Phosphorylation of PLK3 Is Controlled by Protein Phosphatase 6
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32575753
PubMed Central
PMC7349513
DOI
10.3390/cells9061506
PII: cells9061506
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, Polo-like kinase 3, protein kinase, protein phosphatase, stress,
- MeSH
- buněčné linie MeSH
- fosforylace MeSH
- lidé MeSH
- nádorové supresorové proteiny MeSH
- poškození DNA genetika MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteinfosfatasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové supresorové proteiny MeSH
- PLK3 protein, human MeSH Prohlížeč
- protein phosphatase 6 MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- proteinfosfatasy MeSH
Polo-like kinases play essential roles in cell cycle control and mitosis. In contrast to other members of this kinase family, PLK3 has been reported to be activated upon cellular stress including DNA damage, hypoxia and osmotic stress. Here we knocked out PLK3 in human non-transformed RPE cells using CRISPR/Cas9-mediated gene editing. Surprisingly, we find that loss of PLK3 does not impair stabilization of HIF1α after hypoxia, phosphorylation of the c-Jun after osmotic stress and dynamics of DNA damage response after exposure to ionizing radiation. Similarly, RNAi-mediated depletion of PLK3 did not impair stress response in human transformed cell lines. Exposure of cells to various forms of stress also did not affect kinase activity of purified EGFP-PLK3. We conclude that PLK3 is largely dispensable for stress response in human cells. Using mass spectrometry, we identify protein phosphatase 6 as a new interacting partner of PLK3. Polo box domain of PLK3 mediates the interaction with the PP6 complex. Finally, we find that PLK3 is phosphorylated at Thr219 in the T-loop and that PP6 constantly dephosphorylates this residue. However, in contrast to PLK1, phosphorylation of Thr219 does not upregulate enzymatic activity of PLK3, suggesting that activation of both kinases is regulated by distinct mechanisms.
Zobrazit více v PubMed
Zitouni S., Nabais C., Jana S.C., Guerrero A., Bettencourt-Dias M. Polo-like kinases: Structural variations lead to multiple functions. Nat. Rev. Mol. Cell Biol. 2014;15:433–452. doi: 10.1038/nrm3819. PubMed DOI
Elia A.E.H., Rellos P., Haire L.F., Chao J.W., Ivins F.J., Hoepker K., Mohammad D., Cantley L.C., Smerdon S.J., Yaffe M.B. The Molecular Basis for Phosphodependent Substrate Targeting and Regulation of Plks by the Polo-Box Domain. Cell. 2003;115:83–95. doi: 10.1016/S0092-8674(03)00725-6. PubMed DOI
Lens S.M.A., Voest E.E., Medema R.H. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat. Rev. Cancer. 2010;10:825–841. doi: 10.1038/nrc2964. PubMed DOI
Petronczki M., Lénárt P., Peters J.-M. Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev. Cell. 2008;14:646–659. doi: 10.1016/j.devcel.2008.04.014. PubMed DOI
Habedanck R., Stierhof Y.-D., Wilkinson C.J., Nigg E.A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 2005;7:1140–1146. doi: 10.1038/ncb1320. PubMed DOI
De Cárcer G., Escobar B., Higuero A.M., García L., Ansón A., Pérez G., Mollejo M., Manning G., Meléndez B., Abad-Rodríguez J., et al. Plk5, a Polo Box Domain-Only Protein with Specific Roles in Neuron Differentiation and Glioblastoma Suppression. Mol. Cell. Biol. 2011;31:1225–1239. doi: 10.1128/MCB.00607-10. PubMed DOI PMC
Holtrich U., Wolf G., Yuan J., Bereiter-Hahn J., Karn T., Weiler M., Kauselmann G., Rehli M., Andreesen R., Kaufmann M., et al. Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages. Oncogene. 2000;19:4832–4839. doi: 10.1038/sj.onc.1203845. PubMed DOI
Ma S., Liu M.-A., Yuan Y.-L.O., Erikson R.L. The serum-inducible protein kinase Snk is a G1 phase polo-like kinase that is inhibited by the calcium- and integrin-binding protein CIB. Mol. Cancer Res. 2003;1:376–384. PubMed
Zimmerman W.C., Erikson R.L. Polo-like kinase 3 is required for entry into S phase. Proc. Natl. Acad. Sci. USA. 2007;104:1847–1852. doi: 10.1073/pnas.0610856104. PubMed DOI PMC
Bahassi E.L.M., Hennigan R.F., Myer D.L., Stambrook P.J. Cdc25C phosphorylation on serine 191 by Plk3 promotes its nuclear translocation. Oncogene. 2004;23:2658–2663. doi: 10.1038/sj.onc.1207425. PubMed DOI
Myer D.L., Robbins S.B., Yin M., Boivin G.P., Liu Y., Greis K.D., Bahassi E.M., Stambrook P.J. Absence of polo-like kinase 3 in mice stabilizes Cdc25A after DNA damage but is not sufficient to produce tumors. Mutat. Res. 2011;714:1–10. doi: 10.1016/j.mrfmmm.2011.02.006. PubMed DOI PMC
Bahassi E.M., Conn C.W., Myer D.L., Hennigan R.F., McGowan C.H., Sanchez Y., Stambrook P.J. Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene. 2002;21:6633–6640. doi: 10.1038/sj.onc.1205850. PubMed DOI
Bahassi E.M., Myer D.L., McKenney R.J., Hennigan R.F., Stambrook P.J. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat. Res. 2006;596:166–176. doi: 10.1016/j.mrfmmm.2005.12.002. PubMed DOI
Xie S., Wu H., Wang Q., Cogswell J.P., Husain I., Conn C., Stambrook P., Jhanwar-Uniyal M., Dai W. Plk3 Functionally Links DNA Damage to Cell Cycle Arrest and Apoptosis at Least in Part via the p53 Pathway. J. Biol. Chem. 2001;276:43305–43312. doi: 10.1074/jbc.M106050200. PubMed DOI
Barton O., Naumann S.C., Diemer-Biehs R., Künzel J., Steinlage M., Conrad S., Makharashvili N., Wang J., Feng L., Lopez B.S., et al. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. J. Cell Biol. 2014;206:877–894. doi: 10.1083/jcb.201401146. PubMed DOI PMC
Wang L., Gao J., Dai W., Lu L. Activation of Polo-like Kinase 3 by Hypoxic Stresses. J. Biol. Chem. 2008;283:25928–25935. doi: 10.1074/jbc.M801326200. PubMed DOI PMC
Xu D., Yao Y., Lu L., Costa M., Dai W. Plk3 Functions as an Essential Component of the Hypoxia Regulatory Pathway by Direct Phosphorylation of HIF-1α. J. Biol. Chem. 2010;285:38944–38950. doi: 10.1074/jbc.M110.160325. PubMed DOI PMC
Yang Y., Bai J., Shen R., Brown S.A.N., Komissarova E., Huang Y., Jiang N., Alberts G.F., Costa M., Lu L., et al. Polo-like Kinase 3 Functions as a Tumor Suppressor and Is a Negative Regulator of Hypoxia-Inducible Factor-1α under Hypoxic Conditions. Cancer Res. 2008;68:4077–4085. doi: 10.1158/0008-5472.CAN-07-6182. PubMed DOI PMC
Wang L., Dai W., Lu L. Osmotic Stress-induced Phosphorylation of H2AX by Polo-like Kinase 3 Affects Cell Cycle Progression in Human Corneal Epithelial Cells. J. Biol. Chem. 2014;289:29827–29835. doi: 10.1074/jbc.M114.597161. PubMed DOI PMC
Wang L., Payton R., Dai W., Lu L. Hyperosmotic Stress-induced ATF-2 Activation through Polo-like Kinase 3 in Human Corneal Epithelial Cells. J. Biol. Chem. 2011;286:1951–1958. doi: 10.1074/jbc.M110.166009. PubMed DOI PMC
Colanzi A., Sutterlin C., Malhotra V. RAF1-activated MEK1 is found on the Golgi apparatus in late prophase and is required for Golgi complex fragmentation in mitosis. J. Cell Biol. 2003;161:27–32. doi: 10.1083/jcb.200208099. PubMed DOI PMC
Xie S., Wang Q., Ruan Q., Liu T., Jhanwar-Uniyal M., Guan K., Dai W. MEK1-induced Golgi dynamics during cell cycle progression is partly mediated by Polo-like kinase-3. Oncogene. 2004;23:3822–3829. doi: 10.1038/sj.onc.1207479. PubMed DOI
Ruan Q., Wang Q., Xie S., Fang Y., Darzynkiewicz Z., Guan K., Jhanwar-Uniyal M., Dai W. Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp. Cell Res. 2004;294:51–59. doi: 10.1016/j.yexcr.2003.10.022. PubMed DOI
Stefansson B., Ohama T., Daugherty A.E., Brautigan D.L. Protein Phosphatase 6 Regulatory Subunits Composed of Ankyrin Repeat Domains. Biochemistry. 2008;47:1442–1451. doi: 10.1021/bi7022877. PubMed DOI
Ohama T. The multiple functions of protein phosphatase 6. Biochimi. Biophys. Acta (BBA) Mol. Cell Res. 2019;1866:74–82. doi: 10.1016/j.bbamcr.2018.07.015. PubMed DOI
Rusin S.F., Schlosser K.A., Adamo M.E., Kettenbach A.N. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells. Sci. Signal. 2015;8:rs12. doi: 10.1126/scisignal.aab3138. PubMed DOI PMC
Zeng K., Bastos R.N., Barr F.A., Gruneberg U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J. Cell Biol. 2010;191:1315–1332. doi: 10.1083/jcb.201008106. PubMed DOI PMC
Mi J., Dziegielewski J., Bolesta E., Brautigan D.L., Larner J.M. Activation of DNA-PK by Ionizing Radiation Is Mediated by Protein Phosphatase 6. PLoS ONE. 2009;4:e4395. doi: 10.1371/journal.pone.0004395. PubMed DOI PMC
Shen Y., Wang Y., Sheng K., Fei X., Guo Q., Larner J., Kong X., Qiu Y., Mi J. Serine/threonine protein phosphatase 6 modulates the radiation sensitivity of glioblastoma. Cell Death Dis. 2011;2:e241. doi: 10.1038/cddis.2011.126. PubMed DOI PMC
Hayashi K., Momoi Y., Tanuma N., Kishimoto A., Ogoh H., Kato H., Suzuki M., Sakamoto Y., Inoue Y., Nomura M., et al. Abrogation of protein phosphatase 6 promotes skin carcinogenesis induced by DMBA. Oncogene. 2015;34:4647–4655. doi: 10.1038/onc.2014.398. PubMed DOI
Hammond D., Zeng K., Espert A., Bastos R.N., Baron R.D., Gruneberg U., Barr F.A. Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A. J. Cell Sci. 2013;126:3429–3440. doi: 10.1242/jcs.128397. PubMed DOI
Burdova K., Storchova R., Palek M., Macurek L. WIP1 Promotes Homologous Recombination and Modulates Sensitivity to PARP Inhibitors. Cells. 2019;8:1258. doi: 10.3390/cells8101258. PubMed DOI PMC
Xu X., Stern D.F. NFBD1/KIAA0170 Is a Chromatin-associated Protein Involved in DNA Damage Signaling Pathways. J. Biol. Chem. 2003;278:8795–8803. doi: 10.1074/jbc.M211392200. PubMed DOI
Macůrek L., Lindqvist A., Voets O., Kool J., Vos H.R., Medema R.H. Wip1 phosphatase is associated with chromatin and dephosphorylates γH2AX to promote checkpoint inhibition. Oncogene. 2010;29:2281–2291. doi: 10.1038/onc.2009.501. PubMed DOI
Alberts G., Winkles J. Murine FGF-inducible kinase is rapidly degraded via the nuclear ubiquitin-proteosome system when overexpressed in NIH 3T3 cells. Cell Cycle. 2004;3:678–684. doi: 10.4161/cc.3.5.865. PubMed DOI
Helmke C., Raab M., Rödel F., Matthess Y., Oellerich T., Mandal R., Sanhaji M., Urlaub H., Rödel C., Becker S., et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914–934. doi: 10.1038/cr.2016.78. PubMed DOI PMC
Jiang N., Wang X., Jhanwar-Uniyal M., Darzynkiewicz Z., Dai W. Polo Box Domain of Plk3 Functions as a Centrosome Localization Signal, Overexpression of Which Causes Mitotic Arrest, Cytokinesis Defects, and Apoptosis. J. Biolo. Chem. 2006;281:10577–10582. doi: 10.1074/jbc.M513156200. PubMed DOI
Wang L., Dai W., Lu L. Stress-induced c-Jun Activation Mediated by Polo-like Kinase 3 in Corneal Epithelial Cells. J. Biol. Chem. 2007;282:32121–32127. doi: 10.1074/jbc.M702791200. PubMed DOI
Ziv Y., Bielopolski D., Galanty Y., Lukas C., Taya Y., Schultz D.C., Lukas J., Bekker-Jensen S., Bartek J., Shiloh Y. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 2006;8:870–876. doi: 10.1038/ncb1446. PubMed DOI
Kleiblova P., Stolarova L., Krizova K., Lhota F., Hojny J., Zemankova P., Havranek O., Vocka M., Cerna M., Lhotova K., et al. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int. J. Cancer. 2019;145:1782–1797. doi: 10.1002/ijc.32385. PubMed DOI
Van Vugt M.A.T.M., Smits V.A.J., Klompmaker R., Medema R.H. Inhibition of Polo-like Kinase-1 by DNA Damage Occurs in an ATM- or ATR-dependent Fashion. J. Biol. Chem. 2001;276:41656–41660. doi: 10.1074/jbc.M101831200. PubMed DOI
Kettenbach A.N., Schlosser K.A., Lyons S.P., Nasa I., Gui J., Adamo M.E., Gerber S.A. Global assessment of its network dynamics reveals that the kinase Plk1 inhibits the phosphatase PP6 to promote Aurora A activity. Sci. Signal. 2018;11:eaaq1441. doi: 10.1126/scisignal.aaq1441. PubMed DOI PMC
Macurek L., Lindqvist A., Lim D., Lampson M.A., Klompmaker R., Freire R., Clouin C., Taylor S.S., Yaffe M.B., Medema R.H. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature. 2008;455:119–123. doi: 10.1038/nature07185. PubMed DOI
Bruinsma W., Macůrek L., Freire R., Lindqvist A., Medema R.H. Bora and Aurora-A continue to activate Plk1 in mitosis. J. Cell Sci. 2014;127:801–811. doi: 10.1242/jcs.137216. PubMed DOI
Chan E.H.Y., Santamaria A., Silljé H.W., Nigg E.A. Plk1 regulates mitotic Aurora A function through βTrCP-dependent degradation of hBora. Chromosom. Biol. Nucl. 2008;117:457–469. doi: 10.1007/s00412-008-0165-5. PubMed DOI PMC
Swingle M., Ni L., Honkanen R.E. Small-molecule inhibitors of ser/thr protein phosphatases: Specificity, use and common forms of abuse. Methods Mol. Biol. 2007;365:23–38. doi: 10.1385/1-59745-267-X:23. PubMed DOI PMC
Watanabe K., Umeda T., Niwa K., Naguro I., Ichijo H. A PP6-ASK3 Module Coordinates the Bidirectional Cell Volume Regulation under Osmotic Stress. Cell Rep. 2018;22:2809–2817. doi: 10.1016/j.celrep.2018.02.045. PubMed DOI
Bhandari D., Zhang J., Menon S., Lord C., Chen S., Helm J., Thorsen K., Corbett K., Hay J., Ferro-Novick S. Sit4p/PP6 Regulates ER-to-Golgi Traffic by Controlling the Dephosphorylation of COPII Coat Subunits. Mol. Biol. Cell. 2013;24:2727–2738. doi: 10.1091/mbc.e13-02-0114. PubMed DOI PMC
Ohama T., Wang L., Griner E., Brautigan D. Protein Ser/Thr phosphatase-6 is required for maintenance of E-cadherin at adherens junctions. BMC Cell Biol. 2013;14:42. doi: 10.1186/1471-2121-14-42. PubMed DOI PMC
Lin C., Bai S., Du T., Lai Y., Chen X., Peng S., Ma X., Wu W., Guo Z., Huang H. Polo-like kinase 3 is associated with poor prognosis and regulates proliferation and metastasis in prostate cancer. Cancer Manag. Res. 2019;11:1517–1524. doi: 10.2147/CMAR.S176762. PubMed DOI PMC
Babagana M., Kichina J.V., Slabodkin H., Johnson S., Maslov A., Brown L., Attwood K., Nikiforov M.A., Kandel E.S. The role of polo-like kinase 3 in the response of BRAF-mutant cells to targeted anticancer therapies. Mol. Carcinog. 2020;59:5–14. doi: 10.1002/mc.23123. PubMed DOI PMC
Ou B., Sun H., Zhao J., Xu Z., Liu Y., Feng H., Peng Z. Polo-like kinase 3 inhibits glucose metabolism in colorectal cancer by targeting HSP90/STAT3/HK2 signaling. J. Exp. Clin. Cancer Res. CR. 2019;38:426. doi: 10.1186/s13046-019-1418-2. PubMed DOI PMC