WIP1 Promotes Homologous Recombination and Modulates Sensitivity to PARP Inhibitors
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31619012
PubMed Central
PMC6830099
DOI
10.3390/cells8101258
PII: cells8101258
Knihovny.cz E-resources
- Keywords
- DNA repair, PARP inhibitor, chemotherapy, genotoxic stress, olaparib, phosphatase,
- MeSH
- Tumor Suppressor p53-Binding Protein 1 metabolism MeSH
- Apoptosis drug effects MeSH
- Drug Resistance, Neoplasm drug effects MeSH
- Chromatin metabolism MeSH
- Phthalazines pharmacology MeSH
- HEK293 Cells MeSH
- Homologous Recombination genetics MeSH
- G2 Phase Cell Cycle Checkpoints MeSH
- S Phase Cell Cycle Checkpoints MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms metabolism MeSH
- DNA Repair genetics physiology MeSH
- Poly(ADP-ribose) Polymerase Inhibitors pharmacology MeSH
- Piperazines pharmacology MeSH
- DNA Damage genetics physiology MeSH
- Cell Proliferation drug effects MeSH
- BRCA1 Protein metabolism MeSH
- Protein Phosphatase 2C antagonists & inhibitors genetics metabolism MeSH
- Antineoplastic Agents pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Tumor Suppressor p53-Binding Protein 1 MeSH
- BRCA1 protein, human MeSH Browser
- Chromatin MeSH
- Phthalazines MeSH
- olaparib MeSH Browser
- Poly(ADP-ribose) Polymerase Inhibitors MeSH
- Piperazines MeSH
- PPM1D protein, human MeSH Browser
- BRCA1 Protein MeSH
- Protein Phosphatase 2C MeSH
- Antineoplastic Agents MeSH
- TP53BP1 protein, human MeSH Browser
Genotoxic stress triggers a combined action of DNA repair and cell cycle checkpoint pathways. Protein phosphatase 2C delta (referred to as WIP1) is involved in timely inactivation of DNA damage response by suppressing function of p53 and other targets at chromatin. Here we show that WIP1 promotes DNA repair through homologous recombination. Loss or inhibition of WIP1 delayed disappearance of the ionizing radiation-induced 53BP1 foci in S/G2 cells and promoted cell death. We identify breast cancer associated protein 1 (BRCA1) as interactor and substrate of WIP1 and demonstrate that WIP1 activity is needed for correct dynamics of BRCA1 recruitment to chromatin flanking the DNA lesion. In addition, WIP1 dephosphorylates 53BP1 at Threonine 543 that was previously implicated in mediating interaction with RIF1. Finally, we report that inhibition of WIP1 allowed accumulation of DNA damage in S/G2 cells and increased sensitivity of cancer cells to a poly-(ADP-ribose) polymerase inhibitor olaparib. We propose that inhibition of WIP1 may increase sensitivity of BRCA1-proficient cancer cells to olaparib.
See more in PubMed
Hustedt N., Durocher D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 2016;19:1. doi: 10.1038/ncb3452. PubMed DOI
Ferretti L., Lafranchi L., Sartori A. Controlling DNA-end resection: A new task for CDKs. Front. Genet. 2013;4:99. doi: 10.3389/fgene.2013.00099. PubMed DOI PMC
Jackson S.P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–1078. doi: 10.1038/nature08467. PubMed DOI PMC
Jackson Stephen P., Durocher D. Regulation of DNA Damage Responses by Ubiquitin and SUMO. Mol. Cell. 2013;49:795–807. doi: 10.1016/j.molcel.2013.01.017. PubMed DOI
Himmels S.-F., Sartori A.A. Controlling DNA-End Resection: An. Emerging Task for Ubiquitin and SUMO. Front. Genet. 2016;7:152. doi: 10.3389/fgene.2016.00152. PubMed DOI PMC
Chen H., Lisby M., Symington L.S. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol. Cell. 2013;50:589–600. doi: 10.1016/j.molcel.2013.04.032. PubMed DOI PMC
Zou L., Elledge S.J. Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes. Science. 2003;300:1542–1548. doi: 10.1126/science.1083430. PubMed DOI
Zong D., Adam S., Wang Y., Sasanuma H., Callén E., Murga M., Chaudhuri A.R. BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Mol. Cell. 2019;73:1267–1281.e7. doi: 10.1016/j.molcel.2018.12.010. PubMed DOI PMC
Sy S.M.H., Huen M.S.Y., Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl. Acad. Sci. USA. 2009;106:7155–7160. doi: 10.1073/pnas.0811159106. PubMed DOI PMC
Zhao W., Steinfeld J.B., Liang F., Chen X., Maranon D.G., Ma C.J., Song X. BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 2017;550:360. doi: 10.1038/nature24060. PubMed DOI PMC
Chapman J.R., Martin R.G., Taylor J., Simon J., Boulton J. Playing the End Game: DNA Double-Strand Break Repair Pathway Choice. Mol. Cell. 2012;47:497–510. doi: 10.1016/j.molcel.2012.07.029. PubMed DOI
Panier S., Boulton S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 2013;15:7. doi: 10.1038/nrm3719. PubMed DOI
Sobhian B., Shao G., Lilli D.R., Culhane A.C., Moreau L.A., Xia B., Greenberg R.A. RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites. Science. 2007;316:1198–1202. doi: 10.1126/science.1139516. PubMed DOI PMC
Nakamura K., Saredi G., Becker J.R., Foster B.M., Nguyen N.V., Beyer T.E., Chapman J.R. H4K20me0 recognition by BRCA1–BARD1 directs homologous recombination to sister chromatids. Nat. Cell Biol. 2019;21:311–318. doi: 10.1038/s41556-019-0282-9. PubMed DOI PMC
Fradet-Turcotte A., Canny M.D., Escribano-Díaz C., Orthwein A., Leung C.C., Huang H., Durocher D. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 2013;499:50–54. doi: 10.1038/nature12318. PubMed DOI PMC
Pei H., Zhang L., Luo K., Qin Y., Chesi M., Fei F., Lou Z. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 2011;470:124–128. doi: 10.1038/nature09658. PubMed DOI PMC
Kleiner R.E., Verma P., Molloy K.R., Chait B.T., Kapoor T.M. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response. Nat. Chem. Biol. 2015;11:807. doi: 10.1038/nchembio.1908. PubMed DOI PMC
Callen E., di Virgilio M., Kruhlak M.J., Nieto-Soler M., Wong N., Chen H.T., Wesemann D.R. 53BP1 Mediates Productive and Mutagenic DNA Repair through Distinct Phosphoprotein Interactions. Cell. 2013;153:1266–1280. doi: 10.1016/j.cell.2013.05.023. PubMed DOI PMC
Chapman J.R., Barral P., Vannier J.B., Borel V., Steger M., Tomas-Loba A., Boulton S.J. RIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection. Mol. Cell. 2013;49:858–871. doi: 10.1016/j.molcel.2013.01.002. PubMed DOI PMC
Escribano-Díaz C., Orthwein A., Fradet-Turcotte A., Xing M., Young J.T., Tkáč J., Xu D. A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Mol. Cell. 2013;49:872–883. doi: 10.1016/j.molcel.2013.01.001. PubMed DOI
Isono M., Niimi A., Oike T., Hagiwara Y., Sato H., Sekine R., Petricci E. BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation. Cell Rep. 2017;18:520–532. doi: 10.1016/j.celrep.2016.12.042. PubMed DOI
Densham R.M., Garvin A.J., Stone H.R., Strachan J., Baldock R.A., Daza-Martin M., Pearl L.H. Human BRCA1–BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat. Struct. Mol. Biol. 2016;23:647. doi: 10.1038/nsmb.3236. PubMed DOI PMC
Lord C.J., Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287–294. doi: 10.1038/nature10760. PubMed DOI
Lord C.J., Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–1158. doi: 10.1126/science.aam7344. PubMed DOI PMC
Ibrahim Y.H., García-García C., Serra V., He L., Torres-Lockhart K., Prat A., Rodríguez O. PI3K Inhibition Impairs BRCA1/2 Expression and Sensitizes BRCA-Proficient Triple-Negative Breast Cancer to PARP Inhibition. Cancer Discov. 2012;2:1036–1047. doi: 10.1158/2159-8290.CD-11-0348. PubMed DOI PMC
Gogola E., Rottenberg S., Jonkers J. Resistance to PARP Inhibitors: Lessons from Preclinical Models of BRCA-Associated Cancer. Annu. Rev. Cancer Biol. 2019;3:235–254. doi: 10.1146/annurev-cancerbio-030617-050232. DOI
Karakashev S., Zhu H., Yokoyama Y., Zhao B., Fatkhutdinov N., Kossenkov A.V., Bitler B.G. BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer. Cell Rep. 2017;21:3398–3405. doi: 10.1016/j.celrep.2017.11.095. PubMed DOI PMC
Zhong Q., Hu Z., Li Q., Yi T., Li J., Yang H. Cyclin D1 silencing impairs DNA double strand break repair, sensitizes BRCA1 wildtype ovarian cancer cells to olaparib. Gynecol. Oncol. 2019;152:157–165. doi: 10.1016/j.ygyno.2018.10.027. PubMed DOI
Kurnit K.C., Coleman R.L., Westin S.N. Using PARP Inhibitors in the Treatment of Patients with Ovarian Cancer. Curr. Treat. Opt. Oncol. 2018;19:1. doi: 10.1007/s11864-018-0572-7. PubMed DOI PMC
Macůrek L., Lindqvist A., Voets O., Kool J., Vos H.R., Medema R.H. Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene. 2010;15:2281–2291. PubMed
Macurek L., Benada J., Müllers E., Halim V.A., Krejčíková K., Burdová K., Bartek J. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis. Cell Cycle. 2013;12:251–262. doi: 10.4161/cc.23057. PubMed DOI PMC
Fiscella M., Zhang H., Fan S., Sakaguchi K., Shen S., Mercer W.E., Appella E. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc. Natl. Acad. Sci. USA. 1997;94:6048–6053. doi: 10.1073/pnas.94.12.6048. PubMed DOI PMC
Lu X., Ma O., Nguyen T.A., Jones S.N., Oren M., Donehower L.A. The Wip1 Phosphatase Acts as a Gatekeeper in the p53-Mdm2 Autoregulatory Loop. Cancer Cell. 2007;12:342–354. doi: 10.1016/j.ccr.2007.08.033. PubMed DOI
Shreeram S., Demidov O.N., Hee W.K., Yamaguchi H., Onishi N., Kek C., Minami Y. Wip1 Phosphatase Modulates ATM-Dependent Signaling Pathways. Mol. Cell. 2006;23:757–764. doi: 10.1016/j.molcel.2006.07.010. PubMed DOI
Shreeram S., Demidov O.N., Hee W.K., Yamaguchi H., Onishi N., Kek C., Minami Y. ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration. EMBO J. 2017;36:2161–2176. PubMed PMC
Shaltiel I.A., Aprelia M., Saurin A.T., Chowdhury D., Kops G.J., Voest E.E., Medema R.H. Distinct phosphatases antagonize the p53 response in different phases of the cell cycle. Proc. Natl. Acad. Sci. USA. 2014;111:7313–7318. doi: 10.1073/pnas.1322021111. PubMed DOI PMC
Cha H., Lowe J.M., Li H., Lee J.S., Belova G.I., Bulavin D.V., Fornace A. JWip1 Directly Dephosphorylates γ-H2AX and Attenuates the DNA Damage Response. Cancer Res. 2010;70:4112–4122. doi: 10.1158/0008-5472.CAN-09-4244. PubMed DOI PMC
Bulavin D.V., Demidov O.N., Saito S.I., Kauraniemi P., Phillips C., Amundson S.A., Kallioniemi A. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet. 2002;31:210. doi: 10.1038/ng894. PubMed DOI
Tan D.S., Lambros M.B., Rayter S., Natrajan R., Vatcheva R., Gao Q., Fenwick K. PPM1D Is a Potential Therapeutic Target in Ovarian Clear Cell Carcinomas. Clin. Cancer Res. 2009;15:2269–2280. doi: 10.1158/1078-0432.CCR-08-2403. PubMed DOI
Castellino R.C., de Bortoli M., Lu X., Moon S.H., Nguyen T.A., Shepard M.A., Kim J.Y. Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J. Neurooncol. 2008;86:245–256. doi: 10.1007/s11060-007-9470-8. PubMed DOI PMC
Le Guezennec X., Bulavin D.V. WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem. Sci. 2010;35:109–114. doi: 10.1016/j.tibs.2009.09.005. PubMed DOI
Gilmartin A.G., Faitg T.H., Richter M., Groy A., Seefeld M.A., Darcy M.G., Minthorn E. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat. Chem. Biol. 2014;10:181–187. doi: 10.1038/nchembio.1427. PubMed DOI
Richter M., Dayaram T., Gilmartin A.G., Ganji G., Pemmasani S.K., van der Key H., Kumar R. WIP1 Phosphatase as a Potential Therapeutic Target in Neuroblastoma. PLoS ONE. 2015;10:e0115635. PubMed PMC
Pechackova S., Burdova K., Benada J., Kleiblova P., Jenikova G., Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458–14475. doi: 10.18632/oncotarget.7363. PubMed DOI PMC
Pecháčková S., Burdová K., Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J. Mol. Med. 2017;95:589–599. doi: 10.1007/s00109-017-1536-2. PubMed DOI PMC
Stolte B., Iniguez A.B., Dharia N., Robichaud A., Conway A., Morgan A., Alexe G. Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma. J. Exp. Med. 2018;215:2137–2155. doi: 10.1084/jem.20171066. PubMed DOI PMC
Moon S.H., Lin L., Zhang X., Nguyen T.A., Darlington Y., Waldman A.S., Donehower L.A. Wildtype p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair. J. Biol. Chem. 2010;285:12935–12947. doi: 10.1074/jbc.M109.071696. PubMed DOI PMC
Certo M.T., Ryu B.Y., Annis J.E., Garibov M., Jarjour J., Rawlings D.J., Scharenberg A.M. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods. 2011;8:671. doi: 10.1038/nmeth.1648. PubMed DOI PMC
Jazayeri A., Falck J., Lukas C., Bartek J., Smith G.C., Lukas J., Jackson S.P. ATM-and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 2006;8:37–45. doi: 10.1038/ncb1337. PubMed DOI
Gunn A., Stark J.M. I-SceI-Based Assays to Examine Distinct Repair Outcomes of Mammalian Chromosomal Double Strand Breaks. In: Bjergbæk L., editor. DNA Repair Protocols. Humana Press; Totowa, NJ, USA: 2012. pp. 379–391. PubMed
Saleh-Gohari N., Bryant H.E., Schultz N., Parker K.M., Cassel T.N., Helleday T. Spontaneous Homologous Recombination Is Induced by Collapsed Replication Forks That Are Caused by Endogenous DNA Single-Strand Breaks. Mol. Cell. Biol. 2005;25:7158–7169. doi: 10.1128/MCB.25.16.7158-7169.2005. PubMed DOI PMC
Noordermeer S.M., Adam S., Setiaputra D., Barazas M., Pettitt S.J., Ling A.K., Annunziato S. The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018;560:117–121. doi: 10.1038/s41586-018-0340-7. PubMed DOI PMC
Schmidt C.K., Galanty Y., Sczaniecka-Clift M., Coates J., Jhujh S., Demir M., Jackson S.P. Systematic E2 screening reveals a UBE2D–RNF138–CtIP axis promoting DNA repair. Nat. Cell Biol. 2015;17:1458. doi: 10.1038/ncb3260. PubMed DOI PMC
Tibbetts R.S., Cortez D., Brumbaugh K.M., Scully R., Livingston D., Elledge S.J., Abraham R.T. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 2000;14:2989–3002. doi: 10.1101/gad.851000. PubMed DOI PMC
Xu B., O’Donnell A.H., Kim S.T., Kastan M.B. Phosphorylation of Serine 1387 in Brca1 Is Specifically Required for the Atm-mediated S-Phase Checkpoint after Ionizing Irradiation. Cancer Res. 2002;62:4588–4591. PubMed
Scully R., Chen J., Ochs R.L., Keegan K., Hoekstra M., Feunteun J., Livingston D.M. Dynamic Changes of BRCA1 Subnuclear Location and Phosphorylation State Are Initiated by DNA Damage. Cell. 1997;90:425–435. doi: 10.1016/S0092-8674(00)80503-6. PubMed DOI
Kim H.S., Li H., Cevher M., Parmelee A., Fonseca D., Kleiman F.E., Lee S.B. DNA Damage–Induced BARD1 Phosphorylation Is Critical for the Inhibition of Messenger RNA Processing by BRCA1/BARD1 Complex. Cancer Res. 2006;66:4561–4565. doi: 10.1158/0008-5472.CAN-05-3629. PubMed DOI
Filipponi D., Muller J., Emelyanov A., Bulavin D.V. Wip1 Controls Global Heterochromatin Silencing via ATM/BRCA1-Dependent DNA Methylation. Cancer Cell. 2013;24:528–541. doi: 10.1016/j.ccr.2013.08.022. PubMed DOI
Chowdhury D., Xu X., Zhong X., Ahmed F., Zhong J., Liao J., Lieberman J. A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol. Cell. 2008;31:33–46. doi: 10.1016/j.molcel.2008.05.016. PubMed DOI PMC
Lee D.H., Goodarzi A.A., Adelmant G.O., Pan Y., Jeggo P.A., Marto J.A., Chowdhury D. Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J. 2012;31:2403–2415. doi: 10.1038/emboj.2012.86. PubMed DOI PMC
Penning T.D., Zhu G.D., Gong J., Thomas S., Gandhi V.B., Liu X., Fry E.H. Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor. J. Med. Chem. 2010;53:3142–3153. doi: 10.1021/jm901775y. PubMed DOI
Lindqvist A., de Bruijn M., Macurek L., Brás A., Mensinga A., Bruinsma W., Medema R. HWip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression. EMBO J. 2009;28:3196–3206. doi: 10.1038/emboj.2009.246. PubMed DOI PMC
Lu X., Bocangel D., Nannenga B., Yamaguchi H., Appella E., Donehower L.A. The p53-Induced Oncogenic Phosphatase PPM1D Interacts with Uracil DNA Glycosylase and Suppresses Base Excision Repair. Mol. Cell. 2004;15:621–634. doi: 10.1016/j.molcel.2004.08.007. PubMed DOI
Nguyen T.A., Slattery S.D., Moon S.H., Darlington Y.F., Lu X., Donehower L.A. The oncogenic phosphatase WIP1 negatively regulates nucleotide excision repair. DNA Repair. 2010;9:813–823. doi: 10.1016/j.dnarep.2010.04.005. PubMed DOI PMC
Linke S.P., Sengupta S., Khabie N., Jeffries B.A., Buchhop S., Miska S., Yang Q. p53 Interacts with hRAD51 and hRAD54, and Directly Modulates Homologous Recombination. Cancer Res. 2003;63:2596–2605. PubMed
Arias-Lopez C., Lazaro-Trueba I., Kerr P., Lord C.J., Dexter T., Iravani M., Silva A. p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO Rep. 2006;7:219–224. doi: 10.1038/sj.embor.7400587. PubMed DOI PMC
Gatz S.A., Wiesmüller L. p53 in recombination and repair. Cell Death Differ. 2006;13:1003–1016. doi: 10.1038/sj.cdd.4401903. PubMed DOI
Sriraman A., Radovanovic M., Wienken M., Najafova Z., Li Y., Dobbelstein M. Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity. Oncotarget. 2016;7:31623–31638. doi: 10.18632/oncotarget.9302. PubMed DOI PMC
Chen Z., Wang L., Yao D., Yang T., Cao W.M., Dou J., Zhao Y. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis. Sci. Rep. 2016;6:38011. doi: 10.1038/srep38011. PubMed DOI PMC
Wu C.E., Esfandiari A., Ho Y.H., Wang N., Mahdi A.K., Aptullahoglu E., Lunec J. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. Br. J. Cancer. 2017;118:495. PubMed PMC
Kasibhatla S., Amarante-Mendes G.P., Finucane D., Brunner T., Bossy-Wetzel E., Green D.R. Staining of Suspension Cells with Hoechst 33258 to Detect. Apoptosis. Cold Spring Harb. Protoc. 2006;2006:pdb.prot4492. doi: 10.1101/pdb.prot4492. PubMed DOI
Shiotani B., Zou L. Single-Stranded DNA Orchestrates an ATM-to-ATR Switch at DNA Breaks. Mol. Cell. 2009;33:547–558. doi: 10.1016/j.molcel.2009.01.024. PubMed DOI PMC
An ATM-PPM1D Circuit Controls the Processing and Restart of DNA Replication Forks
PPM1D activity promotes cellular transformation by preventing senescence and cell death
Phosphorylation of PLK3 Is Controlled by Protein Phosphatase 6