancer patients. Breast Cancer Res. Treat. 2006;100:99–102. doi: 10.1007/s10549-006-9227-7. PubMed DOI
Dufault M.R., Betz B., Wappenschmidt B., Hofmann W., Bandick K., Golla A., Pietschmann A., Nestle-Kramling C., Rhiem K., Huttner C., et al. Limited relevance of the CHEK2 gene in hereditary breast cancer. Int. J. Cancer. 2004;110:320–325. doi: 10.1002/ijc.20073. PubMed DOI
Consortium C.B.C.C.-C. CHEK2*1100delC and susceptibility to breast cancer: A collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am. J. Hum. Genet. 2004;74:1175–1182. doi: 10.1086/421251. PubMed DOI PMC
Meijers-Heijboer H., van den O.A., Klijn J., Wasielewski M., de Snoo A., Oldenburg R., Hollestelle A., Houben M., Crepin E., Veghel-Plandsoen M., et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet. 2002;31:55–59. PubMed
Liang M., Zhang Y., Sun C., Rizeq F.K., Min M., Shi T., Sun Y. Association between CHEK2*1100delC and Breast Cancer: A Systematic Review and Meta-Analysis. Mol. Diagn. 2018;22:397–407. doi: 10.1007/s40291-018-0344-x. PubMed DOI
Hallamies S., Pelttari L.M., Poikonen-Saksela P., Jekunen A., Jukkola-Vuorinen A., Auvinen P., Blomqvist C., Aittomaki K., Mattson J., Nevanlinna H. CHEK2 c.1100delC mutation is associated with an increased risk for male breast cancer in Finnish patient population. BMC Cancer. 2017;17:620. doi: 10.1186/s12885-017-3631-8. PubMed DOI PMC
Wasielewski M., den Bakker M.A., van den O.A., Meijer-van Gelder M.E., Portengen H., Klijn J.G., Meijers-Heijboer H., Foekens J.A., Schutte M. CHEK2 1100delC and male breast cancer in the Netherlands. Breast Cancer Res. Treat. 2009;116:397–400. doi: 10.1007/s10549-008-0162-7. PubMed DOI
Yang Y., Shu X., Shu X.O., Bolla M.K., Kweon S.S., Cai Q., Michailidou K., Wang Q., Dennis J., Park B., et al. Re-evaluating genetic variants identified in candidate gene studies of breast cancer risk using data from nearly 280,000 women of Asian and European ancestry. EBioMedicine. 2019;48:203–211. doi: 10.1016/j.ebiom.2019.09.006. PubMed DOI PMC
Han F.F., Guo C.L., Liu L.H. The effect of CHEK2 variant I157T on cancer susceptibility: Evidence from a meta-analysis. DNA Cell Biol. 2013;32:329–335. doi: 10.1089/dna.2013.1970. PubMed DOI
Liu C., Wang Y., Wang Q.S., Wang Y.J. The CHEK2 I157T variant and breast cancer susceptibility: A systematic review and meta-analysis. Asian Pac. J. Cancer Prev. APJCP. 2012;13:1355–1360. doi: 10.7314/APJCP.2012.13.4.1355. PubMed DOI
Yang Y., Zhang F., Wang Y., Liu S.C. CHEK2 1100delC variant and breast cancer risk in Caucasians: A meta-analysis based on 25 studies with 29,154 cases and 37,064 controls. Asian Pac. J. Cancer Prev. 2012;13:3501–3505. doi: 10.7314/APJCP.2012.13.7.3501. PubMed DOI
Zhang B., Beeghly-Fadiel A., Long J., Zheng W. Genetic variants associated with breast-cancer risk: Comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet. Oncol. 2011;12:477–488. doi: 10.1016/S1470-2045(11)70076-6. PubMed DOI PMC
Weischer M., Bojesen S.E., Ellervik C., Tybjaerg-Hansen A., Nordestgaard B.G. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: Meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 2008;26:542–548. doi: 10.1200/JCO.2007.12.5922. PubMed DOI
Johnson N., Fletcher O., Naceur-Lombardelli C., dos Santos Silva I., Ashworth A., Peto J. Interaction between CHEK2*1100delC and other low-penetrance breast-cancer susceptibility genes: A familial study. Lancet. 2005;366:1554–1557. doi: 10.1016/S0140-6736(05)67627-1. PubMed DOI
Muranen T.A., Greco D., Blomqvist C., Aittomaki K., Khan S., Hogervorst F., Verhoef S., Pharoah P.D.P., Dunning A.M., Shah M., et al. Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genet. Med. 2017;19:599–603. doi: 10.1038/gim.2016.147. PubMed DOI PMC
Lee A., Mavaddat N., Wilcox A.N., Cunningham A.P., Carver T., Hartley S., Babb de Villiers C., Izquierdo A., Simard J., Schmidt M.K., et al. BOADICEA: A comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 2019;21:1708–1718. doi: 10.1038/s41436-018-0406-9. PubMed DOI PMC
Gallagher S., Hughes E., Wagner S., Tshiaba P., Rosenthal E., Roa B.B., Kurian A.W., Domchek S.M., Garber J., Lancaster J., et al. Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. JAMA Netw. Open. 2020;3:e208501. doi: 10.1001/jamanetworkopen.2020.8501. PubMed DOI PMC
Akdeniz D., Schmidt M.K., Seynaeve C.M., McCool D., Giardiello D., van den Broek A.J., Hauptmann M., Steyerberg E.W., Hooning M.J. Risk factors for metachronous contralateral breast cancer: A systematic review and meta-analysis. Breast. 2019;44:1–14. doi: 10.1016/j.breast.2018.11.005. PubMed DOI
Nizic-Kos T., Krajc M., Blatnik A., Stegel V., Skerl P., Novakovic S., Gazic B., Besic N. Bilateral Disease Common among Slovenian CHEK2-Positive Breast Cancer Patients. Ann. Surg. Oncol. 2020 doi: 10.1245/s10434-020-09178-y. PubMed DOI
De Bock G.H., Schutte M., Krol-Warmerdam E.M., Seynaeve C., Blom J., Brekelmans C.T., Meijers-Heijboer H., van Asperen C.J., Cornelisse C.J., Devilee P., et al. Tumour characteristics and prognosis of breast cancer patients carrying the germline CHEK2*1100delC variant. J. Med. Genet. 2004;41:731–735. doi: 10.1136/jmg.2004.019737. PubMed DOI PMC
Meyer A., Dork T., Sohn C., Karstens J.H., Bremer M. Breast cancer in patients carrying a germ-line CHEK2 mutation: Outcome after breast conserving surgery and adjuvant radiotherapy. Radiother. Oncol. J. 2007;82:349–353. doi: 10.1016/j.radonc.2006.12.002. PubMed DOI
Weischer M., Nordestgaard B.G., Pharoah P., Bolla M.K., Nevanlinna H., Van’t Veer L.J., Garcia-Closas M., Hopper J.L., Hall P., Andrulis I.L., et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J. Clin. Oncol. 2012;30:4308–4316. doi: 10.1200/JCO.2012.42.7336. PubMed DOI PMC
Kriege M., Hollestelle A., Jager A., Huijts P.E., Berns E.M., Sieuwerts A.M., Meijer-van Gelder M.E., Collee J.M., Devilee P., Hooning M.J., et al. Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: Impact of adjuvant chemotherapy. Br. J. Cancer. 2014;111:1004–1013. doi: 10.1038/bjc.2014.306. PubMed DOI PMC
Muranen T.A., Blomqvist C., Dork T., Jakubowska A., Heikkila P., Fagerholm R., Greco D., Aittomaki K., Bojesen S.E., Shah M., et al. Patient survival and tumor characteristics associated with CHEK2:p.I157T-findings from the Breast Cancer Association Consortium. Breast Cancer Res. 2016;18:98. doi: 10.1186/s13058-016-0758-5. PubMed DOI PMC
De Bock G.H., Mourits M.J., Schutte M., Krol-Warmerdam E.M., Seynaeve C., Blom J., Brekelmans C.T., Meijers-Heijboer H., van Asperen C.J., Cornelisse C.J., et al. Association between the CHEK2*1100delC germ line mutation and estrogen receptor status. Int. J Gynecol. Cancer. 2006;16(Suppl. 2):552–555. doi: 10.1111/j.1525-1438.2006.00694.x. PubMed DOI
Nagel J.H., Peeters J.K., Smid M., Sieuwerts A.M., Wasielewski M., de Weerd V., Trapman-Jansen A.M., van den Ouweland A., Bruggenwirth H., van I.J.W.F., et al. Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes. Breast Cancer Res. Treat. 2012;132:439–448. doi: 10.1007/s10549-011-1588-x. PubMed DOI
Couch F.J., Hart S.N., Sharma P., Toland A.E., Wang X., Miron P., Olson J.E., Godwin A.K., Pankratz V.S., Olswold C., et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J. Clin. Oncol. 2015;33:304–311. doi: 10.1200/JCO.2014.57.1414. PubMed DOI PMC
Honrado E., Osorio A., Palacios J., Benitez J. Pathology and gene expression of hereditary breast tumors associated with BRCA1, BRCA2 and CHEK2 gene mutations. Oncogene. 2006;25:5837–5845. doi: 10.1038/sj.onc.1209875. PubMed DOI
Kilpivaara O., Bartkova J., Eerola H., Syrjakoski K., Vahteristo P., Lukas J., Blomqvist C., Holli K., Heikkila P., Sauter G., et al. Correlation of CHEK2 protein expression and c.1100delC mutation status with tumor characteristics among unselected breast cancer patients. Int. J. Cancer. 2005;113:575–580. doi: 10.1002/ijc.20638. PubMed DOI
Bahassi el M., Robbins S.B., Yin M., Boivin G.P., Kuiper R., van Steeg H., Stambrook P.J. Mice with the CHEK2*1100delC SNP are predisposed to cancer with a strong gender bias. Proc. Natl. Acad. Sci. USA. 2009;106:17111–17116. doi: 10.1073/pnas.0909237106. PubMed DOI PMC
Huzarski T., Cybulski C., Domagala W., Gronwald J., Byrski T., Szwiec M., Woyke S., Narod S.A., Lubinski J. Pathology of breast cancer in women with constitutional CHEK2 mutations. Breast Cancer Res. Treat. 2005;90:187–189. doi: 10.1007/s10549-004-3778-2. PubMed DOI
Angelova S.G., Krasteva M.E., Gospodinova Z.I., Georgieva E.I. CHEK2 gene alterations independently increase the risk of death from breast cancer in Bulgarian patients. Neoplasma. 2012;59:622–630. doi: 10.4149/neo_2012_079. PubMed DOI
Boughey J.C., Attai D.J., Chen S.L., Cody H.S., Dietz J.R., Feldman S.M., Greenberg C.C., Kass R.B., Landercasper J., Lemaine V., et al. Contralateral Prophylactic Mastectomy Consensus Statement from the American Society of Breast Surgeons: Additional Considerations and a Framework for Shared Decision Making. Ann. Surg. Oncol. 2016;23:3106–3111. doi: 10.1245/s10434-016-5408-8. PubMed DOI PMC
Wood M.E., McKinnon W., Garber J. Risk for breast cancer and management of unaffected individuals with non-BRCA hereditary breast cancer. Breast J. 2020;26:1528–1534. doi: 10.1111/tbj.13969. PubMed DOI
Kukita Y., Okami J., Yoneda-Kato N., Nakamae I., Kawabata T., Higashiyama M., Kato J., Kodama K., Kato K. Homozygous inactivation of CHEK2 is linked to a familial case of multiple primary lung cancer with accompanying cancers in other organs. Cold Spring Harb. Mol. Case Stud. 2016;2:a001032. doi: 10.1101/mcs.a001032. PubMed DOI PMC
Van Puijenbroek M., van Asperen C.J., van Mil A., Devilee P., van Wezel T., Morreau H. Homozygosity for a CHEK2*1100delC mutation identified in familial colorectal cancer does not lead to a severe clinical phenotype. J. Pathol. 2005;206:198–204. doi: 10.1002/path.1764. PubMed DOI
Dong X., Wang L., Taniguchi K., Wang X., Cunningham J.M., McDonnell S.K., Qian C., Marks A.F., Slager S.L., Peterson B.J., et al. Mutations in CHEK2 associated with prostate cancer risk. Am. J. Hum. Genet. 2003;72:270–280. doi: 10.1086/346094. PubMed DOI PMC
Zhen J.T., Syed J., Nguyen K.A., Leapman M.S., Agarwal N., Brierley K., Llor X., Hofstatter E., Shuch B. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer. 2018 doi: 10.1002/cncr.31316. PubMed DOI
Brandão A., Paulo P., Maia S., Pinheiro M., Peixoto A., Cardoso M., Silva M.P., Santos C., Eeles R.A., Kote-Jarai Z., et al. The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers. 2020;12:3254. doi: 10.3390/cancers12113254. PubMed DOI PMC
Conti D.V., Wang K., Sheng X., Bensen J.T., Hazelett D.J., Cook M.B., Ingles S.A., Kittles R.A., Strom S.S., Rybicki B.A., et al. Two Novel Susceptibility Loci for Prostate Cancer in Men of African Ancestry. J. Natl. Cancer Inst. 2017:109. doi: 10.1093/jnci/djx084. PubMed DOI PMC
Wang Y., Dai B., Ye D. CHEK2 mutation and risk of prostate cancer: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2015;8:15708–15715. PubMed PMC
Hale V., Weischer M., Park J.Y. CHEK2 (*) 1100delC Mutation and Risk of Prostate Cancer. Prostate Cancer. 2014;2014:294575. doi: 10.1155/2014/294575. PubMed DOI PMC
Cybulski C., Wokolorczyk D., Huzarski T., Byrski T., Gronwald J., Gorski B., Debniak T., Masojc B., Jakubowska A., Gliniewicz B., et al. A large germline deletion in the Chek2 kinase gene is associated with an increased risk of prostate cancer. J. Med. Genet. 2006;43:863–866. doi: 10.1136/jmg.2006.044974. PubMed DOI PMC
Seppala E.H., Ikonen T., Mononen N., Autio V., Rokman A., Matikainen M.P., Tammela T.L., Schleutker J. CHEK2 variants associate with hereditary prostate cancer. Br. J. Cancer. 2003;89:1966–1970. doi: 10.1038/sj.bjc.6601425. PubMed DOI PMC
Abramson J.H. WINPEPI updated: Computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. Ep+I. 2011;8:1. doi: 10.1186/1742-5573-8-1. PubMed DOI PMC
Isaacsson Velho P., Silberstein J.L., Markowski M.C., Luo J., Lotan T.L., Isaacs W.B., Antonarakis E.S. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate. 2018 doi: 10.1002/pros.23484. PubMed DOI PMC
Giri V.N., Hegarty S.E., Hyatt C., O’Leary E., Garcia J., Knudsen K.E., Kelly W.K., Gomella L.G. Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate. 2019;79:333–339. doi: 10.1002/pros.23739. PubMed DOI
Wu Y., Yu H., Zheng S.L., Na R., Mamawala M., Landis T., Wiley K., Petkewicz J., Shah S., Shi Z., et al. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate. 2018 doi: 10.1002/pros.23505. PubMed DOI
Yadav S., Hu C., Hart S.N., Boddicker N., Polley E.C., Na J., Gnanaolivu R., Lee K.Y., Lindstrom T., Armasu S., et al. Evaluation of Germline Genetic Testing Criteria in a Hospital-Based Series of Women With Breast Cancer. J. Clin. Oncol. 2020;38:1409–1418. doi: 10.1200/JCO.19.02190. PubMed DOI PMC
Cybulski C., Wokolorczyk D., Kluzniak W., Kashyap A., Golab A., Slojewski M., Sikorski A., Puszynski M., Soczawa M., Borkowski T., et al. A personalised approach to prostate cancer screening based on genotyping of risk founder alleles. Br. J. Cancer. 2013;108:2601–2609. doi: 10.1038/bjc.2013.261. PubMed DOI PMC
Zlowocka-Perlowska E., Narod S.A., Cybulski C. CHEK2 Alleles Predispose to Renal Cancer in Poland. JAMA Oncol. 2019;5:576. doi: 10.1001/jamaoncol.2019.0022. PubMed DOI
Carlo M.I., Mukherjee S., Mandelker D., Vijai J., Kemel Y., Zhang L., Knezevic A., Patil S., Ceyhan-Birsoy O., Huang K.C., et al. Prevalence of Germline Mutations in Cancer Susceptibility Genes in Patients With Advanced Renal Cell Carcinoma. JAMA Oncol. 2018;4:1228–1235. doi: 10.1001/jamaoncol.2018.1986. PubMed DOI PMC
Ge Y., Wang Y., Shao W., Jin J., Du M., Ma G., Chu H., Wang M., Zhang Z. Rare variants in BRCA2 and CHEK2 are associated with the risk of urinary tract cancers. Sci. Rep. 2016;6:33542. doi: 10.1038/srep33542. PubMed DOI PMC
Ged Y., Chaim J.L., DiNatale R.G., Knezevic A., Kotecha R.R., Carlo M.I., Lee C.H., Foster A., Feldman D.R., Teo M.Y., et al. DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2019-000230. PubMed DOI PMC
Hartman T.R., Demidova E.V., Lesh R.W., Hoang L., Richardson M., Forman A., Kessler L., Speare V., Golemis E.A., Hall M.J., et al. Prevalence of pathogenic variants in DNA damage response and repair genes in patients undergoing cancer risk assessment and reporting a personal history of early-onset renal cancer. Sci. Rep. 2020;10:13518. doi: 10.1038/s41598-020-70449-5. PubMed DOI PMC
Smith P.S., West H., Whitworth J., Castle B., Sansbury F.H., Warren A.Y., Woodward E.R., Tischkowitz M., Maher E.R. Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity. Genes Chromosomes Cancer. 2020 doi: 10.1002/gcc.22893. PubMed DOI
Gadd S., Huff V., Walz A.L., Ooms A., Armstrong A.E., Gerhard D.S., Smith M.A., Auvil J.M.G., Meerzaman D., Chen Q.R., et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 2017;49:1487–1494. doi: 10.1038/ng.3940. PubMed DOI PMC
Ciceri S., Gamba B., Corbetta P., Mondini P., Terenziani M., Catania S., Nantron M., Bianchi M., D’Angelo P., Torri F., et al. Genetic and epigenetic analyses guided by high resolution whole-genome SNP array reveals a possible role of CHEK2 in Wilms tumour susceptibility. Oncotarget. 2018;9:34079–34089. doi: 10.18632/oncotarget.26123. PubMed DOI PMC
Kaczmarek-Rys M., Ziemnicka K., Hryhorowicz S.T., Gorczak K., Hoppe-Golebiewska J., Skrzypczak-Zielinska M., Tomys M., Golab M., Szkudlarek M., Budny B., et al. The c.470 T > C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Great Poland population. Hered. Cancer Clin. Pract. 2015;13:8. doi: 10.1186/s13053-015-0030-5. PubMed DOI PMC
Siolek M., Cybulski C., Gasior-Perczak D., Kowalik A., Kozak-Klonowska B., Kowalska A., Chlopek M., Kluzniak W., Wokolorczyk D., Palyga I., et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int. J. Cancer. 2015;137:548–552. doi: 10.1002/ijc.29426. PubMed DOI
Wojcicka A., Czetwertynska M., Swierniak M., Dlugosinska J., Maciag M., Czajka A., Dymecka K., Kubiak A., Kot A., Ploski R., et al. Variants in the ATM-CHEK2-BRCA1 axis determine genetic predisposition and clinical presentation of papillary thyroid carcinoma. Genes Chromosomes Cancer. 2014;53:516–523. doi: 10.1002/gcc.22162. PubMed DOI PMC
Pekova B., Dvorakova S., Sykorova V., Vacinova G., Vaclavikova E., Moravcova J., Katra R., Vlcek P., Sykorova P., Kodetova D., et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocr. Connect. 2019;8:796–805. doi: 10.1530/EC-19-0069. PubMed DOI PMC
Zhao Y., Yu T., Chen L., Xie D., Wang F., Fu L., Cheng C., Li Y., Zhu X., Miao G. A Germline CHEK2 Mutation in a Family with Papillary Thyroid Cancer. Thyroid. 2020;30:924–930. doi: 10.1089/thy.2019.0774. PubMed DOI
Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–690. doi: 10.1016/j.cell.2014.09.050. PubMed DOI PMC
Meijers-Heijboer H., Wijnen J., Vasen H., Wasielewski M., Wagner A., Hollestelle A., Elstrodt F., van den B.R., de Snoo A., Fat G.T., et al. The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am. J. Hum. Genet. 2003;72:1308–1314. doi: 10.1086/375121. PubMed DOI PMC
Naseem H., Boylan J., Speake D., Leask K., Shenton A., Lalloo F., Hill J., Trump D., Evans D.G. Inherited association of breast and colorectal cancer: Limited role of CHEK2 compared with high-penetrance genes. Clin. Genet. 2006;70:388–395. doi: 10.1111/j.1399-0004.2006.00698.x. PubMed DOI
Katona B.W., Yang Y.X. Colorectal cancer risk associated with the CHEK2 1100delC variant. Eur. J. Cancer. 2017;83:103–105. doi: 10.1016/j.ejca.2017.05.045. PubMed DOI
Xiang H.P., Geng X.P., Ge W.W., Li H. Meta-analysis of CHEK2 1100delC variant and colorectal cancer susceptibility. Eur. J. Cancer. 2011;47:2546–2551. doi: 10.1016/j.ejca.2011.03.025. PubMed DOI
Ma X., Zhang B., Zheng W. Genetic variants associated with colorectal cancer risk: Comprehensive research synopsis, meta-analysis, and epidemiological evidence. Gut. 2014;63:326–336. doi: 10.1136/gutjnl-2012-304121. PubMed DOI PMC
Liu C., Wang Q.S., Wang Y.J. The CHEK2 I157T variant and colorectal cancer susceptibility: A systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 2012;13:2051–2055. doi: 10.7314/APJCP.2012.13.5.2051. PubMed DOI
Suchy J., Cybulski C., Wokolorczyk D., Oszurek O., Gorski B., Debniak T., Jakubowska A., Gronwald J., Huzarski T., Byrski T., et al. CHEK2 mutations and HNPCC-related colorectal cancer. Int. J. Cancer. 2010;126:3005–3009. doi: 10.1002/ijc.25003. PubMed DOI
Kleibl Z., Havranek O., Hlavata I., Novotny J., Sevcik J., Pohlreich P., Soucek P. The CHEK2 gene I157T mutation and other alterations in its proximity increase the risk of sporadic colorectal cancer in the Czech population. Eur. J. Cancer. 2009;45:618–624. doi: 10.1016/j.ejca.2008.09.022. PubMed DOI
Cybulski C., Wokolorczyk D., Kladny J., Kurzawski G., Suchy J., Grabowska E., Gronwald J., Huzarski T., Byrski T., Gorski B., et al. Germline CHEK2 mutations and colorectal cancer risk: Different effects of a missense and truncating mutations? Eur. J. Hum. Genet. 2007;15:237–241. doi: 10.1038/sj.ejhg.5201734. PubMed DOI
Djureinovic T., Lindblom A., Dalen J., Dedorson S., Edler D., Hjern F., Holm J., Lenander C., Lindforss U., Lundqvist N., et al. The CHEK2 1100delC variant in Swedish colorectal cancer. Anticancer Res. 2006;26:4885–4888. PubMed
Cragun D., Radford C., Dolinsky J.S., Caldwell M., Chao E., Pal T. Panel-based testing for inherited colorectal cancer: A descriptive study of clinical testing performed by a US laboratory. Clin. Genet. 2014;86:510–520. doi: 10.1111/cge.12359. PubMed DOI PMC
Pearlman R., Frankel W.L., Swanson B., Zhao W., Yilmaz A., Miller K., Bacher J., Bigley C., Nelsen L., Goodfellow P.J., et al. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer. JAMA Oncol. 2017;3:464–471. doi: 10.1001/jamaoncol.2016.5194. PubMed DOI PMC
You Y.N., Borras E., Chang K., Price B.A., Mork M., Chang G.J., Rodriguez-Bigas M.A., Bednarski B.K., Meric-Bernstam F., Vilar E. Detection of Pathogenic Germline Variants Among Patients With Advanced Colorectal Cancer Undergoing Tumor Genomic Profiling for Precision Medicine. Dis. Colon Rectum. 2019;62:429–437. doi: 10.1097/DCR.0000000000001322. PubMed DOI PMC
Rosenthal E.T., Evans B., Kidd J., Brown K., Gorringe H., van Orman M., Manley S. Increased Identification of Candidates for High-Risk Breast Cancer Screening Through Expanded Genetic Testing. J. Am. Coll. Radiol. 2017;14:561–568. doi: 10.1016/j.jacr.2016.10.003. PubMed DOI
Weischer M., Heerfordt I.M., Bojesen S.E., Eigentler T., Garbe C., Rocken M., Holmich L.R., Schmidt H., Klyver H., Bastholt L., et al. CHEK2*1100delC and risk of malignant melanoma: Danish and German studies and meta-analysis. J. Investig. Derm. 2012;132:299–303. doi: 10.1038/jid.2011.303. PubMed DOI
Konstantinova D.V., Kadiyska T.K., Kaneva R.P., Tosheva E.G., Guseva V.T., Dimitrov B.H., Dimitrov R.G., Doganov N.I., Ivanov S.I., Kremensky I.M., et al. CHEK2 I157T and endometrial cancer. DNA Cell Biol. 2009;28:9–12. doi: 10.1089/dna.2008.0781. PubMed DOI
Ring K.L., Bruegl A.S., Allen B.A., Elkin E.P., Singh N., Hartman A.R., Daniels M.S., Broaddus R.R. Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Mod. Pathol. 2016;29:1381–1389. doi: 10.1038/modpathol.2016.135. PubMed DOI PMC
AlDubayan S.H., Pyle L.C., Gamulin M., Kulis T., Moore N.D., Taylor-Weiner A., Hamid A.A., Reardon B., Wubbenhorst B., Godse R., et al. Association of Inherited Pathogenic Variants in Checkpoint Kinase 2 (CHEK2) With Susceptibility to Testicular Germ Cell Tumors. JAMA Oncol. 2019 doi: 10.1001/jamaoncol.2018.6477. PubMed DOI PMC
Bartsch D.K., Krysewski K., Sina-Frey M., Fendrich V., Rieder H., Langer P., Kress R., Schneider M., Hahn S.A., Slater E.P. Low Frequency of CHEK2 Mutations in Familial Pancreatic Cancer. Fam. Cancer. 2006;5:305–308. doi: 10.1007/s10689-006-7850-4. PubMed DOI
Mohelnikova-Duchonova B., Havranek O., Hlavata I., Foretova L., Kleibl Z., Pohlreich P., Soucek P. CHEK2 gene alterations in the forkhead-associated domain, 1100delC and del5395 do not modify the risk of sporadic pancreatic cancer. Cancer Epidemiol. 2010;34:656–658. doi: 10.1016/j.canep.2010.06.008. PubMed DOI
Obazee O., Archibugi L., Andriulli A., Soucek P., Malecka-Panas E., Ivanauskas A., Johnson T., Gazouli M., Pausch T., Lawlor R.T., et al. Germline BRCA2 K3326X and CHEK2 I157T mutations increase risk for sporadic pancreatic ductal adenocarcinoma. Int. J. Cancer. 2019 doi: 10.1002/ijc.32127. PubMed DOI
Hu C., Hart S.N., Bamlet W.R., Moore R.M., Nandakumar K., Eckloff B.W., Lee Y.K., Petersen G.M., McWilliams R.R., Couch F.J. Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients. Cancer Epidemiol. Biomark. Prev. 2016;25:207–211. doi: 10.1158/1055-9965.EPI-15-0455. PubMed DOI PMC
Yurgelun M.B., Chittenden A.B., Morales-Oyarvide V., Rubinson D.A., Dunne R.F., Kozak M.M., Qian Z.R., Welch M.W., Brais L.K., Da Silva A., et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet. Med. 2019;21:213–223. doi: 10.1038/s41436-018-0009-5. PubMed DOI PMC
Lovecek M., Janatova M., Skalicky P., Zemanek T., Havlik R., Ehrmann J., Strouhal O., Zemankova P., Lhotova K., Borecka M., et al. Genetic analysis of subsequent second primary malignant neoplasms in long-term pancreatic cancer survivors suggests new potential hereditary genetic alterations. Cancer Manag. Res. 2019;11:599–609. doi: 10.2147/CMAR.S185352. PubMed DOI PMC
Pazderová N., Urbán V., Makovník M., Macák D., Janega P., Chovanec M., Rejleková K., Mardiak J., Mego M. Complete Response to Chemotherapy in Metastatic Pancreatic Carcinoma Associated with Double Heterozygous Germline Mutation in BRCA2 and CHEK2 Genes—A Case Report. Klin. Onkol. 2020;33:220–225. doi: 10.14735/amko2020220. PubMed DOI
Goldstein J.B., Zhao L., Wang X., Ghelman Y., Overman M.J., Javle M.M., Shroff R.T., Varadhachary G.R., Wolff R.A., McAllister F., et al. Germline DNA Sequencing Reveals Novel Mutations Predictive of Overall Survival in a Cohort of Patients with Pancreatic Cancer. Clin. Cancer Res. 2020;26:1385–1394. doi: 10.1158/1078-0432.CCR-19-0224. PubMed DOI
Wang Y., McKay J.D., Rafnar T., Wang Z., Timofeeva M.N., Broderick P., Zong X., Laplana M., Wei Y., Han Y., et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2014;46:736–741. doi: 10.1038/ng.3002. PubMed DOI PMC
Hangaishi A., Ogawa S., Qiao Y., Wang L., Hosoya N., Yuji K., Imai Y., Takeuchi K., Miyawaki S., Hirai H. Mutations of Chk2 in primary hematopoietic neoplasms. Blood. 2002;99:3075–3077. doi: 10.1182/blood.V99.8.3075. PubMed DOI
Rudd M.F., Sellick G.S., Webb E.L., Catovsky D., Houlston R.S. Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. Blood. 2006;108:638–644. doi: 10.1182/blood-2005-12-5022. PubMed DOI
Janiszewska H., Bak A., Pilarska M., Heise M., Junkiert-Czarnecka A., Kuliszkiewicz-Janus M., Calbecka M., Jazwiec B., Wolowiec D., Kuliczkowski K., et al. A risk of essential thrombocythemia in carriers of constitutional CHEK2 gene mutations. Haematologica. 2012;97:366–370. doi: 10.3324/haematol.2011.049494. PubMed DOI PMC
Havranek O., Kleiblova P., Hojny J., Lhota F., Soucek P., Trneny M., Kleibl Z. Association of Germline CHEK2 Gene Variants with Risk and Prognosis of Non-Hodgkin Lymphoma. PLoS ONE. 2015;10:e0140819. doi: 10.1371/journal.pone.0140819. PubMed DOI PMC
Havranek O., Spacek M., Hubacek P., Mocikova H., Markova J., Trneny M., Kleibl Z. Alterations of CHEK2 forkhead-associated domain increase the risk of Hodgkin lymphoma. Neoplasma. 2011;58:392–395. doi: 10.4149/neo_2011_05_392. PubMed DOI
Szymanska-Pasternak J., Szymanska A., Medrek K., Imyanitov E.N., Cybulski C., Gorski B., Magnowski P., Dziuba I., Gugala K., Debniak B., et al. CHEK2 variants predispose to benign, borderline and low-grade invasive ovarian tumors. Gynecol. Oncol. 2006;102:429–431. doi: 10.1016/j.ygyno.2006.05.040. PubMed DOI
Lilyquist J., LaDuca H., Polley E., Davis B.T., Shimelis H., Hu C., Hart S.N., Dolinsky J.S., Couch F.J., Goldgar D.E. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol. Oncol. 2017;147:375–380. doi: 10.1016/j.ygyno.2017.08.030. PubMed DOI PMC
Carter N.J., Marshall M.L., Susswein L.R., Zorn K.K., Hiraki S., Arvai K.J., Torene R.I., McGill A.K., Yackowski L., Murphy P.D., et al. Germline pathogenic variants identified in women with ovarian tumors. Gynecol. Oncol. 2018;151:481–488. doi: 10.1016/j.ygyno.2018.09.030. PubMed DOI
Koczkowska M., Krawczynska N., Stukan M., Kuzniacka A., Brozek I., Sniadecki M., Debniak J., Wydra D., Biernat W., Kozlowski P., et al. Spectrum and Prevalence of Pathogenic Variants in Ovarian Cancer Susceptibility Genes in a Group of 333 Patients. Cancers. 2018;10:442. doi: 10.3390/cancers10110442. PubMed DOI PMC
A comprehensive analysis of germline predisposition to early-onset ovarian cancer
Germline multigene panel testing of patients with endometrial cancer
CHEK2p.I157T Mutation Is Associated with Increased Risk of Adult-Type Ovarian Granulosa Cell Tumors